Supporting Information

Multi-Phase Porous Electrochemical Catalysts Derived from Iron-Based Metal-Organic Framework Compounds

Kai Liu,^{†,‡} Menglin Yu,[†] Haiying Wang,[†] Juan Wang,[†] Weiping Liu,[†] Michael R. Hoffmann^{‡,*}

[†]College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058,

China

[‡] Department of Environmental Science and Engineering, California Institute of Technology,

Pasadena, California 91126, United States

Summary:

Pages: 16

Tables: 5

Figures: 29

Liu et al.,

No	Pesticide	IUPAC name	Formula	Structuro	CAS
110.	name		r or mura	Structure	CAS
1	Acetochlor	2-Chloro-N-(ethoxymethyl)-N-(2-	C ₁₄ H ₂₀ ClNO ₂		34256-82-1
		ethyl-6-methylphenyl)acetamide		Ŭ,	
2	Atrazine	6-chloro-N ² -ethyl-N ⁴ -(propan-2-	C ₈ H ₁₄ ClN ₅		1912-24-9
		yl)-1,3,5-triazine-2,4-diamine		N N N N	
3	Dichlorprop	(R)-2-(2,4-	$C_9H_8Cl_2O_3$		120-36-5
		dichlorophenoxy)propanoic acid		CI-CI-CO-O	
4	Glyphosate	N-(phosphonomethyl)glycine	$C_3H_8NO_5P$	HO HO HO	1071-83-6
5	Metolachlor	(RS)-2-Chloro-N-(2-ethyl-6-	C ₁₅ H ₂₂ ClNO ₂		51218-45-2
		methyl-phenyl)-N-(1-		0 Ci	
		methoxypropan-2-yl)acetamide			
6	Napropamide	N,N-diethyl-2-(naphthalen-1-	$C_{17}H_{21}NO_2$		15299-99-7
		yloxy)propanamide			

Table S1. Pesticides used in this study.

Table S2. Pseudo-first order rate constant and square regression coefficient for electro-Fentondegradation of napropamide ($C_0 = 10$ ppm).

	Reaction			
Sample name	potential (V)	electrolyte pH	• K _{app} (h ⁻¹)	r ²
CMIL-88@PCM	-0.345	7	0.99	0.990
CMIL-100@PCM	-0.345	7	1.70	0.997
CMIL-101@PCM	-0.345	7	0.87	0.974
CMIL-88-NH ₂ @PCM	-0.345	7	1.26	0.986
CMIL-101-NH ₂ @PCM	-0.345	7	0.74	0.993
CMIL-100@PCM10	-0.345	7	2.12	0.985
CMIL-100@PCM25	-0.345	7	3.36	0.970
CMIL-100@PCM50	-0.345	7	2.96	0.988
CMIL-100@PCM75	-0.345	7	2.49	0.986
CMIL-100@PCM	-0.345	4	1.63	0.989
CMIL-100@PCM	-0.345	10	1.42	0.982

Sample name	BET surface area (m ² /g)		
CMIL-88	287.89		
CMIL-88-NH ₂	BET surface area (m ² /g) 287.89 217.88 340.92 361.56 211.85 594.76 316.55 230.44		
CMIL-100	340.92		
CMIL-101	361.56		
CMIL-101-NH ₂	211.85		
РСМ	594.76		
CMIL-88@PCM	316.55		
CMIL-88-NH ₂ @PCM	230.44		

 Table S3. BET surface area of the materials synthesized in this study.

Table S4. Representative kinetic data for electro-Fenton degradation of napropamide ($C_0 = 10$

ppm).

	Reaction	$k_{SA} (h^{-1} m^{-2})$	
Sample name	potential (V)	electrolyte pH	g)
CMIL-88@PCM	-0.345	7	3.44 × 10 ⁻³
CMIL-100@PCM	-0.345	7	4.99 × 10 ⁻³
CMIL-101@PCM	-0.345	7	2.41 × 10 ⁻³
CMIL-88-NH ₂ @PCM	-0.345	7	5.78 × 10 ⁻³
CMIL-101-NH ₂ @PCM	-0.345	7	3.49 × 10 ⁻³

Liu et al.,

Table S5. (Composition	of simulated river	water $(pH 7.0)^{1}$.
-------------	-------------	--------------------	------------------------

Salts	NaCl	KH ₂ PO ₄	NaNO ₃	Na ₂ SO ₄
Concentration (mg/L)	38.5	1.1	39.4	53.2

Figure S1. Schematic representation of the 3-electrode electrochemical reactor employed in this study.

Figure S2. SEM images of MIL-88(Fe) synthesized with (a) 10 mins, (b) 15 mins, (c) 40 mins of microwave irradiations.

Figure S3. PXRD spectrum of MOFs synthesized by the current study.

Figure S4. SEM micrographs of (a) CMIL-88, (b) CMIL-100, and (c) CMIL-101.

Figure S5. Elemental mapping of (a) CMIL-88, (b) CMIL-100, and (c) CMIL-101.

Figure S6. FT-IR spectra of MIL-88(Fe)-NH₂ (left) and CMIL-88-NH₂ (right).

Liu et al.,

Figure S7. FT-IR spectra of MIL-101(Fe)-NH₂ (left) and CMIL-101-NH₂ (right).

Figure S8. SEM micrograph of CMIL-101 nanoparticles anchored inside the macropore of CMIL-

101@PCM.

Figure S9. CV curves of PCM substrate in O₂ (black) and Ar (red) saturated electrolyte- solution

 $(0.1 \text{ M Na}_2\text{SO}_4)$ at (a) pH 4, (b) pH 7, (c) pH 10 with a scan rate of 10 mV/s.

Liu et al.,

Figure S10. Kinetics of napropamide removal by electro-Fenton using CMOFs@PCM prepared from MIL-88(Fe), MIL-100(Fe), and MIL-101(Fe) (0.1 M Na₂SO₄, pH 7, -0.14V).

Figure S11. Kinetics of napropamide removal by electro-Fenton using CMOFs@PCM and

CMOFs-NH2@PCM (0.1 M Na2SO4, pH 7, -0.14V).

Figure S12. Napropamide removal by electro-Fenton using CMOFs@PCM and CMOFs-

NH₂@PCM (0.1 M Na₂SO₄, pH 7, -0.14V).

Liu et al.,

Figure S13. Kinetics of napropamide removal by electro-Fenton using CMOFs@PCM with different doping concentration of CMOFs (0.1 M Na₂SO₄, pH 7, -0.14V).

Figure S14. pH effects on napropamide removal efficiency by electro-Fenton using CMIL-

100@PCM (0.1 M Na₂SO₄, -0.14V).

Figure S15. pH effects on napropamide removal kinetics by electro-Fenton using CMIL-

100@PCM (0.1 M Na₂SO₄, -0.14V).

Figure S16. Electrolyte concentration effects on napropamide removal efficiency by electro-

Fenton using CMIL-100@PCM (-0.14V).

Figure S17. Kinetics of pesticides removal by electro-Fenton using CMIL-100@PCM (0.1 M Na₂SO₄, pH 7, -0.14V).

Figure S18. Main reactions involved in the CMOFs@PCM catalyzed electro-Fenton degradation of organic chemical contaminants (Ar denotes aromatic compounds).

Figure S19. Napropamide degradation efficiency of recycled CMIL-100@PCM electro-Fenton

catalyst (0.1 M Na_2SO_4 , pH 7, -0.14V).

Figure S20. Fe leaching of CMIL-100@PCM and Fe₃O₄@PCM during the electro-Fenton

reaction (0.1 M Na₂SO₄, pH 7, -0.14V).

Figure S21. BET surface area analysis of CMIL-88, CMIL-100, and CMIL-101.

Figure S22. Pore size distribution of CMIL-88, CMIL-100, and CMIL-101.

Liu et al.,

Figure S23. BET surface area analysis of CMIL-88, CMIL-88-NH₂, CMIL-101, and CMIL-101-

 $\mathrm{NH}_{\mathrm{2}}.$

Figure S24. Pore size distribution of CMIL-88, CMIL-88-NH₂, CMIL-101, and CMIL-101-NH₂.

Figure S25. Structure of MIL-88(Fe)-NH₂. Amine functional groups are marked as blue spheres.

Figure S26. BET surface area analysis of PCM, CMIL-88@PCM, and CMIL-88-NH₂@PCM.

Figure S27. PXRD spectrum of CMOFs synthesized by the current study.

Figure S28. (a) TEM images of CMIL-88@PCM and (b) high-resolution TEM image of magnetite

nanoparticles embedded in CMIL-88@PCM.

Liu et al.,

SI-15

Figure S29. Crystal structure of (a) Fe₃O₄ and (b) Fe₃C unit cell.

Literatures Cited

(1) Ulberth, F., Certified reference materials for inorganic and organic contaminants in environmental matrices. *Analytical and Bioanalytical Chemistry* **2006**, *386*, (4), 1121-1136.