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Materials and Methods 

Notation 

Variable Description 

E The embedding dimension of the state space that engulfs the 

dynamical system under study. 

dM The embedding dimension of the dynamical system as formed into 

an attractor M by the system’s trajectories where dM ≤E. 

t Denotes time measured in time steps t1, t2, t3, … (e.g. days, weeks, 

months) 

τ The time lag we use to reconstruct a shadow attractor. 

L The time series length, also called library of the time series. 

M The attractor consisting of all trajectories and possible states x(t) of 

the system. M is a d-dimensional attractor embedded in an E-

dimensional state space (dM ≤ E). The state space contains the 

manifold and its dynamics and consists of the original E Cartesian 

coordinates (fundamental variables) of the system. 

m(t) The point (vector) on M representing the state of the system at time 

t. 

X, Y State variables of the system that operate as a function which map 

points from M to a real-valued scalar. X and Y may correspond to 

Cartesian coordinates of the actual E-dimensional state space 

containing M. 

{X}, {Y} The time series corresponding to the values of variable X evolving 

through time. Thus, {X} can be thought of as a serial projection of 

dynamics occurring on some manifold M onto a specific coordinate 

axis, X, recording displacements along that dimension through time. 

MX, MY The shadow attractors reconstructed using time lags of {X} and {Y} 

respectively. 

x(t), y(t) The points (vectors) on MX and MY respectively corresponding to 

the state of the system at time t. 

NNX, NNY Local neighborhoods, i.e., collections of nearest neighbors on MX 

and MY respectively based on some metric distance. In our paper 

we use Manhattan distance (L1) 

NNx(t), NNy(t) Nearest neighbors of points x(t) and y(t) respectively. 

𝑁𝑁𝑥(𝑡)
̂ , 𝑁𝑁𝑦(𝑡)

̂  Estimated nearest neighbors through corresponding time indices 

(See PC algorithm). 

PX, PY The average patterns, also called signatures, that represent local 

neighborhoods of NNX and NNY and respectively. See equations S1, 

S2, S6, S7. 

Px(t), Py(t) The average patterns (signatures) of NNx(t) and NNy(t) respectively. 

𝑃𝑥(𝑡)̂, 𝑃𝑦(𝑡)̂ The estimated average patterns (signatures) of 𝑁𝑁𝑥(𝑡)
̂  and 𝑁𝑁𝑦(𝑡)

̂  

respectively. 
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Theoretical foundations of our method 

In this section, we demonstrate the mathematical foundations of our treatment, and the details 

of extracting the nature of causality from time series. Our algorithm is primarily inspired by the 

theory of symbolic dynamics which was formally introduced by Morse and Hedlund17 and further 

adapted for time series by Bandt and Pompe34, 35. Another important ingredient for our algorithm 

is dynamical systems theory36 and especially attractor reconstruction18. 

Let us consider a discrete dynamical system that temporally evolves in an E-dimensional state 

space (𝐸 ∈ ℕ). Unless the system is completely stochastic, the orbits of its points will assemble 

into a d-dimensional attractor (dM ≤E) M. Let X be a state variable of the system that operates as a 

function which maps points from M to a real-valued scalar. Thus X can be measured through this 

mapping as a time series {X}={X(1), …, X(L)} that records the orbits of points in M. L is the time 

series length.  By invoking the theory of time-delayed embedding, the E time-lagged (with lag = 

𝜏 ∈ ℕ) values of {X} spawn vectors (x(t)=<X(t), X(t-τ), ..., X(t-(E-1)τ)>) which can be used to 

create a diffeomorphically reconstructed attractor MX of the original attractor M 18, 19, 37, 38, 39. 

Furthermore, an intrinsic feature of delayed-coordinate embedding is that points x(t) on MX map 

1:1 to points m(t) on M and local neighborhoods on MX map to local neighborhoods on M 18, 19.  

Let us now consider another state variable of the system Y. Since X and Y originate from the 

same dynamical system they are dynamically coupled and as a consequence contemporaneous 

neighborhoods on MX and MY will map to each other13, 18, 19, 37, 38, 39. PC focuses on the symbolic 

dynamics (patterns) of the neighborhoods in MX and MY, and examines how consistently, average 

patterns PX (signatures) in local neighborhoods NNX of MX correspond to average patterns PY 

(signatures) in contemporaneous neighborhoods NNY of MY. 

Determining the nature of causality 

To establish the nature of causality from a time series X to a time series Y (similarly from Y to 

X), first both MX and MY are created from time-delayed vectors of X and Y. Then, for each point 

y(t) in MY we extract the average pattern Py(t) from its nearest neighbors NNy(t) and from them we 

estimate the contemporaneous average pattern 𝑃𝑥(𝑡)̂. The strength of causality is determined by the 

overall accuracy percentage between the estimated 𝑃𝑥(𝑡)̂ and the actual Px(t). Regarding the nature 

of causality, if the correspondence is consistent between same patterns (PX same to PY) then 
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positive causality defines the relationship of X and Y, whereas if opposite patterns are dominantly 

coupled (over same ones) then negative causality is the case.  

In our paradigm, the patterns we define for E=2 are: i) ⬈: X(t-τ) < X(t), ii) ➡: X(t-τ) = X(t), iii) 

⬊: X(t-τ) > X(t) and these cover all the possible temporal patterns that characterize time series. 

Furthermore, for E=3 we define i) ⬈⬈: X(t-2τ) < X(t-τ) < X(t), ii) ➡⬈:  X(t-2τ) = X(t-τ) < X(t) , 

iii) ⬊⬈: X(t-2τ) > X(t-τ) < X(t), iv) ⬈➡: X(t-2τ) < X(t-τ) = X(t), v) ➡➡:  X(t-2τ) = X(t-τ) = X(t) , 

vi) ⬊➡: X(t-2τ) > X(t-τ) = X(t) , vii) ⬈⬊: X(t-2τ) < X(t-τ) > X(t), viii) ➡⬊:  X(t-2τ) = X(t-τ) > X(t) 

, ix) ⬊⬊: X(t-2τ) > X(t-τ) < X(t). The expansion on E=4 and beyond is plausibly derived in the 

same rationale. 

There are cases however when persistent correspondence of patterns is confirmed through PC, 

yet the patterns are neither similar nor opposite (e.g. patterns of the form ⬊⬈ in X causing patterns 

of the form ⬈⬈ in Y), in such cases (which become abundant as E increases) we characterize this 

unclear nature of causality as dark (in a same manner that dark matter is defined in the universe 

40). For a complete blueprint on how to understand the nature of causality see Tables S1 and S2. 

Remark on dark causality 

Up until now scientific literature has concentrated on the obvious duality of interactions, i.e., 

positive/negative correlations8, positively/negatively cointegrated time series11 and 

positive/negative nonlinear interactions14. However, through the lens of PC we discover a third 

form of interactions which classify as neither positive nor negative. For example, interactions in E 

= 4 such as pattern ⬈⬈⬈⬈ in X consistently causing pattern ⬊⬈⬊⬈ in Y can be described as: 

successive increases in X cause oscillations in Y. Such a form of causality from X to Y is neither 

positive nor negative, yet it is possible to exist. 

Signature 

In order to express a representation of the dominant dynamics in a spatio-temporal neighborhood 

on a given attractor M first we calculate the weighted average (see example below) of the patterns 

corresponding to the nearest neighbors NN. The calculation of the weights in PC algorithm is done 

according to equation S3 below. Then we characterize as signature the pattern P which emerges 

from that weighted average. 
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For example, let us have four patterns: 

• 𝑠1 = ⬈⬈ = (0.32, 0.45), with corresponding weight,  𝑤1 = 0.91. 

• 𝑠2 =  ⬊⬈ = (-0.11, 0.51), with corresponding weight,  𝑤2 = 0.54. 

• 𝑠3 =  ⬈⬈ = (0.13, 0.19), with corresponding weight,  𝑤3 = 0.82. 

• 𝑠4 =  ⬈⬊ = (0.05, -0.08), with corresponding weight,  𝑤4 = 0.69. 

The weighted average in our example is: 

𝑆 = ∑ 𝑤𝑖𝑠𝑖 = 0.91 ∗ (0.32, 0.45) + 0.54 ∗ (−0.11, 0.51) + 0.82 ∗ (0.13, 0.19) +4
𝑖=1

0.69 ∗ (0.05, −0.08) = (0.3729, 0.7855)  

Thus, the emergent average pattern is the signature of 𝑆: 

𝑷 = 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑆) = ⬈⬈ 

PC Algorithm 

Consider two time series of length L, {X}={X(1), …, X(L)} and {Y}={Y(1), …, Y(L)}. Initially 

we derive an optimal combination of embedding dimension E and time delay τ. Optimal in our 

case would be with the least false nearest neighbors, given that our method relies heavily on 

neighborhood information. For that purpose, we use the False First Nearest Neighbor algorithm41 

which calculates an optimal combination of both embedding dimension E and proper time delay τ 

simultaneously. 

Then we retrieve the shadow attractors MX and MY by using the lagged-coordinate vectors 

x(t)=<X(t), X(t-τ), ..., X(t-(E-1)τ)> and y(t)=<Y(t), Y(t-τ), ..., Y(t-(E-1)τ)> for t =1+(E-1)τ to t = L. 

To calculate PC from X to Y (similarly from Y to X), for each point y(t) in MY we find its E+1 

nearest neighbors NNy(t), which is the minimum number of points needed for a bounded simplex 

in an E-dimensional space. From these E+1 nearest neighbors we need to keep three pieces of 

information: i) their time indexes 𝑡𝑦1
, . . . , 𝑡𝑦𝐸+1

, ii) their Manhattan (L1) distance from y(t), and iii) 

their temporal patterns as described in the previous section. As a next step, we use the 

aforementioned pieces of information to estimate or "predict" the average contemporaneous 

pattern of x(t). To do this first we calculate the average pattern (signature) Py(t): 
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𝑃𝑦(𝑡) = 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑆𝑦(𝑡)), 𝑆𝑦(𝑡) ∈ ℝ𝐸 ,                                  (S1) 

where 

𝑆𝑦(𝑡) = ∑ 𝑤𝑗
𝑦

𝑠𝑗
𝑦𝐸+1

𝑗=1 , 𝑤𝑗
𝑦

∈ [0,1], 𝑠𝑗
𝑦

∈ ℝ𝐸 , for all NNy(t),                                                    (S2)       

𝑤𝑗
𝑦

=
𝑒

−𝑑(𝑦(𝑡),𝑦(𝑡𝑗))

∑ 𝑒
−𝑑(𝑦(𝑡),𝑦(𝑡𝑗))

𝑗

 , d: Manhattan distance           (S3) 

𝑠𝑗
𝑦

= (
𝑦𝑗

(2)
−𝑦𝑗

(1)

𝑦𝑗
(1) , . . . ,

𝑦𝑗
(𝐸+1)

−𝑦𝑗
(𝐸)

𝑦𝑗
(𝐸) ) , 𝑦𝑗 ∈ ℝ,                                                                                          (S4) 

𝑦(𝑡𝑗) = (𝑌(𝑡𝑗), 𝑌(𝑡𝑗 − 𝜏), . . . , 𝑌(𝑡𝑗 − (𝛦 − 1)𝜏)) = (𝑦𝑗
(1)

, . . . , 𝑦𝑗
(𝐸+1)

), 𝑌 ∈ ℝ,                    (S5) 

Then we estimate (i.e., predict) the mutual neighbors that correspond to x(t) (contemporaneous 

to y(t)) by using the time indices of y(t)'s nearest neighbors: 𝑁𝑁𝑥(𝑡)
̂ = 𝑥𝑡𝑦1

, . . . , 𝑥𝑡𝑦𝐸+1
. We 

calculate similarly the "predicted" average pattern 𝑃𝑥(𝑡)̂ as follows: 

𝑃𝑥(𝑡)̂ = 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑆𝑥(𝑡)̂), 𝑆𝑥(𝑡)̂ ∈ ℝ𝐸 ,                                                                                (S6) 

where 

𝑆𝑥(𝑡)̂ = ∑ 𝑤𝑗
𝑦

𝑠𝑗
𝑥̂𝐸+1

𝑗=1 , 𝑤𝑗
𝑦

∈ [0,1], 𝑠𝑗
𝑥̂ ∈ ℝ𝐸, for all 𝑁𝑁𝑥(𝑡)

̂ ,                                                 (S7) 

𝑠𝑗
𝑥̂ = (

𝑥̂𝑗
(2)

−𝑥̂𝑗
(1)

𝑥̂𝑗
(1) , . . . ,

𝑥̂𝑗
(𝐸+1)

−𝑥̂𝑗
(𝐸)

𝑥̂𝑗
(𝐸) ) , 𝑥̂𝑗 ∈ ℝ,                                                                                (S8) 

𝑥̂(𝑡𝑗) = (𝑋̂(𝑡𝑦1
), 𝑋̂(𝑡𝑦2

), . . . , 𝑋̂(𝑡𝑦𝐸+1
)) = (𝑥̂𝑗

(1)
, . . . , 𝑥̂𝑗

(𝐸+1)
), 𝑋̂ ∈ ℝ,                                       (S9) 

Finally, we calculate the real average pattern Px(t) from the actual nearest neighbors NNx(t) of x(t) 

to verify the estimation from Eq. S6: 

𝑃𝑥(𝑡) = 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑆𝑥(𝑡)), 𝑆𝑥(𝑡) ∈ ℝ𝐸 ,                                                                                                     (S10) 

where 

𝑆𝑥(𝑡) = ∑ 𝑤𝑗
𝑥𝑠𝑗

𝑥𝐸+1
𝑗=1 , 𝑤𝑗

𝑥 ∈ [0,1], 𝑠𝑗
𝑥 ∈ ℝ𝐸 , for all NNx(t),                                                 (S11)         

𝑤𝑗
𝑥 =

𝑒
−𝑑(𝑥(𝑡),𝑥(𝑡𝑗))

∑ 𝑒
−𝑑(𝑥(𝑡),𝑥(𝑡𝑗))

𝑗

 , d: Manhattan distance                                                                    (S12) 
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𝑠𝑗
𝑥 = (

𝑥𝑗
(2)

−𝑥𝑗
(1)

𝑥
𝑗
(1) , . . . ,

𝑥𝑗
(𝐸+1)

−𝑥𝑗
(𝐸)

𝑥
𝑗
(𝐸) ) , 𝑥𝑗 ∈ ℝ,                                                                                          (S13) 

𝑥(𝑡𝑗) = (𝑋(𝑡𝑗), 𝑋(𝑡𝑗 − 𝜏), . . . , 𝑋(𝑡𝑗 − (𝛦 − 1)𝜏)) = (𝑥𝑗
(1)

, . . . , 𝑥𝑗
(𝐸+1)

), 𝑋 ∈ ℝ,                 (S14) 

We repeat this procedure for every point in the shadow manifold MY and keep for each possible 

pattern PY the weighted percentage of the occasions that the contemporaneous predicted dominant 

pattern 𝑃𝑋̂ equals the real dominant pattern PX. By this procedure, we fill in the PC pattern to 

pattern matrix (which is illustrated in Tables S1 and S2 for the case of E = 1 and E = 2, 

respectively): 

𝑃𝐶[𝑃𝑋 , 𝑃𝑌] = ∑ erf (
𝑚𝑒𝑎𝑛(|𝑆𝑦(𝑡)|)

𝑚𝑒𝑎𝑛(|𝑆𝑥(𝑡)|)
)𝑡 , erf: error squashing function.                   (S15) 

To determine the positive causality, we calculate the average accuracy regarding similar patterns 

(PY is the same as PX): 

𝑃𝐶(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
1

𝐿
∑𝑑𝑖𝑎𝑔𝑚𝑎𝑖𝑛(𝑃𝐶), 𝑃𝐶(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) ∈ [0, 1].                                                        (S16) 

Whereas for the extraction of negative causality, we calculate the average accuracy regarding 

opposite patterns (PY is the opposite of PX): 

𝑃𝐶(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
1

𝐿
∑𝑑𝑖𝑎𝑔𝑐𝑜𝑢𝑛𝑡𝑒𝑟(𝑃𝐶), 𝑃𝐶(𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) ∈ [0, 1].                                             (S17) 

Dark causality is the average accuracy regarding all the other combinations of patterns between 

PY and PX: 

𝑃𝐶(𝐷𝑎𝑟𝑘) =
1

𝐿
∑ (𝑃𝐶 ∉ (𝑑𝑖𝑎𝑔𝑚𝑎𝑖𝑛(𝑃𝐶) ∪ 𝑑𝑖𝑎𝑔𝑐𝑜𝑢𝑛𝑡𝑒𝑟(𝑃𝐶))) , 𝑃𝐶(𝐷𝑎𝑟𝑘) ∈ [0, 1].    (S18) 

Model dynamical systems and datasets of real applications 

In this section, we provide details regarding the models and datasets in the main text. Section 

a) contains specifications of the models we used, b) contains information regarding the analysis of 

real applications. 

a) Model systems  

The models described below are inspired from elementary Lotka-Volterra models studied in 42. 
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(i) Positive causality system (Figure 2A) 

Figure 2A demonstrates the phenomenon of ecological mutualism between two species derived 

from the following equations: 

𝑋(𝑡 + 1) = 0.2𝑋(𝑡)[1 − 𝑋 (𝑡) 𝐾𝑋⁄ + 𝜑(𝑝)0.1 𝑌(𝑡) 𝐾𝑋⁄ ], 𝑋 ∈ ℝ+, 𝐾𝑋 ∈ ℝ+.      

        𝑌(𝑡 + 1) = 0.2𝑌(𝑡)[1 − 𝑌 (𝑡) 𝐾𝑌⁄ + 𝜑(𝑝)0.2 𝑋(𝑡) 𝐾𝑌⁄ ], 𝑌 ∈ ℝ+, 𝐾𝑌 ∈ ℝ+.                    (S19) 

KX  and KY are the carrying capacities of species X and Y respectively, in our case both equal to 

100. φ(p) is a threshold function which is equal to 1 if p is greater or equal than 0.5 or 0 if otherwise, 

with p taking a random value between 0 and 1 for each t. The rationale behind φ(p) is to make the 

model more realistic by having the two species not interacting in every turn. The starting conditions 

are: X(1) = 10, Y(1) = 5, and we use E = 2, τ = 1, L = 200. 

(ii) Negative causality system (Figure 2B) 

Figure 2B demonstrates the phenomenon of ecological competition between two species 

derived from the following equations: 

𝑋(𝑡 + 1) = 0.7𝑋(𝑡)[1 − 𝑋 (𝑡) 𝐾𝑋⁄ − 𝜑(𝑝)0.2 𝑌 𝐾𝑋⁄ ], 𝑋 ∈ ℝ+, 𝐾𝑋 ∈ ℝ+.      

        𝑌(𝑡 + 1) = 0.7𝑌(𝑡)[1 − 𝑌 (𝑡) 𝐾𝑌⁄ + 𝜑(𝑝)0.3 𝑋 𝐾𝑌⁄ ], 𝑌 ∈ ℝ+, 𝐾𝑌 ∈ ℝ+.                          (S20) 

KX and KY are the carrying capacities of species X and Y respectively, in our case both equal to 

100. φ(p) is a threshold function which is equal to 1 if p is greater or equal than 0.5 or 0 if otherwise, 

with p taking a random value between 0 and 1 for each t. The rationale behind φ(p) is to make the 

model more realistic by having the two species not interacting in every turn. The starting conditions 

are: X(1)=50, Y(1)=50 and we use E = 2, τ = 1, L = 200. 

(iii) Dark causality system (Figure 2C) 

Figure 2C displays the relationship between two species of prey X and Y that act as scapegoat 

to each other under the presence of a common predator Z. Such a system is described by the 

following equations: 

𝑋(𝑡 + 1) = −𝜑𝑋𝑍(𝑝)0.002𝑋(𝑡)𝑍(𝑡) + 𝜑𝑋(𝑝)0.2𝑋(𝑡) (𝐾𝑋 − 𝑋(𝑡)) 𝐾𝑋⁄ , 𝑋 ∈ ℝ+, 𝐾𝑋 ∈ ℝ+.  

𝑌(𝑡 + 1) = −𝜑𝑌𝑍(𝑝)0.002𝑌(𝑡)𝑍(𝑡) + 𝜑𝑌(𝑝)0.2𝑌(𝑡) (𝐾𝑌 − 𝑌(𝑡)) 𝐾𝑌⁄ , 𝑌 ∈ ℝ+, 𝐾𝑌 ∈ ℝ+. (S21) 

𝑍(𝑡 + 1) = −0.2𝑍(𝑡) + 𝜑𝑋𝑍(𝑝)0.005𝑋(𝑡)𝑍(𝑡) + 𝜑𝑌𝑍(𝑝)0.010𝑌(𝑡)𝑍(𝑡), 𝑍 ∈ ℝ+, 𝐾𝑍 ∈ ℝ+.   
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KX and KY are the carrying capacities of species X and Y respectively, in our case both equal to 

100. φXZ(p), φX(p), φYZ(p) and φY(p) are threshold functions.  

• φXZ(p) is equal to 1 if p is between 0.666 and 1 or 0 if otherwise 

• φX(p) is equal to 1 if p is between 0.166 and 0.333 or 0 if otherwise 

• φYZ(p) is equal to 1 if p is between 0.333 and 0.666 or 0 if otherwise 

• φY(p) is equal to 1 if p is between 0 and 0.166 or 0 if otherwise 

with p taking a random value between 0 and 1 for each t. The rationale behind φXZ(p), φX(p), φYZ(p) 

and φY(p) is to make the model more realistic by having the species not interacting in every turn. 

Besides a prey species (say X) is more likely to breed when the other prey species (say Y) are 

hunted in their place, as scapegoats, by the common predator. The starting conditions are: 

X(1)=100, Y(1)=100, Z(1)=50 and we use E = 2, τ = 1, L = 200.            

b) Real applications  

(i) A pair of equities (Figures 3A-B) 

In Figures 3A-B we demonstrate the application of PC on daily time series data of Apple 

(AAPL) and Microsoft (MSFT) equities. The data are retrieved via Thomson Reuters Datastream. 

The time span is from 1986-3-13 to 2018-8-6. The parameters we use are E = 3, τ = 1, L = 8000. 

(ii) Stock market performance versus government bond yield (Figures 3C-D) 

In Figures 3C-D we demonstrate the application of PC to the pair of S&P 500 (as a proxy of 

stock market performance) and U.S. government 10-year bond yield. The data are retrieved via 

Thomson Reuters Datastream. The time span is from 1985-1-2 to 2018-8-6. The parameters we 

use are E = 3, τ = 1, L = 8000. 

(iii) Complex financial network of sovereign CDS (Figures 4A-I) 

The sovereign CDS data we used to analyze with PC are from the following countries: 

Argentina, Tunisia, Venezuela, Czech Republic, Dominican Republic, Germany, Brazil, France, 

Greece, Hong Kong, Ireland, Jamaica, Japan, Bahrain, Belgium, Denmark, Norway, Spain, 

Sweden, Thailand, Netherlands, Lebanon, Malaysia, New Zealand, Uruguay, China, Austria, 

Bulgaria, Chile, Colombia, Costa Rica, Croatia, Cyprus, El Salvador, Estonia, Guatemala, 
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Hungary, Iceland, Indonesia, Iraq, Italy, Kazakhstan, Latvia, Lithuania, Malta, Panama, Peru, 

Poland, Portugal, Serbia, Singapore, Slovenia, South Africa, Philippines, Turkey, Romania, 

Russia, Slovakia, Vietnam, Israel, Qatar, Ukraine, U.K., Mexico, Finland, South Korea, Morocco, 

U.S.A., Australia.  The data are retrieved via Thomson Reuters Datastream. The time span is from 

2010-5-4 to 2018-8-6. The parameters we use are: E = 3, τ = 1, L = 1000. 

(iv) Predator-prey interactions in the Didinium-Paramecium system (Figures S6A-B) 

Next, we apply PC on experimental time series from the classical Didinium-Paramecium system. 

For a thorough description of the experimental conditions refer to the supplementary material of13. 

The data analyzed can be found at  http://robjhyndman.com/tsdldata/data/veilleux.dat. The first 10 

data points were removed to eliminate transient behavior in the initial period of the experiment. 

The parameters we use are: E = 3, τ = 1. To account for the limited length of time series, we used 

leave-one-out cross validation for the PC analysis. 

(v) Complex ecosystem of Sardine-Anchovy-SST (Figures S6C-F) 

This dataset was also studied by13 and details are also found in their supplementary material. 

Sea surface temperature (SST) data are available from: 

http://shorestation.ucsd.edu/active/index_active.html). Landings data for sardine and anchovy 

were taken from two sources: 1. (1928-2002) NOAA Southwest Fisheries Science Center 

(http://las.pfeg.noaa.gov:8080/las_fish1/servlets/dataset?catitem=2) 2. (2003-2006) California 

Department of Fish and Game (http://www.dfg.ca.gov/marine/landings05.asp). The parameters we 

use are E = 3, τ = 1. To address the limited length of time series, we used leave-one-out cross 

validation was used for the analysis. 

(vi) Complex physiological system of heart-lungs-blood oxygen concentration (Figures S7A-F) 

This dataset was used in the Santa Fe time series competition as Dataset B and was also studied 

by12. The dataset consists of heart rate, breath rate and blood oxygen concentration time series 

from a patient in the Beth Israel Deaconess Medical Center in Boston, Massachusetts43. Details 

about the dataset and very dataset can be found in 

https://www.physionet.org/physiobank/database/santa-fe/. The parameters we use are E = 3, τ = 1, 

L = 1000. 

 

http://robjhyndman.com/tsdldata/data/veilleux.dat
http://shorestation.ucsd.edu/active/index_active.html
http://las.pfeg.noaa.gov:8080/las_fish1/servlets/dataset?catitem=2
http://www.dfg.ca.gov/marine/landings05.asp
https://www.physionet.org/physiobank/database/santa-fe/
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Figure S1. 

Pearson cross correlation for the three models of positive (Eq. S19), negative (Eq. S20) and dark 

causality (Eq. S21). As we can see correlation is unstable for the case of competitive variables 

(Fig. S1B) and is completely irrelevant (by design) for the case of dark causality (Fig. S1C) by 

taking positive fluctuating values. 

 

 

 

 

 

  

Fig. S1. Correlation is not causality, and dark causality is a case completely unapproachable by correlation. (A) 

Correlation between X and Y from positive causality model in Eq. S19. (B) Correlation between X and Y from negative 

causality model in Eq. S20. (C)  Correlation between X and Y from dark causality model in Eq. S21. 
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Figure S2. 

Beta coefficient of cointegration for the three models of positive (Eq. S19), negative (Eq. S20) and 

dark causality (Eq. S21). The coefficient of cointegration is unstable for the case of competitive 

variables (Fig. S2B) and cannot by default uncover any meaningful result for the case of dark 

causality (Fig. S2C). 

 

 

 

 

 

 

 

 

 

  

Fig. S2. Dark causality is a case out of the radar for cointegration. (A) Coefficient of cointegration between X and Y 

from positive causality model in Eq. S19. (B) Coefficient of cointegration between X and Y from negative causality 

model in Eq. S20. (C)  Coefficient of cointegration between X and Y from dark causality model in Eq. S21. 
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Figure S3. 

S-map interactions for the three models of positive (Eq. S19), negative (Eq. S20) and dark causality 

(Eq. S21). For the case of positive causality S-map captures clearly the influence from X to Y but 

is unstable from Y to X. In the case of negative causality S-map is unstable yet yields towards the 

negative side. Similar to the cases of correlation and cointegration, S-map is not designed to 

capture forms of dark causality (Fig. S3C). 

 

 

 

 

 

 

 

 

 

 

Fig. S3. S-map is not designed to quantify cases of dark causality. (A) S-map interaction between X and Y from 

positive causality model in Eq. S19. (B) S-map interaction between X and Y from negative causality model in Eq. 

S20. (C)  S-map interaction between X and Y from dark causality model in Eq. S21. 
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Figure S4. 

Pattern Causality for the three models of positive (Eq. S19), negative (Eq. S20) and dark causality 

(Eq. S21) demonstration. 

 

 

 

 

 

 

 

 

 

 

  

Fig. S4. Pattern Causality is designed to quantify the intensity of positive, negative and dark causal interactions. (A) 

PC between X and Y from positive causality model in Eq. S19. (B) PC between X and Y from negative causality 

model in Eq. S20. (C)  PC between X and Y from dark causality model in Eq. S21. Color scheme: Blue and green 

are used for positive causality. Red and yellow are used for negative causality. Purple and grey are used for dark 

causality. 
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Supplementary examples for ecology and physiology 

Predator – prey dynamics. To explore the nature of causality in predator – prey relations we 

implement PC in the standard experimental system of Didinium (predator) and Paramecium 

(prey)44 (Fig. S6A). CCM analysis showed13 that this pair of species is characterized by 

bidirectional causality, with causation from predator to prey being stronger than reversely. 

Our results foster the top-down control from predator to prey but moreover PC displays a 

verbose explanation of predator-prey interactions. Fig. S6B reveals the distinctly negative 

causality from Didinium to Paramecium. This outcome is rational considering that as the predator 

population rises more prey gets consumed and thus prey population diminishes. Furthermore, 

notice that positive causality is stronger from prey to predator, which is expected if we consider 

that when prey population surges this supplies the predators with more to consume. 

 

Hidden interactions in a simple ecosystem. Next, we investigate an ecosystem consisting of 

anchovy and sardine landings (Fig. S6C), and sea surface temperature (SST) measured at Newport 

Pier and Scripps Pier, California. Such ecosystems have been a subject of conflicting analyses and 

mirage correlations45, 46. Some47 suggest that the species are in direct competition, others48 claim 

that the species’ interaction are indirectly influenced by shared environmental forcing. CCM 

analysis13 showed that the only causal role is that of SST influencing sardine and anchovy landings. 

PC analysis exposes a complex interaction among sardines and anchovies (see Fig. S6D). This 

dark causality could possibly attest to the fact that there is controversy in the literature regarding 

their actual interaction47-49. Furthermore, we can see that causality from SST to sardines and 

anchovies is also of dark nature (see Fig. S6E, S6F). Therefore, we can deduce that temperature at 

sea level influences anchovies and sardines though in an intricate manner, neither purely beneficial 

nor harmful. 

Overall our results suggest that apart from a dynamic (state-dependent) rule involving 

temperature (already advocated in 13), acute management decisions should also be based upon 

closer monitoring of more subtle species interactions than obvious predation and symbiosis (e.g. 

resources competition). 
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Fig. S6. Nature of causality in ecological data. (A) Abundance time series of Didinium and Paramecium. (B) PC 

exposes their mostly negative interaction. (C) Landings time series of anchovy and sardine. (D to F) Dark causality 

from SST towards both species as well as between the two species. Color scheme: Blue and green are used for positive 

causality. Red and yellow are used for negative causality. Purple and grey are used for dark causality. 
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Vital synergies in an apnea patient. Physiological research focuses a lot on cardio – respiratory 

interplays to understand certain diseases50. Sleep apnea is one of them and is severe because it 

causes sleep deprivation and ultimately death43. We investigate causal interactions among heart 

rate, breath rate and blood oxygen concentration (Fig. S7 A to C) from a patient in the Beth Israel 

Deaconess Medical Center in Boston, Massachusetts43. The same dataset was studied by 

Schreiber12 (without considering blood oxygen concentration) and he found information transfer 

to be stronger from heart to breath rate than vice versa. 

By employing PC, we find that heart rate regulates breath rate in a complex way (Fig. S7D. 

Blood oxygen concentration and heart rate are involved in a mixed (positive and negative) causal 

loop (see Fig. S7E) with blood oxygen concentration yielding a stronger influence. However, the 

influence from blood oxygen concentration to breath rate (see Fig. S7F) is unilateral and of a 

mostly dark nature. 

Our results move one step beyond Schreiber's conclusions highlighting heart rate's dominant 

role over breath rate (see Fig. S7D), and moreover unveiling the nature of their interaction. All in 

all, blood oxygen concentration seems to be highly influential in the cardio – respiratory dynamics 

and should not be neglected by medical research on apnea. 
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Fig. S7. Nature of causality in physiological data of a patient with apnea. (A) Time series of heart rate (B), breath rate 

(C) and blood oxygen concentration. (D) Unilateral influence from heart rate towards breath rate (E, F) PC reveals the 

dominant causal role of blood oxygen concentration which exerts both positive and negative causality to heart and 

breath rate. Color scheme: Blue and green are used for positive causality. Red and yellow are used for negative 

causality. Purple and grey are used for dark causality. 
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Table S1. 

PC (from X to Y) pattern to pattern matrix for E = 2. Each cell is filled with the weighted accuracy 

(percentage) regarding the occasions when given an average pattern in Y's neighborhood we 

successfully predict the average pattern in X's contemporaneous neighborhood. Thus, each cell 

takes values from 0 to 1. To calculate positive causality, we take the average of blue cells. For 

negative causality we take the average weighted accuracy inside red cells. Dark causality is the 

average weighted accuracy inside the purple cells.  

 

 Y: ⬊  Y: ➡ Y: ⬈ 

X: ⬊    

X: ➡    

X: ⬈    
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Table S2. 

PC (from X to Y) pattern to pattern matrix for E = 3. Each cell is filled with the weighted accuracy 

(percentage) regarding the occasions when given an average pattern in Y's neighborhood we 

successfully predict the average pattern in X's contemporaneous neighborhood. Thus, each cell 

takes values from 0 to 1. To calculate positive causality, we take the average of blue cells. For 

negative causality, we take the average weighted accuracy inside red cells. Dark causality is the 

average weighted accuracy inside the purple cells. 

 

 Y: ⬊⬊ Y: ➡⬊ Y: ⬈⬊ Y: ⬊➡ Y: ➡➡ Y: ⬈➡ Y: ⬊⬈ Y: ➡⬈ Y: ⬈⬈ 

X: ⬊⬊          

X: ➡⬊          

X: ⬈⬊          

X: ⬊➡          

X: ➡➡          

X: ⬈➡          

X: ⬊⬈          

X: ➡⬈          

X: ⬈⬈          
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SI Video 

This video demonstrates the extraction of the nature of causality between time series. 
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