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Abstract

Holding information in working memory (WM) is an active and effortful process that is 

accompanied by sustained load-dependent changes in oscillatory brain activity. These proportional 

power increases are often reported in EEG studies recording theta over frontal midline sites. 

Intracranial recordings, however, yield mixed results depending on the brain area being recorded 

from. We recorded intracranial EEG with depth electrodes in 13 patients with epilepsy that were 

performing a Sternberg WM task. Here, we investigated patterns of theta power changes as a 

function of memory load during maintenance in three areas critical for WM: dorsolateral 

prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (dACC) and hippocampus. Theta-

frequency power in both hippocampus and dACC increased during maintenance. In contrast, theta-

frequency power in the DLPFC decreased during maintenance and this decrease was proportional 

to memory load. Only the power decreases in DLPFC, but not the power increases in hippocampus 

and dACC, were predictive of behavior in a given trial. The extent of the load-related theta power 

decreases in the DLPFC in a given subject predicted a subject’s reaction times, revealing that 

DLPFC theta explains individual differences in WM ability between subjects. Together, this data 

reveals a pattern of theta power decreases in the DLPFC that is predictive of behavior and that is 

opposite of that in other brain areas. This result suggests that theta band power changes serve 

different cognitive functions in different brain areas and specifically that theta power decreases in 

DLPFC have an important role in maintenance of information.
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INTRODUCTION

Maintaining information in the absence of external stimuli is crucial for many cognitive 

functions (Unsworth & Engle, 2006, 2007). The ability to actively hold a piece of 

information in mind and resist interference forms the core of the working memory system 

(WM) (Baddeley, 2010). The capacity of an individual’s WM is predictive of that persons 

cognitive ability in a number of domains, including analytic problem solving (Wiley, & 

Jarosz, 2012), reading (Nouwens, Groen, & Verhoeven, 2017), and fluid intelligence 

(Shipstead, Harrison, & Engle, 2016), a finding that highlights the broad importance of WM 

for someone’s overall cognitive abilities.

Holding information in WM is an active and effortful task that is thought to depend on the 

large-scale interaction of multiple brain areas. This interaction is thought to be coordinated 

by synchronized oscillations, a view supported by the finding that the maintenance of 

information in WM leads to substantial changes in the oscillatory activity of field potentials 

in many brain areas. Theta-frequency (3–8Hz) band power increases are among the most 

consistently documented during WM maintenance. This increase was found in many areas, 

including medial prefrontal cortex (PFC), the hippocampus (Axmacher et al., 2010; Maurer 

et al., 2015; Onton, Delorme, & Makeig, 2005; Tesche & Karhu, 2000; Tsujimoto, Shimazu, 

Isomura, & Sasaki, 2010), and sensory areas (Lee, Simpson, Logothetis, & Rainer, 2005). 

The magnitude of this increase in theta power is typically proportional to the amount of the 

information being held in mind, with higher loads and/or higher effort resulting in higher 

theta-band power (Gärtner, Grimm, & Bajbouj, 2015; Howard, 2003; Jensen & Tesche, 

2002; Maurer et al., 2015; Meltzer et al., 2008; Wisniewski et al., 2015). Also, theta-band 

power changes are predictive of behaviors that depend on WM (Lega, Jacobs, & Kahana, 

2012; Womelsdorf, Johnston, Vinck, & Everling, 2010; Zakrzewska & Brzezicka, 2014), a 

result that shows that theta band activity is functionally relevant for this kind of cognitive 

activity.

An extensive body of literature indicates that medial frontal cortex, dorsal lateral prefrontal 

cortex (DLPFC), and the hippocampus serve important roles in WM maintenance. However, 

the distinct roles of each in WM is poorly understood. While extensively observed in scalp 

EEG studies (Meltzer, Negishi, Mayes, & Constable, 2007; Roux & Uhlhaas, 2014), and 

specifically for frontal midline theta (FMT) (Asada, Fukuda, Tsunoda, Yamaguchi, & 

Tonoike, 1999; Gärtner et al., 2015; Maurer et al., 2015; Mitchell, McNaughton, Flanagan, 

& Kirk, 2008; Onton et al., 2005), it remains unclear which brain areas specifically 

contribute to the observed theta-power increases in scalp EEG. Because each EEG electrode 

is sensitive to electrical fields generated by large populations of neurons that may be 

spatially distributed, there is not necessarily a one-to-one mapping between scalp electrode 

location and the source of the underlying neural activity. Consequently, the scalp FMT 

power changes are likely a mixture of activity in many areas, including the hippocampus.

To better differentiate the distinct contributions of different areas to WM, direct intracranial 

recordings are crucial. Here, we simultaneously recorded from all three, key for WM, areas 

using intracranial recordings in epilepsy patients implanted with depth electrodes. We then 

characterize and compare the properties of theta during WM maintenance in each region. 
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The principle goal of this study is two-fold: First, to determine whether medial frontal 

(dorsal part of the anterior cingulate cortex, dACC), lateral prefrontal (DLPFC), and medial 

temporal (hippocampus) areas show similar or differential patterns of changes in theta power 

during WM maintenance. Second, to quantify which of these theta-changes predicts 

behavior.

Of particular interest in this study is the DLPFC, which is thought to be a key structure in 

coordinating – via oscillatory dynamics – large-scale neuronal interactions in a task-

depended manner (Helfrich & Knight, 2016). Oscillatory mechanisms underlying simple 

cognitive processes were first described in the hippocampus and primary sensory areas of 

rodents and nonhuman primates, but recent works suggest that higher cognitive processes, 

including WM, are also facilitated by similar oscillatory mechanisms (Helfrich & Knight, 

2016; Wang, 2010). Single-neuron, intracranial, fMRI, and lesion evidence indicates that the 

dorsolateral prefrontal cortex (DLPFC) plays an essential role in WM maintenance 

(Altamura et al., 2007; Curtis & D’Esposito, 2003; Manoach et al., 1997; Michels et al., 

2010b; Rottschy et al., 2012). For example, the BOLD-fMRI signal in DLPFC is 

parametrically related to both increases in memory load and task complexity (Altamura et 

al., 2007; Jansma, Ramsey, De Zwart, Van Gelderen, & Duyn, 2007; Manoach et al., 1997; 

Michels et al., 2010a; Rottschy et al., 2012). Similarly, single neurons in DLPFC in 

macaques exhibit stimulus-selective persistent neural firing across the delay period of WM 

task (Funahashi, 2017; Fuster, 1973; Fuster & Alexander, 1971; Goldman-Rakic, 1995; Lara 

& Wallis, 2015; Riley & Constantinidis, 2016). Signatures of such “persistent” activity in 

DLPFC have also been observed using fMRI in humans (Curtis & D’Esposito, 2003). The 

importance of human DLPFC in WM is further supported by the effects of stimulating 

DLPFC with TMS, which can result in profound changes in WM task performance. 

Depending on the stimulation protocol, such stimulation can result in either enhanced 

(Bagherzadeh, Khorrami, Zarrindast, Shariat, & Pantazis, 2016) or decreased WM 

performance (Morgan, Jackson, Van Koningsbruggen, Shapiro, & Linden, 2013; Schicktanz 

et al., 2015). The specific role of the DLPFC in WM is thought to be of an executive – 

compared to a simple maintenance – nature, i.e. it is thought to coordinate and control other 

WM-related areas, including the hippocampus.

Hippocampal involvement in WM depends on task duration and complexity (Yoon, Okada, 

Jung, & Kim, 2008) and changes as a function of age (Finn, Sheridan, Kam, Hinshaw, & 

D’Esposito, 2010). In contrast, PFC appears to be essential for WM task performance at any 

age and for a wider range of tasks. Moreover, it seems that the DLPFC is primarily engaged 

in maintaining and processing of information lasting from milliseconds to several seconds, 

whereas the hippocampus is crucial when working memory demands are more complex 

and/or when maintenance duration is longer (Yoon et al., 2008). In addition, animal studies 

show that both hippocampal and prefrontal activity during WM tasks is critical (Bähner et 

al., 2015; Spellman et al., 2015; Yoon et al., 2008). In humans, persistently active cells 

during WM maintenance have been observed in both the hippocampus and the medial 

frontal cortex (MFC), but the properties of these cells differ between the two areas. While 

persistent activity was observed in both areas, such activity was only stimulus selective in 

the hippocampus (Kamiński et al., 2017). In contrast, persistent activity in MFC was 

sensitive to load and memory-quality, but not stimulus identity. Together, this existing 
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literature indicates that studying the distinct contributions of different brain areas to WM 

maintenance is a powerful way to differentiate what a particular area contributes to WM.

While there is extensive evidence for a role of the DLPFC in WM, it remains unknown 

whether theta-band power in DLPFC is modulated by WM and whether such theta-band 

changes are similar to those observed in the MFC and hippocampus. Here, we utilize 

intracranial recordings to directly compare the degree of modulation of theta-band power in 

these three areas. We identified contacts placed in the DLPFC in 13 neurosurgical patients 

and compared the intracranial EEG (iEEG) recorded from these to those obtained from 

contacts placed in the hippocampus and dACC in the same patients. We found that DLPFC 

theta-band exhibited prominent load-related power decreases, a pattern of change markedly 

different from that found in hippocampus and dACC. These power-decreases were predictive 

of behavior in a given trial as well as individual differences between subjects, indicating that 

these power reductions were significant for WM maintenance. Together, our results raise the 

intriguing question of how reductions in power in a given frequency band can be beneficial 

for the contribution of an area to a particular cognitive function.

METHODS

Participants

We recorded intracranial EEG from thirteen patients (14 sessions) implanted with depth 

electrodes for possible surgical treatment of epilepsy. We previously reported single-neuron 

recordings in the MTL and MFC from a subset of the same patients in the same task 

(Kamiński et al., 2017). Here, in contrast, our focus is on the iEEG signal, in particular on 

the DLPFC. The average age of our subjects was 37.46 (SD = 16.2, 17 to 70 y), seven 

patients were male (see Table 1). Patients volunteered for the study and provided informed 

consent. This study was approved by the Institutional Review Board of the Cedars-Sinai 

Medical Center.

Localization of electrodes—All electrodes were localized based on pre- and 

postoperative T1 structural MRIs. We used the following processing pipeline to transform 

the postoperative MRI into the same space as a template brain. We extracted the brains from 

the pre- and postoperative T1 (Ségonne et al., 2004) scans and aligned the postoperative scan 

to the preoperative scan with Freesurfer (https://

surfer.nmr.mgh.harvard.edu/) ”MRI_Robust_Register” algorithm (Reuter, Rosas, & Fischl, 

2010). We then computed a forward mapping of the preoperative scan to the CIT168 

template brain (Tyszka & Pauli, 2016) using a concatenation of an affine transformation 

followed by a symmetric image normalization (SyN) diffeomorphic transform, computed by 

the ANTs software package (Avants et al., 2008). This resulted in a postoperative scan 

overlaid on a version of the CIT168 template brain (Tyszka & Pauli, 2016) registered in 

MNI152 space.

We have described our electrode localization procedures for amygdala, hippocampus, and 

dACC previously (Kamiński et al., 2017; Minxha et al., 2017; Minxha, Mamelak, & 

Rutishauser, 2018). We have not previously documented our procedures for DLPFC, which 

are as following. We compared the locations of putative DLPFC contacts to landmarks that 
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define the boundaries of DLPFC (in Freesurfer Freeview). The boundaries we used followed 

the standard recommendations for TMS navigation (Mylius et al., 2013): we included 

electrodes placed in the middle frontal gyrus (MFG) between the superior frontal sulcus 

(SFS) and inferior frontal sulcus (IFS) (the middle of the line separating the anterior and 

middle thirds of the MFG, see (Mylius et al., 2013)). Such location is also in accordance to 

other definitions based on cytoarchitectonic approach, where DLPFC is defined as 

Brodmann areas 46 and 9 (Rajkowska & Goldman-Rakic, 1995). Note, that here we 

included only contacts in MFG for analysis. However, DLPFC proper also extends into SFG 

(BA9), but no such contacts were included here. It is thus important to note that the results 

here only pertain the part of DLPFC located in MFG. The location of each contact was 

confirmed visually and only contacts located within the defined boundaries were included in 

the analyses. Applying this approach resulted in 46 contacts identified as DLPFC contacts 

(2–4 per subject, across both hemispheres; 0–2 per hemisphere). For dACC and 

hippocampus, we took the most medial contacts (clinical contact closest to the microwires) 

on the electrodes targeting the dACC and hippocampus (for each, we confirmed proper 

microwire placement in the targeted area), respectively. In total, we identified 26 dACC and 

23 hippocampus contacts.

For visualization purposes only, electrode locations were projected into MNI152 space and 

projected onto a 2D plane by collapsing across the third axis (Fig 1D–E.). MNI coordinates 

for all electrodes are given in Table 2.

Stimuli and Procedures

Task—Subjects performed a working memory task (“Sternberg” task, based on (Sternberg, 

1966)). In each trial subjects were asked to remember between one up to three sequentially 

presented pictures. Then, after 2.5–2.8s of maintenance period they were presented with 

another picture and asked if they have seen it or not. We used a modified Sternberg task with 

images (instead of the usual digits) as material for memorization (Fig. 1a). Each trial started 

with a fixation cross shown for 900–1,000 ms. Next, we sequentially presented the images to 

be memorized (‘encoding’) in a given trial. Each picture was presented for 1 s, followed by a 

blank screen for 1–200 ms (randomized). Subjects were asked to memorize the 1–3 images 

shown in each trial. After encoding, there was a maintenance (delay) period lasting at least 

2.5 s and at most 2.8 s. During this time, the word “hold” was shown on the screen. Lastly, 

after the end of the maintenance period, a probe stimulus was displayed, and subjects were 

asked to decide whether the probe stimulus has been presented in the encoding phase. 

Participants responded by pressing the green or red buttons on a response pad. Which color 

corresponded to ‘yes’ and which to ‘no’ was shown at the top of the screen during each 

probe trial (Fig. 2). We used this approach to switch the location of the yes and no buttons in 

the middle of the experiment as a control. We asked subjects to respond as fast as possible. 

The probe picture was presented until subjects made a response. In each session, subjects 

performed 108 (first subject) or 135 (all subjects except the first one) trials depending on the 

task variant (we changed the number of trials from 108 to 135 after the first subject). 

Pictures were shown in pseudorandom order. A schematic overview of the task is shown in 

the Figure 2. The number of pictures presented in a given trial was unknown to the 

participant (the load variable was mixed within blocks).
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iEEG Measurement and Analysis—We recorded broadband (0.1–500 Hz filter) and 

continuous signals from all channels sampled at 2 kHz using a Neuralynx Atlas system. 

Recordings were referenced to a subgaleal reference electrode strip (Minxha et al., 2018). 

Data analysis was performed off-line using EEGLAB toolbox (Delorme & Makeig, 2004) 

and custom MATLAB (The MathWorks, 2015) scripts. The continuous iEEG was 

downsampled to 500 Hz and the recording channels of interest were re-referenced to bipolar 

by subtracting the signal of the contact closest to the channel of interest (see Fig 1). For 

DLPFC electrodes, this was the immediate next medial channel to the channel of interest 

(see Fig. 1B and 1C), whereas for hippocampus and dACC this was the immediate next 

lateral channel on the same electrode. Next, we Z-transformed the signal of each channel 

separately. The 4500 ms long epochs were then extracted from the maintenance period of 

every trial (starting 1000 ms before the start of maintenance till 1000 ms after the end of the 

maintenance period, which lasted at least 2500ms) and 3000 ms epochs were extracted from 

the picture presentation period (encoding) as well as from the retrieval period (starting 1000 

ms before and ending 1000 ms after the actual 1000 ms lasting periods of interest). For the 

baseline, we extracted a 2000ms long segment for every trial (1000 ms before up to 500 ms 

after the actual baseline period which was defined as a 500 ms period time with fixation 

cross before the first picture presentation – see Fig. 2 where it is marked as a blue shading 

on the experiment’s time line). All trials were visually inspected for artifacts and rejected if 

found to contain artifacts (with an average of 87 % (+/− 0.8%) of epochs remaining in the 

analysis). We used the Morlet continuous wavelet transform (CWT; 16 scales per octave, 

minimum period to analyze was set to 0.01 and maximum period was set to 0.8) as 

implemented in WAVOS (Wavos 2.3.1) to calculate the absolute power spectral density for 

every trial. We first computed the CWT on the entire trial and then extracted the periods of 

interest as described above. Finally, we transformed the units of power to decibels relative to 

the average power during the baseline period.

Statistical Analyses—For comparisons between two conditions, we used the permuted t-

test statistic. For comparisons with more than two conditions, we used permuted F-statistic. 

Note that we used permutation tests throughout to avoid the assumption of normality. As a 

result, note that the reported P-values may differ from those expected from the parametric t- 

and F-distributions because P-values were based on the empirically estimated null 

distribution. We used corrections for multiple comparisons based on cluster-based approach 

(Maris & Oostenveld, 2007), when appropriate. For linear mixed effects models and 

correlation analysis, we used Matlab’s FITLME function, and Spearman rho, respectively.

Results

Behavioral data—Subjects (N=13 in 14 sessions) performed the task well: overall 

accuracy was 87.57 % ± 4.33%, with a median reaction time (for correct trials only) of 1.07 

± 0.27sec. As expected (Sternberg, 1966), accuracy decreased (Fig. 3A, F(2,26)=3.65; 

p=0.037, permuted repeated-measures ANOVA) and reaction time (RT) increased (Fig. 1B, 

F(2,26)=6.69; p=0.0025, permuted repeated-measures ANOVA) as a function of the number 

of items held in memory (here referred to as load). Also, RT was significantly faster for 

correct compared to incorrect trials (Fig. 3C; permuted paired t-test: t(13)=6.26; p=0.005, 

using trials from load 3 only due to low error rates for low loads; average error rates were 
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0.066, 0.093, and 0.12 for load 1–3, respectively). Together, this pattern of behavioral results 

shows that our patients performed the task accurately and exhibited the expected patterns of 

accuracy and reaction time differences (Sternberg, 1966). For all subsequent analysis, we 

used only correct trials unless indicated otherwise. We did observe minor but non-significant 

priority and recency effects (in load 3 trials the image presented last was recognized faster 

(M= 1.16 s) than the image presented in the middle (M= 1.32 s)). Similarly, the image 

presented first during encoding was recognized faster (M= 1.23 s) relative to the middle 

image. However, these differences were not statistically significant (F(2,26)=1.47; p=0.25).

Electrophysiology—Across 13 patients, we recorded from in total 46, 26, and 23 

channels in DLPFC, dACC, and hippocampus, respectively (see methods and Table 1). We 

localized electrode contacts based on post-operative MRI scans and only included channels 

confirmed to be in either area (see methods and Fig. 1 for definition of what we included as 

DLPFC). All analyses conducted in this paper was performed on bipolar-referenced 

recordings (referenced to the immediate next contact relative to the one of interest, see 

methods).

Changes in power spectrum during maintenance versus baseline—As a first 

step, we compared whether the patterns of power changes during the maintenance period 

relative to the baseline period differed between brain areas. We performed a permuted 1×3 

ANOVA for power at each frequency, corrected for multiple comparisons using a cluster 

based approach (Maris & Oostenveld, 2007). Results at p < 0.05 were considered 

statistically significant. Averaging across all loads, we found that the pattern of response in 

the broadband power varied systematically between the three brain areas investigated here. 

Whereas in DLPFC we found broadband decreases relative to baseline, in both dACC and 

hippocampus we observed significant power increases relative to baseline (Fig. 4A). In a 

pairwise comparison between the brain areas, this difference was significant between 

DLPFC and hippocampus in the 1–20 Hz band(Fig. 4B). Comparing between DLPFC and 

dACC, power was significantly different in the 1–15 Hz band(Fig. 4C). In contrast, 

differences between dACC and hippocampus were only significant in the 12–20Hz band, 

with no significant differences in the 1–5Hz band (Fig. 4D). Together, this shows significant 

and relatively broad-band power deceases in DLFPC and power increases in the dACC and 

hippocampus during WM maintenance relative to baseline. As a further control, we also 

assessed whether the raw power (rather than subtracted from baseline or between loads, as 

reported above) in DLPFC differed relative to that expected from the background 1/f 

spectrum. This revealed that (Fig. 4E) raw power differed significantly from the background 

in both the theta and beta frequency band and that the power-decreases relative to baseline 

were also apparent in the raw spectra.

Changes in theta power as a function of load—We next investigated whether 

maintenance-related activity varied as a function of load, a strategy commonly used in 

investigating the mechanisms of WM (Hsieh & Ranganath, 2014; Meltzer et al., 2008; 

Onton et al., 2005; Roux & Uhlhaas, 2014). So, in the next analysis we asked whether the 

power increases/decreases we described above scaled as a function of load by comparing the 

magnitude of change between high (3 items) and low (1 item) load conditions (Fig. 5). This 
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revealed that the extent of DLPFC power decreases was a function of load, with the largest 

decrease for the high load condition (permuted ANOVA, p= 7.1418e-05, 3.29–6.86 Hz, 

corrected for multiple comparisons). In contrast, the higher the load, the larger the increase 

in theta-band power in the hippocampus (permuted ANOVA, p=0.038, 2.43–3.91 Hz, 

without correction for multiple comparisons, after correction all effects were statistically 

non-significant). It was notable that the effect size was substantially larger in the DLPFC 

relative to the hippocampus (dDLPFC=0.961, dHIPPOCAMPUS=0.477). An additional 

difference was that the load modulation in DLPFC was most apparent in a higher frequency 

compared to the hippocampus (5 Hz vs. 3.5 Hz). Lastly, the pattern of response in the dACC 

did not vary significantly as a function of memory load (but note that relative to baseline 

power increased significantly in the dACC, but this change was not a function of load). 

Together, this shows that the power increases and decreases in hippocampus and DLPFC 

during maintenance were modulated significantly by memory load, but this modulation was 

of opposite sign for DLPFC (negative) compared to hippocampus (positive). This analysis 

also shows that, in contrast to the comparison maintenance period vs. baseline, the load-

related scaling was specific to the theta-frequency band (the first, more general comparison 

revealed a broadband effects).

We next asked whether the extent of theta power increase/decrease was indicative of 

memory load for individual electrodes (rather than averaged across as shown above). For this 

analysis, we averaged power in the frequency of interest (3–6 Hz theta band) for each 

electrode and for each memory load separately. We then performed a 3 (Memory load: 1 

picture vs 2 pictures vs 3 pictures) x 3 (Area of interest: DLPFC vs dACC vs Hippocampus) 

repeated measures ANOVA with theta power as the dependent variable. We found that the 

main effects of Memory load [F(2,200) = 4.46, p = .013, eta2 = .043] and Brain area 

[F(2,100) = 15.086, p < .0001, eta2 = .232] as well as the interaction [F(4,200) = 10.73, p < .

0001, eta2 = .177] were statistically significant, demonstrating the robustness of this effect at 

the single-electrode level. The significant interaction effect was due to the opposite pattern 

of effects for DLPFC [see Fig. 6A; where we observed a significant, negative linear trend: 

F(1,49) = 49.24, p < .0001, eta2 = .501] compared to hippocampus [see Fig. 6B; where the 

trend was significant but much weaker and positive F(1,24) = 5.18, p = .032, eta2 = .178] 

and dACC [see Fig. 6C; F < 1, ns.]. See also Fig. 8 for additional single-channel 

presentation of this effect.

We next confirmed this conclusion at the single-trial level. For this, we used a linear mixed 

effects model with memory load and brain area as fixed factors and channels as random 

factors. Theta power in each trial constituted the dependent variable. The goal of this 

analysis was to confirm the brain area x memory load interaction on the single trial level. We 

found that the interaction term was highly significant (F(1,11950) = 45.55, p = 1.5584e-11). 

This confirms the robustness of the opposite effects of load on theta power in the DLPFC 

versus dACC/Hippocampus at the single-trial level.

We performed several control analysis to exclude potential confounds. First, we verified 

whether evoked responses (ERPs) to the onset of the waiting period (“hold” instruction) 

differed between loads. To do so, we averaged the raw signal across trials from each load 

separately and then submitted these ERPs to a permuted repeated measures ANOVA (we 
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compared ERPs independently at every point of time, corrected for multiple comparisons 

using a cluster based approach (Maris & Oostenveld, 2007)). This analysis revealed that 

ERPs from different loads did not differ statistically significant at any point of time. Second, 

we confirmed that those evoked responses did not cause the reported load-related theta 

power changes in DLPFC. To achieve this, we subtracted the ERPs from each individual 

trial of a given load and repeated the above analysis on the resulting ERP-subtracted trials. 

Compatible with the original analysis, this again revealed a significant effect of memory 

load on DLPFC theta power: F(2,98) = 31,28; p < .0001 [Mload1= −.54; Mload2= −.68; 

Mload3= −.84]. In comparison, the effect sizes of the original analysis (where the ERP was 

not subtracted) were similar (F(2,98) = 30,41; p < .0001 [Mload1= −.93; Mload2= −1.06; 

Mload3= −1.23]). Together, this shows that the load-dependent theta power decrease in the 

DLPFC was not related to an evoked response.

Time course of DLPFC power changes—We next investigated how theta power in the 

DLPFC is changing over the course of the task. We were especially interested in whether 

changes in theta power were also visible during the encoding or retrieval stage and how 

power changes evolved throughout the maintenance period. We found that throughout the 

maintenance period, theta band power scaled as a function of load, with less power for 

higher loads (Fig. 7A, middle). Also, during encoding, theta-band power dropped in a step-

wise fashion as more items were encoded (Fig. 7A, left). Notable, neither the beta (see Fig. 

7B) nor the gamma (see Fig. 7C) frequency-band showed similar load-related changes 

during maintenance.

Theta power as a predictor of task performance—In the analysis above, we 

considered only correct trials. We next asked whether there is a relationship between theta 

power and performance (we tested accuracy and RT). To test for effects of accuracy, we used 

a linear mixed effects model. We used brain area and accuracy (correct/incorrect) as fixed 

factors, channel number as a random factor, and single-trial theta power as the dependent 

variable. We only used load 3 trials for this analysis (to have enough error trials). This model 

revealed significant main effects of both brain area F(1,4106) = 9.56, p = 0.0019 (as 

expected from above analysis) and accuracy F(1,4106) = 7.61, p = 0.0058, and a significant 

interaction between the two (F(1,4106) = 3.87, p = 0.049). Post-hoc analysis revealed a 

significant difference between correct and incorrect trials only in DLPFC, in which correct 

trials were characterized by lower theta power compared to incorrect trials (F(1,1982) = 

12.87, p = 0.00034). We found no significant difference between correct and incorrect trials 

for theta power in hippocampus and dACC (F(1,1004) < 1, ns. and F(1,1118) < 1, ns., 

respectively, see Fig. 9A–C). Together, this shows that the extent of theta power decreases in 

DLPFC is predictive of accuracy, with less power indicative of a higher likelihood of a 

correct response.

To test for effects of RT, we performed a similar analysis but using only correct trials from 

all loads. We first ran a linear mixed effects model with raw reaction times (removing 

outliers, see methods) and brain area as fixed factors, channels as random factor and theta 

power as the dependent variable. This analysis revealed significant main effects of brain area 

(F(1, 9980) = 70.51; p = 5.2158e-17), reaction times (F(1, 9980) = 5.96; p = 0.015), as well 
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as a significant interaction (F(1, 9980) = 13.86; p = 0.00019). Post-hoc analysis revealed that 

the interaction effect was due to the opposite sign of the relationship between theta power 

and reaction times in DLPFC (Fig. 9D; r = 0.052, p = 3.2949e-04) as compared to 

hippocampus (Fig. 9E; r = −0.056, p = 0.0053) and dACC (Fig. 9F; r = −0.04, p = 0.0358).

To exclude potential confounds of load on RT (the larger the load, the longer the RT), we 

repeated above analysis after first classifying RTs as below/above the median RT for each 

load of a given patient. Thus, for each load, a trial was labeled as either “faster” or “slower” 

relative to the median RT of that load (a technique we used before (Kamiński et al., 2017)). 

This analysis yielded very similar results: there were significant main effects of brain area 

(F(1, 9980) = 67.19; p = 2.7753e-16), RT (F(1, 9980) = 12.17; p = 0.00049), and a 

significant interaction (F(1, 9980) = 14.39; p = 0.00015) resolving the question about the 

memory load as a potential confound variable. Post-hoc analysis again confirmed the 

opposite signs of modulation due to RT of DLPFC relative to hippocampus and dACC 

(positive in DLPFC, r = 0.052, p = 3.2949e-04; negative in Hippocampus, r = −0.056, p = 

0.0053; negative in dACC, r = −0.04, p = 0.0358). Together, this analysis shows a robust 

relationship between decreases in theta power in the DLPFC with both accuracy and RT. The 

directionality of this effect in the DLPFC was such that the more theta power was reduced, 

the faster and more accurate was the response. In contrast, faster RTs in the hippocampus 

and dACC were correlated with increases in theta power and such increases did not correlate 

significantly with increases in accuracy.

Individual differences in load-related theta power changes as a predictor of 
task performance—We next tested whether the amount of load-related changes in theta 

power is related to individual differences in RT and accuracy between subjects. Note that in 

contrast to the within-subject analysis presented so far, what follows is a between subject 

analysis. As the neural metric of interest, we again used the difference between theta power 

in load 3 relative to load 1 (for each channel). To quantify behavior, we used accuracy and 

reaction time for each subject. We used a linear mixed effects models with the change in 

theta power and brain area as predictors and reaction times or accuracy as the dependent 

variable.

For RT, we found a significant main effect of theta power change (F(1,99)=6.22, p = 0.014) 

and brain area (F(1,99) = 4.84, p = 0.036), with no significant interaction between the two 

(F(1,99) = 2.53, p = 0.115). When we repeat this analysis with RT from the load 3 only (the 

most difficult condition) the both main effects were of similar magnitude, F(1,99)=6.98, p = 

0.009 for theta change and brain area F(1,99)=4.8, p = 0.031 but interaction effect became 

marginally significant, F(1,99)=3.56, p = 0.062. To explore this relationship in more depth, 

we conducted post hoc analyses with only one predictor (theta change) for each area 

separately. This analysis revealed that the extent of theta power change was predictive of 

RTs, but only for DLPFC (F(1,48) = 13,19, p = 0.00068 for RTs from all correct trials and 

F(1,48) = 12,82, p = 0.00079 for RT from load 3). In contrast, for hippocampus and dACC 

this effect was not significant (see Fig. 10B–C, F(1,23) <1, ns. For hippocampus and 

F(1,26)<1, ns. for dACC). We next repeated this analysis with accuracy as the dependent 

variable. This revealed no significant correlation between accuracy and theta power changes 

in any of the three brain areas.
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Together, these results show a significant positive correlation between the amount by which 

DLPFC theta power decreased as a function of memory load and the mean reaction time of a 

subject. Thus, the bigger the decrease with memory load was for a given subject during the 

maintenance period, the faster the response was of that subject (see Fig 10; this was true for 

RTs in all loads). These results thus reveal that the extent of DLPFC theta power decreases 

explain individual differences in RT in a working memory task.

Discussion

The main aim of this study was to compare theta power changes as a function of memory 

load during WM maintenance between three brain areas: the DLPFC, the hippocampus and 

the dACC. The reason for doing so is that these three areas have long been thought to be 

critical for WM (Bähner et al., 2015; Barbey, Koenigs, & Grafman, 2013; Lenartowicz & 

McIntosh, 2005), but it remains unclear how each of these areas contributes to information 

maintenance in WM. While our study cannot claim to answer this question, the differences 

we identify here between these three brain areas indicate that DLPFC’s contribution is 

different than those from other areas because it was the only area we investigated that 

exhibited prominent power decreases. We found that DLPFC broad-band power decreased 

relative to baseline and, only for the theta-band, power decreased proportionally to memory 

load stronger this decrease was. Also, the extent of this power decrease was predictive of 

behavior on both a single-trial and subject-by-subject level. That is, people who were found 

to have a relatively bigger decrease in theta power were overall faster in accessing WM. In 

addition, we also found theta power changes in hippocampus and dACC. Strikingly, these 

were less pronounced and in the opposite direction compared to those in the DLPFC: in 

these areas theta power increased relative to baseline and as a function of load. Note that the 

power modulations we revealed were selective to the theta band only when we consider 

effects of load (Fig. 4). In contrast, the more general task versus baseline comparisons 

exhibited broadband effects (Fig. 5). This finding allows the hypothesis that theta-band 

power changes are specifically critical for WM maintenance.

Hippocampal theta has been extensively studied in both animals and humans, making its 

function relatively well understood (e.g., increases in theta power are associated with greater 

engagement and lead to better memory, see e.g. (Lin et al., 2017)). In contrast, the properties 

of theta in neocortex are less understood, making it unclear whether patterns similar to 

hippocampal theta modulation would be expected. Additionally, some studies show that 

theta power recorded on the scalp is inversely correlated with fMRI-BOLD changes 

(Michels et al., 2010a; Scheeringa et al., 2008, 2009). Here, we found that the patterns of 

theta power modulation were of opposite sign in DLPFC versus dACC and hippocampus, 

arguing for a differential role of theta in these two areas.

The load-related theta power changes in DLPFC that we found resemble those observed in 

DLPFC using both fMRI-BOLD as well as more direct measures of neural activity, but with 

opposite sign: BOLD or single-neuron studies reveal increases in activity as a function of 

memory load, whereas we here show a decrease in theta power as a function of memory load 

(Riley & Constantinidis, 2016; Veltman, Rombouts, & Dolan, 2003). One potential 

mechanism by which these differential effects can be explained is by considering the 
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hypothesis that low-frequency oscillations in neocortex are an index of excitability, with 

higher power indicative of less excitability. Related to this, it has indeed been hypothesized 

(Lisman & Jensen, 2013) that neocortical theta oscillations might have a role similar to 

cortical alpha, which is thought to index cortical excitability. Thus, if we assume that theta 

power indexes cortical excitability in ways similar to alpha power (Lisman & Jensen, 2013) 

and if we assume that less excitability is less metabolically demanding, then our results are 

in agreement with the literature on BOLD-fMRI studies of working memory in DLPFC.

Overall, our results support a distinction between how the medial and lateral parts of PFC 

support WM maintenance. Medial PFC shows increases in theta power (both in scalp EEG 

and intracranial recordings) and decrease in fMRI-BOLD activity as a function of load 

(Raichle & Raichle, 2001). On the other hand, the fMRI-BOLD signal increases in lateral 

parts of PFC during WM task performance, whereas the intracranial recordings described 

here as well as other existing studies (see Table 3) reveal decreases in theta power.

Several other intracranial studies considered changes of iEEG power during WM tasks (see 

Table 3 for summary). However, most of these focus on the task-related activity changes 

(compared to baseline activity) rather than prediction of behavior or load related changes 

(Howard, 2003; Meltzer et al., 2008; Raghavachari et al., 2001; Raghavachari & Lisman, 

2006). An exception is the work of Meltzer et al (Meltzer et al., 2008), which compared the 

percentage of electrodes with positive or negative load-related power changes in patients 

performing a numerical Sternberg task between different regions of the brain. When 

comparing lateral (frontal, parietal) with medial (across entire medial wall) areas, they found 

that the percentage of electrodes with decreasing theta power as a function of load was larger 

in later compared to medial parts. While this coarse analysis does not allow conclusions 

specific to DLPFC, dACC, or hippocampus, this pattern is nevertheless compatible with that 

which we found here.

We previously studied the same task at the single-neuron level in dACC and hippocampus 

(but not DLPFC, where no neurons were recorded) (Kamiński et al., 2017). This previous 

work revealed that stimulus-selective neurons in the hippocampus maintained their activity 

throughout the maintenance period if their preferred stimulus was held in mind. The level of 

this persistent activity scaled inversely with load, with higher loads resulting in weaker 

persistent activity. In dACC, this previous study revealed non-stimulus selective 

maintenance units that maintained their elevated level of activity throughout the maintenance 

period. Single-neuron activity was thus elevated throughout the maintenance period in both 

areas, but the selectivity of this activity was different between brain areas. Here, we similarly 

found that power was changed relative to baseline throughout the baseline period and that 

such power changes scaled with load in different ways in different brain areas. It remains an 

open question how these single-neuron activity changes related to simultaneously recorded 

power changes and in particular how and whether the activity of single neurons in the human 

DLPFC is related to load during maintenance.

The theta power changes observed in our study in the DLPFC are different from those found 

in human EEG studies on frontal midline theta, which show that FMT power increase 

parametrically with memory load and/or the cognitive complexity of the task (Gärtner et al., 
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2015; Hsieh & Ranganath, 2014; Onton et al., 2005). FMT theta is recorded from electrodes 

placed over the frontal midline (Anguera et al., 2013; Gärtner et al., 2015; Hsieh & 

Ranganath, 2014; Jensen & Tesche, 2002; Kamiński, Brzezicka, & Wróbel, 2011; Maurer et 

al., 2015), with a source that is frequently localized in the anterior cingulate (Hsieh & 

Ranganath, 2014; Onton et al., 2005). Surprisingly, we did not find load-related theta power 

changes in dACC that were similar to those observed with FMT. While we found that theta 

power increased during maintenance relative to baseline, the extent of this increase was not 

significantly related to memory load. One possibility is that parts of FMT are in fact volume 

conducted hippocampal theta. In addition, it is not known what the contribution of DLPFC is 

to FMT. Simultaneous scalp EEG (FMT) and intracranial dACC, hippocampal, and DLPFC 

recordings will be required to directly investigate this potential discrepancy, in particular in 

light of recent work that indicates that LFP and EEG power can be disassociated in some 

instances (Musall, Von Pföstl, Rauch, Logothetis, & Whittingstall, 2014).

Our results are also of relevance to a recently proposed model on the interplay between 

hippocampus and neocortex during episodic memory formation (Parish, Hanslmayr, & 

Bowman, 2018). This model proposes that lower frequency oscillations (alpha in their case) 

have different roles in the hippocampus and cortex (Parish et al., 2018). The reasoning for 

this rests on two assumptions. First, neurons in neocortex need to ‘break out’ of an ongoing 

oscillation to represent a stimulus, which is achieved by desynchronization. Second, firing of 

hippocampal neurons in synchrony with ongoing theta oscillations facilitates formation of 

memories (i.e., theta synchronizes). Accordingly, successful memory formation is marked 

by both reduced neocortical alpha and increased hippocampal theta. While originally 

proposed for episodic memory, our data suggests that this mode of operation might also be 

valid for WM, with theta serving two different roles – desynchronizing activity of neurons in 

neocortex (DLPFC) and synchronizing in hippocampus during WM maintenance. A key 

caveat is, however, that here we did not quantify synchronization. Rather, we measured only 

power changes, which might be due to changes in synchronization but can also result from 

other type of activity changes. Answering this question conclusively will require quantifying 

synchrony between pairs of neurons recorded in DLFPC, which is data that we do not have 

access to here.

An important question that our results raise is how power decreases in a given area can be 

functionally beneficial (as ours were, as demonstrated by the correlation with behavior). 

With respect to theta, this question is little studied, since most of the literature so far focused 

on power increases and their functional role. One hypothesis is that neurons that code for 

particular stimuli form small ensembles and synchronize with each other at different (mostly 

higher than theta) frequencies , resulting in decreased theta power for higher loads. Another 

hypothesis is that there are several independent local theta generators (i.e. here one for 

hippocampus, one for DLPFC) that change differently as a function of load (Raghavachari et 

al., 2009)). Note that in contrast to theta, beta-power reductions and the resulting 

desynchronization are prominent phenomena in the motor system that are well understood 

and which are necessary for properly releasing a motor movement (Crowell et al., 2012). So 

a third hypothesis is that in DLPFC theta acts akin to beta in the motor cortex.
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What function does a WM theta power decrease in the DLPFC index? WM involves several 

theoretical constructs (see e.g.(Conway, A., Jarrold, C., Kane, M., & Miyake, 2008)), 

including one related to cognitive control and another related to storage itself. Our task only 

concerns storage, but no active manipulations during maintenance. In addition, we observe 

prominent load-related changes in neural activity. For this reason, we hypothesize that the 

theta power decrease we found in DLPFC are a reflection of the storage component of WM. 

A key question that remains to be answered is what the relationship is between these power 

decreases and the activity of individual neurons in DLPFC. One hypothesis is that as a result 

of reduced power, synchrony between pairs of neurons in DLPFC would decrease, thereby 

allowing more independent storage of different items. Single-neuron recordings in DLPFC 

will be required to answer this question. Of relevance, recent work (Vries, Driel, 

Karacaoglu, & Olivers, 2018) suggests that frontal areas might use low-frequency theta to 

drive changes in more posterior areas and thus the role of prefrontal cortex might be crucial 

for storage only indirectly, because the but storage as such takes places elsewhere.

Our results seem also to be contradictory to the “theta gating” hypothesis (Raghavachari et 

al., 2001), which proposes that the amplitude of theta oscillations increases at the start of a 

cognitive task (e.g. Sternberg task), than continues to be elevated through all phases of the 

trial, including the delay period, and decreases sharply at the end of the maintaining period. 

However, this effect is not apparent on all electrodes analyzed (Raghavachari et al., 2001). 

Rather, its presence is conditional on where an electrode was placed, with some electrodes 

showing the opposite pattern (Raghavachari et al., 2001). This is compatible with our 

observation, which shows that the pattern of change depends on where in the cortex theta is 

recorded from. It might be possible that neocortical areas are more likely to show theta 

decreases compared to allocortex (hippocampus, dACC). Such thinking is supported by 

some animal studies. For example, studies utilizing macaques performing a visual working 

memory task (Kornblith, Buschman, & Miller, 2016) have revealed load-related decrease in 

low-frequency power.

Is the activity in DLPFC that we measure here related to preparatory motor activity, thereby 

explaining the ability of theta power in DLFPC to predict response speed? To exclude this 

possibility, we only included data during the maintenance period, excluding data from the 

probe period in our analysis. In addition, the maintenance period length was unpredictable, 

making it impossible for a subject to know when the probe image was displayed. For this 

reason, we do not believe that the theta power reduction we observed in DLPFC is a 

reflection of motor preparation.

Our results show that task- and load-related theta power changes in the DLPFC predict an 

individual person’s accuracy and speed during a WM task. Note, however, that due to the 

limited size of our subject pool (13 subjects), the statistical power to explain individual 

differences in this dataset is limited and larger studies are needed to confirm these putative 

individual differences. We found this relationship on two levels: intra- and inter-individual. 

We saw that trials characterized by a bigger drop in theta power during maintenance 

compared to the baseline were more likely to end with the patient producing a correct 

response, with a faster RT. We also found that subjects exhibiting a greater amount of theta 

decrease in the DLPFC had faster response times. These results support the view that 
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DLPFC theta power changes explain individual differences in RT in a working memory task. 

WM ability varies greatly between individuals (Shipstead et al., 2016; Unsworth & Engle, 

2006, 2007), with important consequences for a person’s overall cognitive function. It is 

thus important to discover features of WM that differ between individuals. Here, we found 

such a relationship in DLPFC. This extends previous work using scalp EEG, in which we 

found a similar relationship for FMT (Zakrzewska & Brzezicka, 2014). Together, these data 

indicate that theta power in DLPFC is a metric that may help explain individual differences 

in WM and may be used as a neurophysiological indicator of WM efficiency.
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Figure 1. Electrode localization.
(A-C) Illustration of DLPFC electrode in one individual brain (P37CS). Abbreviations: 

medial frontal gyrus (MFG); inferior frontal sulcus (ifs); superior frontal sulcus (sfs). 

Orange shows the active contact, grey the reference contact used for analysis. (D-F) 

Summary of all recording locations, shown in Montreal Neurological Institute’s MNI152 

space displayed superimposed on the California Institute of Technology’s CIT168 T1w brain 

atlas (Tyszka & Pauli, 2016). Recording locations are indicated by different colors (D, E: 

orange - DLPFC; blue - dACC; F: green - Hippocampus).
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Figure 2. The task.
Top: example of the screens presented to the subjects during an example trial (here with 

memory load 2). Bottom: the duration for which each screen is shown. Each trial started 

with an encoding phase, during which between 1–3 sequentially presented pictures were 

shown. This was followed by the maintenance (delay) period. Finally, after the delay, a 

probe image was shown. Subjects were asked to indicate whether the probe was or was not 

shown during the encoding period that immediately preceded the probe. All analysis shown 

in this paper was performed during the maintenance and baseline periods (red and blue, 

respectively).
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Figure 3. Behavioral results.
(A) Accuracy decreased as a function of load. (B) Reaction time increased as a function of 

load. (C) Reaction time differed significantly between correct and incorrect trials. Panel C 

only includes data from load 3. Each dot shows one session. Dotted lines indicate significant 

pairwise differences at p<.05.
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Figure 4. Broad-band power changes relative to baseline during maintenance.
Spectral comparisons between task (maintenance period) and baseline for DLPFC, 

hippocampus and dACC showing contrasting effects between neocortex (DLPFC) and 

allocortex (hippocampus and dACC). Plots show averaged power during maintenance in 

units of dB relative to baseline across all electrodes in a given brain area. (A) Power as a 

function of frequency for DLPFC, dACC, and hippocampus. Significance indicated is the 

result of a 1×3 ANOVA at p<0.05. (B-D) Pairwise differences between brain areas. 

Significance indicated is computed using post hoc tests (permuted t-tests). All significant 

data points marked as a black line are significant at p<0.05 and corrected for multiple 

comparisons using a cluster-based approach (Maris & Oostenveld, 2007). In DLPFC the 

difference was negative (decrease in power during maintenance relative to the baseline) and 

most pronounced at 2Hz (p=.0012), 3Hz (p=.0062) and then 6.5 up to 20 Hz (p=.0012). In 

hippocampus the difference was positive (increase in power during maintenance compared 

to the baseline period) and most pronounced between 2.8 – 6.3 Hz (p=.0012). In dACC the 

difference was positive in lower bands (increase in power during maintenance compared to 

the baseline period, between 2–6.5 Hz, p=.0012) and negative in higher bands (decrease in 

power during maintenance relative to the baseline, between 15–22 Hz, p=.0012). (E) Raw 

power spectra from maintenance and baseline periods of the task for DLPFC. The black 

dotted line denotes statistically significance of the difference between the expected 1/f 

background and the measured DLPFC power spectra (1×3 permuted repeated measures 

ANOVA corrected for multiple comparisons using cluster-based approach).

Brzezicka et al. Page 23

J Cogn Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Theta-band power is modulated by load during maintenance.
(A) Differences in power between load 3 and 1, averaged across all electrodes located in a 

given brain area (correct trials only). Each line represents the difference in power between 

trials with high (3 pictures in memory) and low memory load (1 picture in memory). Black 

line indicates significant differences between the three areas as indicated by a 1×3 ANOVA 

at p<0.05. (B-C) Pairwise comparisons between DLPFC and hippocampus (B) and DLPFC 

and dACC (C). Black line indicates significant differences derived from post hoc tests at 

p<0.05 (permuted t-tests for independent samples). The comparison between hippocampus 

and dACC did not revealed statistically significant differences and is not shown. All 

comparisons were performed with correction for multiple comparisons using cluster based 

approach (Maris & Oostenveld, 2007).

Brzezicka et al. Page 24

J Cogn Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure. 6. Theta (3–6 Hz) power modulation by memory load in DLPFC, hippocampus and 
dACC.
Changes of theta power as a function of load quantified at the single-electrode level (each 

dot is an electrode). (A) DLFPC theta power decreases significantly as a function of load 

(see text for statistics). (B) In hippocampus, theta power increased significantly as a function 

of load, but the strength of this modulation was significantly weaker compared to that in 

DLPFC (see A). (C) In dACC, we found no significant effect of memory load on theta 

power (but note that for each load, power is significantly stronger then baseline) dashed lines 

denote statistically significant differences at p<.05.
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Figure 7. Theta, beta and gamma power time courses throughout the task in DLPFC.
Power changes as a function of time for (A) theta (B) beta and (C) gamma band. Power was 

calculated with the Morlet continuous wavelet transform (CWT; 16 scales per octave, 

minimum period to analyze was set to 0.01 and maximum period was set to 0.8) as 

implemented in WAVOS (Wavos 2.3.1) and then transformed to decibels relative to the 

average power during the baseline period. To avoid contamination from visual transients we 

only used the time period starting at 400–2100 ms following the start of the maintenance 

period to compute power. For the same reason, to calculate the power in the encoding and 

retrieval periods (bars) we used a time window of 200–1000ms following image onset. Note 

that significant load differences during maintenance are only apparent in the theta band (A). 

All p values are based on permuted repeated measures ANOVA corrected for multiple 

comparisons using a cluster-based approach (dashed line denotes at which time points 

differences are statistically significant).
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Figure 8. Theta power modulation by memory load on individual electrodes from DLPFC and 
hippocampus.
Illustration of the modulation of theta power as a function of load individually for all 

electrodes recorded in DLPFC and hippocampus, ordered as recorded (from top to bottom, 

oldest at top). Of the 23 hippocampal channels, 12 showed increases. Of the 48 DLPFC 

channels, 34 showed decreases.

Brzezicka et al. Page 27

J Cogn Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. Theta power as a predictor of task performance.
(A-C) Comparison of theta power change from baseline in correct versus incorrect trials (in 

memory load 3 trials only) for DLPFC (A), Hippocampus (B) and dACC (C) [each dot is an 

electrode, dashed line denotes statistically significant difference at p<.05]. (D-F) The 

relationship between RT and theta power change from baseline for all trials in DLPFC (D), 

Hippocampus (E) and dACC (F). Each dot is a trial. All relationships were statistically 

significant, post hoc to the main analysis (linear mixed effects model with RT and brain area 

as fixed factors, channels as random factor and theta power as the dependent variable) were 

as follows: DLPFC, r = 0.052, p = 3.2949e-04; Hippocampus, r = −0.056, p = 0.0053; AC, r 

= −0.04, p = 0.0358. To exclude potential confounds of load on RT (the larger the load, the 

longer the RT), we repeated a linear mixed effects model analysis after first classifying RTs 

as below/above the median RT for each load of a given patient – this analysis yielded nearly 

identical results to the original one.
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Figure 10. Change in theta power in DLPFC as a predictor of individual differences in WM 
performance.
(A) Correlation coefficients between the amount of theta power change and task 

performance (RT and accuracy). (B) Correlations between theta power change with memory 

load and individual patient’s reaction times for each area. Each dot is an electrode.
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Table 1.

Characteristics of participants included in this study.

ID AGE SEX EPILEPSY DIAGNOSIS

P 34* 70 M bilateral mesial temporal

P 35* 63 M left temporal neocortical

P 36* 45 M right hippocampus

P 37* 33 F right hippocampus

P 39* 26 M right insula

P 40* 25 M right motor cortex

P 42 25 F not localized

P 43 42 F left hippocampus

P 44 53 F right medial temporal

P 47 32 M right mesial temporal

P 48 32 F left amygdala

P 49 24 F amygdala

P 51 17 M not localized

*
The behavioral and single-neuron data from these patients are also part of (Kamiński et al., 2017), but the depth electrode recordings analyzed 

here are unpublished in all patients included.
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Table 2.

Coordinates for each electrode used in analyses.

ID RIGHT DLPFC LEFT DLPFC RIGHT HIPP LEFT HIPP RIGHT DACC LEFT DACC

P 34 43.78, 23.23, 
23.43; 49.08, 
23.85, 23.43

−40.73, 24.47, 
24.95; −47.43, 
25.45, 25.10

30.56, −16.81, −16.47 −29.78, −17.97, −13.35 6.81, 21.20, 32.38 −7.20, 24.71, 29.13

P 35 40.72, 33.64, 
30.99; 45.76, 
34.48, 30.48

N/A 29.80, −14.88, −12.13 N/A 5.78, 29.40, 27.02 −6.83, 36.47, 27.02

P 36 43.24, 34.34, 
21.69; 48.29, 
34.24, 21.36

−39.89, 40.26, 
24.02; −46.94, 
40.07, 23.38

N/A −31.43, −20.12, −14.96 9.15, 35.35, 22.12 −10.70, 36.91, 23.29

P 37 41.65, 21.43, 
24.43; 46.89, 
21.68, 25.31

−40.04, 27.72, 
23.63; −45.28, 
29.33, 23.63

28.83, −20.52, −13.51 −30.27, −19.20, −12.19 7.96, 20.70, 23.04 −10.78, 24.45, 23.37

P 39 43.26, 26.67, 
22.42; 49.53, 
28.48, 24.65

−37.24, 25.88, 
15.70; −43.26, 
25.88, 15.56

32.51, −26.99, −10.51 −28.92, −18.21, −12.85 14.70, 25.70, 24.68 −5.25, 27.04, 23.46

P 40 48.15, 24.17, 
24.49; 52.79, 
24.08, 25.23

−46.00, 27.42, 
21.47; −50.23, 
27.42, 21.82

33.93, −19.63, −10.91 −30.49, −20.39, −16.20 12.07, 28.21, 26.50 −8.53, 23.81, 20.78

P 42 45.07, 28.97, 
24.49; 49.52, 
28.97, 24.49

−41.64, 32.06, 
22.09; −47.47, 
32.40, 22.09

30.59, −21.51, −8.30 −24.64, −21.10, −12.78 6.81, 28.80, 24.92 −3.95, 28.42, 19.54

P 43 43.70, 24.70, 
22.77; 49.86, 
24.02, 23.12

−43.01, 27.10, 
22.43; −48.49, 
28.29, 23.12

31.40, −24.80, −14.60 −30.15, −20.34, −12.68 8.76, 26.85, 23.89 −5.25, 23.95, 23.39

P 44 43.40, 31.42, 
16.99; 49.93, 
29.92, 16.99

−43.10, 37.38, 
15.36; −48.48, 
36.63, 14.46

29.40, −21.70, −19.07 −25.29, −16.88, −17.11 5.20, 30.60, 18.63 −10.68, 36.48, 20.17

P 47 40.95, 30.18, 
17.46; 46.49, 
30.18, 17.77

N/A 30.37, −18.10, −18.10 −30.86, −17.82, −14.70 8.12, 26.02, 16.64 −3.89, 25.92, 20.00

P 48 44.31, 37.38, 
18.41; 50.25, 
37.07, 18.28

−38.58, 30.60, 
25.32; −44.93, 
30.12, 23.90

N/A −34.46, −14.83, −15.94 11.72, 38.61, 17.97 −5.88, 28.68, 24.07

P 49 N/A −40.01, 37.91, 
21.56; −45.03, 
37.91, 20.54

29.25, −17.87, −14.78 −24.15, −18.71, −19.93 9.56, 31.04, 26.12 −11.37, 33.91, 25.24

P 51 41.79, 31.65, 
26.49; 46.88, 
30.53, 25.62

−43.58, 32.35, 
26.67; −48.68, 
32.35, 26.26

29.86, −17.98, −13.83 −30.47, −19.73, −16.72 11.90, 31.65, 25.50 −8.78, 31.45, 28.02

AVG X: 46.05 (3.4)
Y: 28.97 (4.79)
Z: 22.95 (3.84)

X: −44.09 
(3.67)
Y: 31.32 (5.02)
Z: 21.93 (3.59)

X: 30.59 (1.52)
Y: −20.07 (3.55)
Z: −13.83 (3.28)

X: −29.24 (3.06)
Y: −18.78 (1.77)
Z: −14.95 (2.33)

X: 9.12 (2.8)
Y: 28.8 (5.06)
Z: 23.8 (4.25)

X: −7.62 (2.7)
Y: 29.4 (5.06)
Z: −23.65 (3.08)
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Table 3.

Summary of Theta power changes during maintenance in Sternberg-like tasks in previously published human 

intracranial studies.

STUDY LOCALIZATION OF 
THE EFFECT

METHOD TASK TASK EFFECT 
(VS BASELINE)

LOAD EFFECT

HOWARD ET AL., 
2003

Temporal/frontal, occipital iEEG Verbal Sternberg Mixed effects, 
some channels 
increase, some 
decrease – 
inconclusive 
(according to the 
authors)

Not explored in 
theta (visible in 
gamma)

RAGHAVACHARI 
ET AL., 2001

74 electrodes of 247 (24 in 
the temporal lobe, 18 in the 
occipital lobe, 18 in the 
parietal/motor/premotor 
areas, and 14 in the frontal 
lobe

iEEG Verbal Sternberg Mixed effects, 
mostly increase 
but on subject 
showed decrease 
at some trials

Not explored

RAGHAVACHARI 
ET AL., 2006

Occipital/parietal (45/157) ; 
temporal (23/280) frontal 
(2/182).

Subdural and depths Verbal Sternberg Increase of power Not explored

Axmacher et al., 
2010

Hippocampus iEEG Visual Sternberg No data No load related 
power effects

MELTZER ET 
AL., 2008

Midline and lateral part of 
PFC

iEEG Numerical Sternberg No data Midline frontal 
sites: Increase in 
theta/alpha
Lateral frontal 
sites: Decrease in 
theta/alpha

Van vugt et al., 
2010

Prefrontal cortex and 
hippocampus

Subdural and depths Sternberg with faces 
and letters

Not explored Left lateral PFC – 
decrease for faces 
[40% of contacts], 
not letters [shown 
only in Fig. 2]
Hippocampus – 
increase, right – 
20% of contacts, 
left 15% [shown in 
Fig. 2 as well as in 
Table 2]
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