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Sb deficiency in the bulk

In the bulk region, the detected concentration of Sb is slightly lower than the nominal one

(i.e., 40%) can be due to two reasons. (a) Sb show very high probability of multiple events.

Some fragments might be lost due to the ’dead time’ and ’dead zone’ effect of the detector;1

(b) Large Sb clusters also show molecular dissociation, which causes composition deviations.

As these factors also affect the boundary region, we focus on the concentration difference

rather than its absolute value.
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Figure S1: (a) Atomic concentrations analysis of Sb clusters across the 2D defect. Peaks
of concentration from single Sb ions and Sb2 clusters can be identified near the 2D defect,
while larger clusters shows negligible variation of concentration. (b) Atom counts for each
element. The different counts across the defect can be resulted from different evaporation
rates due to their crystal orientation.

Sb clusters

Another compound-specific factor, formation of Sb clusters, doesn’t affect our observation

as well. In the literature, group V elements have been observed to evaporate as clusters

due to their higher evaporation field.2,3 Migration of clusters on the surface of tip as well

as undetected clusters (e.g., Sb6 and so on) with large mass-to-change ratios can result in

an inaccurate atomic concentrations. In contrast to this concern, Fig. S1 (a) shows that

the spacial variation of Sb concentration is mainly contributed from single Sb ions and Sb2

clusters. Any undetected or migrating large Sb clusters therefore most likely contribute

uniformly to the concentration profile.

Zone line

The zone line4 is a 2D low-density region formed due to trajectory aberration of different

crystallographic orientations. In Fig.S1 (b), a change of atom count across the 2D defect

can be observed due to different evaporation rates associated with their crystal orientations.

Within the defect region, the atom count showing a relatively smooth transition suggests

that the feature is not a zone line. Furthermore, the constant atom counts within each grain
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further confirms the existence of a 2D defect. Similar Mg deficiency observed from another

tip (see SI) also clarifies the concern of zone line, as its formation is sensitive to crystal

orientations with respect to the tip. Note that the measurement was done by a different

instrument and was able to include larger Sb clusters (e.g., Sb6 and Sb7). Based on these

augment, we verify the validity of the observation of 2D defects with Mg deficiency in n-type

Mg3Sb2 compounds.
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Figure S2: Measurement of (a) Hall carrier concentration and (b) Seebeck coefficient. The
results show that the sample is a degenerate n-type Mg3Sb2.

Measurement of electrical n-type properties

Fig. S2 shows the n-type properties of the sample. The Hall coefficient measurements were

determined using the 4-point probe Van der Pauw technique with a 0.8 T magnetic field

under high vacuum.5 The Seebeck coefficients of the samples were obtained using chromel-

Nb thermocouples by applying a temperature gradient across the sample to oscillate between

±5 K.6
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Figure S3: (a)SEM image of the APT specimen. Radius of the tip is estimated to be smaller
than 50 nm. A grain-boundary-like structure is visible in the image. (b) Atomic density
maps near the bottom of the tip. A low-density 2D defect can be observed. (c) Atomic
concentrations analysis along the arrow direction in (b).The profile is constructed from a
cylinder region-of-interest (diameter: 20 nm, length: 35 nm, and bin size: 1 nm).The red
area corresponds to the grain-boundary region. The defect shows a Mg deficient profile
across the 2D defect, while impurities (e.g., O and Te) show little variation across the
defect. (e)-(f) corresponds to data from another APT specimen which does not show a clear
Mg deficient profile across the grain boundary as the other two APT specimens. This can
be due to structural details (e.g., mis-orientation angle) of the defect affect the degree of
stoichiometric deviation.

Additional data

Fig. S3(a)-(c) shows another APT specimen with a 2D defect that shows a Mg-deficient

concentration profile across the defect. On the other hand, Fig. S3(d)-(f) corresponds to

another specimen which doesn’t show a clear Mg-deficient profile. We suspect that the

structural details (e.g., mis-orientation angle) of the defect affect the degree of stoichiometric

deviation. These measurements were performed using a different instrument and setup:

LEAP 4000X Si, 355 nm, 50 K, 10 pJ, 200 kHz, detection rate of 5 ions per 1000 pulses and
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detector efficiency of 50%.
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