
ASC2018-3EOr2B-01

Template version 8.0d, 22 August 2017. IEEE will put copyright information in this area

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1

A flexible GPU-accelerated radio-frequency
readout for superconducting detectors

L. Minutolo, B. Steinbach, A. Wandui, and R. O’Brient

Abstract— We have developed a flexible radio-frequency

readout system suitable for a variety of superconducting detectors
commonly used in millimeter and submillimeter astrophysics, in-
cluding Kinetic Inductance detectors (KIDs), Thermal KID bo-
lometers (TKIDs), and Quantum Capacitance Detectors (QCDs).
Our system avoids custom FPGA-based readouts and instead uses
commercially available software radio hardware for ADC/DAC
and a GPU to handle real time signal processing. Because this sys-
tem is written in common C++/CUDA, the range of different al-
gorithms that can be quickly implemented make it suitable for
the readout of many others cryogenic detectors and for the test-
ing of different and possibly more effective data acquisition
schemes.

Index Terms—superconducting detector readout, Kinetic in-
ductance detector, GPU computing, demodulation algorithm,
polyphase Filter Bank.

I. INTRODUCTION

UB-MILLIMETER detectors such as KIDs, TKIDs, and QCDs
use high-Q radio-frequency resonances to accomplish

dense frequency domain multiplexing. Warm multiplexed
readout electronics has proven to be a bottleneck in pushing
these detectors from single-prototype to larger arrays. Tradi-
tional systems use FPGA firmware which requires expertise to
modify and develop. As an example, ROACH boards make
use of Xilinx FPGAs to real-time process the raw data ac-
quired by ADC(s) and generate the buffers fed to the DAC(s)
[1,2]. While FPGA centered readouts can operate at low pow-
ers and with margin on speed for many applications, the multi-
month development time for their firmware is slow and re-
quires the expense of employing a full-time expert.

An alternative is to off-load the computationally demanding
tasks to a common desktop computer, accelerating sub-tasks in
the computer’s Graphical Processing Unit (GPU) as is appro-
priate. This choice allows us to use Nvidia’s CUDA, a public
library of C++ compatible functions widely used for develop-
ing GPU applications in graphics, AI, and big data processing.
The development time for the required Python and C++ soft-
ware is reduced to days, allowing quick adjustments of the

© 2018. All rights reserved. This work has been submitted to the IEEE for

possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

The research was carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under contract with the National Aeronautics and Space
Administration.

L. Minutolo and R. O’Brient are with the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, Pasadena, CA 91109. (e-mail: lo-
renzo.minutolo@jpl.nasa.gov).

B. Steinbach and A. Wandui are with the California Institute of Technology
Department of Physics, Pasadena, CA 91125 USA.

readout system to meet the needs of different detector pro-
grams. Moreover, most scientists can write and edit C++ and
Python software, obviating the expert needed to maintain an
FPGA system.

Fig. 1 Flow of the data flow through the hardware with minimum specs for
each component. The Nvidia GPU is represented as a single block but can be
replaced by as many cards as the system can support.

II. SYSTEM OVERVIEW

As shown in summarized in Fig. 1, the readout system is
composed exclusively of commercial off-the-shelf (COTS)
components. This reduces the cost of reproducing the system
and allows us to use open source libraries of functions to co-
ordinate the hardware.

We use the following components:
• X300 Ettus research Software Defined Radio (SDR)
• Intel X520 10-Gbit Ethernet card and cables.
• Nvidia GTX-1080 Ti GPU (GDDR5X)
While all hardware is supported by Linux-compatible driv-

ers, the drivers and libraries are cross-platform, which has let
us run this system on Windows and macOS operating systems.
The performance of the readout varies slightly between differ-
ent platforms because of differing OS scheduler behavior. Our
test platform consists of Ubuntu 18.04 using the g++ compiler
6.4, CUDA 9.1 [3], UHD 3.13 [4] and boost 1.64 [5].

A. Ettus Universal Software Radio Peripheral (USRP) SRD
The X-300 is an SDR produced by Ettus Research (National

Instruments). The X-300 motherboard coordinates two 14-bit
ADCs and 16-bit DACs with a Xilinx Kintex-7 FPGA. This
FPGA layer is computationally “thin,” avoiding any high level
processing beyond its basic task of wave-form generation and
data digitization. The system streams data to/from an external
computer via 10-GBit Ethernet at a rate of 200Ms/s, matching
the ADC sample rate.

The motherboard interfaces with pairs of daughterboards
that can mix from baseband into microwave tones as high as

S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216304363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

6GHz, using an internally generated LO for mixing. Most of
our team’s work has used the:

• WBX-120: mixes to 20-2200MHz range.
• SBX-120: mixes to 400-4400MHz range.

Each card provides 120MHz of RF bandwidth, so 240MHz of
theoretical bandwidth between the two slots.

Ettus maintains open-source python and C++ libraries,
called UHD libraries [4], to utilize this hardware as parts of
custom systems.

B. Intel 10-Gbit Ethernet Card

The computer and USRP communicate via 10-GBit ethernet
coordinated with an Intel X520 Converged Network Adapter,
which delivers data to 8 lanes of the computer’s PCI Express
2.0 bus. All Linux operating systems have drivers to work
with this hardware. As shown in Fig 1, the incoming data
transmits to the computer’s RAM before being copied to the
GPU’s onboard RAM. Outgoing data follows the reverse path
during tone generation. These steps currently limit the system
total speed.

C. Nvidia GPU

We can process data in the server’s CPU for limited band-
width applications (one or two detectors) or the GPU when
working with larger sample counts. The CPU/GPU is respon-
sible for channelizing or demodulating, filtering, and decimat-
ing. We use a GTX-1080 GPU, which contains 2560 cores
capable of supporting the 2560 parallel threads.

Fig. 2 Partitioning of tasks into threads and the common pattern used to ex-
change data and metadata. Each solid line represents a consumer/producer re-
lation while the dashed lines represent a PCIe/Ethernet link.

III. SOFTWARE

Our software must coordinate a diverse set of tasks, poten-
tially spread across many computers with the requirement that
it port to different operating systems. To handle these chal-
lenges, our readout system CPU spawns various threads (Fig.
2):

1. Transmission of buffers to USRP (Tx thread)
2. Reception of data from USRP (Rx thread)
3. Transmission buffer producer
4. Rx signal processing
5. Streaming of processed data via TCP protocol
6. Asynchronous server thread
7. Synchronous TCP streamer

All threads share buffers and metadata via lock-free queues
of pointers to pre-allocated memory regions. The threads
managing the queues and the asynchronous server operations
are based on the Boost [5] collection of C++ functions.

Both the processing of the acquired signal and the genera-
tion of the transmission buffer occur in the GPU. The role of
the handling thread is only to tune the performance of the
GPU kernels to optimally upload/download data to/from the
GPU and to handle buffer metadata. In applications where we
use active feed-back, the buffer generator checks for eventual
input from the signal processing thread and modifies the out-
put buffer kernel’s generator consequently. The data processed
with the GPU are then sent to a client interface via TCP proto-
col.

CUDA can help parallelize computations in the GPU if
they are expressed as matrix computations. The following
subsections explain our development with this principle in
mind.

A. Polyphase Filter Bank

Like the FPGA based ROACH boards, the GPU system
channelizes with a polyphase filter bank (PFB). The PFB con-
trols the frequency response of the FFT bins by pre-filtering
raw data in a finite impulse response (FIR) filter [6,7]. In our
case, the FIR filter is a product of a sinc and a hamming func-
tion of length N�Aν, where N is the decimation factor and Aν is
the filter taps per frequency channel. We construct the sinc
function such that its spectral response has a cut-off frequency
that controls cross-talk of adjacent FFT bins to be less than
6dB. Figure 3 shows the cross-talk levels in our implementa-
tion.

Fig 3. The spectral response of a single tone of 418MHz fed into the USRP
RX port and channelized with decimation of N=105 and Aν =4. Cross-talk in
adjacent channels is approximately 6dB, as per design.

The PFB is intrinsically parallel friendly because it relies
on processing different chunks of raw data independently and
then summing. In our case, we multiply N�Aν samples long
sections of data against the FIR filter, but across N GPU cores
run in parallel. This effectively reformats the data as a N×Aν
matrix (or what CUDA terms a “texture”). We transpose and
multiply against a unit vector of magnitude 1/N and length Aν
to decimate. All of these steps are efficiently handled by func-
tions in the cuBLAS library [8].

Once the buffer has been filtered and decimated, we batch
call cuFFT [9] to fourier transform each section of data. We
have used our system to channelize signals into as many as 107

Design window response
Measured channel response

Ch
an

ne
l r

es
po

ns
e

dB

Channel Number
-5-15 +5 +15

3

bins, and the system can return the full spectrum to the user or
specific user defined channels.

B. Direct Demodulation

As an alternative to channelization, we have used our sys-
tem to directly demodulate the time-stream against sets of spe-
cific user defined tones. We multiply a sample of raw time-
stream data against buffers of different frequency tones in par-
allel in different cores of the GPU. We control data volume
with decimation and anti-aliasing filters (moving average of a
square window). These filtering and decimation steps map to
the same cuBLAS matrix multiplication as for the PFB [7].

We have used our system to demodulate ~ 200 channels
with a decimation factor of 500, sampled at 100Msps.

C. Chirped readout
VNA scans such as in Figure 5 require the frequency to be

swept over time with a quadratic change in phase:

𝑭 𝒕 = 𝑨 ∙ 𝐬𝐢𝐧 𝝓𝒕
𝝓𝒕 = 𝟐𝝅 𝒇𝟎𝒕 + 𝒌 𝒕𝟐 Eq. 1

where fo is the initial frequency and k the constant ramp rate
(MHz/s).

 Generating chirped waveforms is a memory intensive pro-
cess- a 20s duration chirp sampled at 100MHz described with
32 bit precision would require 16GB of free memory. Instead,
we parallelize this process in the GPU to generate excitations
real time and therefore only have to allocate a single packet’s
memory in RAM. We can directly demodulate the Rx signal
against this waveform using the algorithm outlined in section
IIIB.

A potentially more powerful algorithm is a “fast chirp”
which deposits energy in the resonators array by swiping over
the entire bandwidth over the course of a few micro-seconds,
far faster than the ring-down time of the resonators. After this
short transmission phase, we turn off the excitation and record
the Rx time-stream as the resonators ring down. We perform
the FFT real time using the PFB algorithm described in sec-
tion IIIA.

D. Pulsed readout

We have performed experiments with our TKIDs using an
excitation of a square pulse followed by a listen phase, similar
to the fast chirp described in IIIC. Our goal was to look for
ring-down effects that might be associated with two level sys-
tems (TLS). Had we seen a ring down, we could have sub-
jected the fermionic TLS states to spin-echo spectroscopy
where we would have followed the initial pulse with an inver-
sion pulse a time t later, and then searched for an echo an ad-
dition delay t yet later. We did not see any ring-down from
the pulse, likely because TLS lifetimes are ~1ns, far outside
our system’s bandwidth. But the fact that we could casually
attempt this illustrates our readout’s flexibility.

IV. NOISE PERFORMANCE
We characterized the signal to noise ratio in our readout

system with “loop-back” tests that replace the cryostat with a
short coax cable. Fig. 4 shows such the results of such meas-
urements, displaying spectra of the Signal to Noise ratio (S/N).
We have removed a common mode component that produces
high low frequency noise.

Fig. 4 Loopback Noise Measurements: Noise after removing a common mode
component. We have also corrected by 14dB for shared power between chan-
nels.

We have performed these tests for single tones and combs

of 10 tones and found that the S/N degrades by ~10dB as a re-
sult of nonlinear mixing of the different tones, likely in the
ADC chips. We note that a chirped readout would be natural-
ly immune to these effects.

Our TKIDs and KIDs optimized for atmospheric loading
typically operate with ~80dBc signal to noise and the Low
Noise amplifiers provide -97dBc, so this readout system pro-
vides ample sensitivity for characterizing them. The most
demanding application we might use this system for is charac-
terizing submillimeter spectrometers for flight, which need a
S/N of 100-110dBc, still partially serviceable with this system.

V. USE CASES

We illustrate the readout system’s flexibility by showing
two very different applications: beam mapping horn-coupled
KIDs and photon statistics of QCDs.
A. Beam maps of horn-coupled KID array

JPL is developing a KID [10] aerial reconnaissance camera
under contract from the US Navy, and we have tested our
readout system with their cryostat. This cryostat has provided
our team an opportunity to verify that our system can operate
as a replacement to a conventional ROACH-2 system.

The focal plane is a monolithic horn coupled array of 128
lumped element KIDs, sensitive to a single polarization of
130-170GHz radiation. The cryostat has an HDPE window
and a stack of low pass filters to limit loading on the focal
plane.

 The ROACH and GPU systems both detect 116 channels
in the 100-200MHz spectral range on the readout line, as seen
in VNA style measurements that slowly sweep the driving
tone frequency to measure S21. Each high-Q dip in Fig. 5a
corresponds to a unique detector. We mapped the beams
formed by the horns of all 116 detectors by using a pair of

4

stepper motors to move a thermal source in front of the cam-
era. Figure 5b shows one such beam. We note that the non

 a)

b)

Fig. 5 (a) VNA scan of all KIDs in the Navy Cryostat. (b) Beam map of one
detector out of the 88 maps collected. The visible Non-gaussian Structure was
intrinsic to the camera.

-gaussian structure is present in both the GPU and ROACH
read maps. It appears to be a consequence of the camera op-
tics that is still in progress. This measurement demonstrated
the flexibility of this system used for more complex measure-
ments than VNA or noise studies and proves that it is stable
over the course of the 1-2 hour duration of the map.

B. Photon statistics in QCDs

JPL is developing QCDs for ultra-low background far-IR
photon counting [11]. In the QCD, radiation couples to a su-
perconducting absorber, breaking Cooper pairs in the absorb-
er. This generates non-equilibrium quasiparticles, which dif-
fuse to the junctions of a Single Cooper-pair Box (SCB), a de-
vice that features a bias dependent capacitance (the Quantum
Capacitance). When quasiparticles tunnel across the SCB
junctions, they change its average quantum capacitance, re-
sulting in a shift in the center frequency of the resonator that
we measure in the multiplexed readout. A photon absorption
event generates 20 quasiparticles, triggering a burst of tunnel-
ing into the island that destroys a quantum capacitance peak.
Missing peaks mark a single photon absorption event. Fig. 6a
shows a time stream acquired with the GPU based readout.
The data is processed by taking the standard deviation of
chunks of the time stream spanning two quantum capacitance
peaks and subtracting the results from its maximum. Figure 6b
shows a histogram of the processed data for two illumination
levels: 10-21W and 10-17W. The tall peaks at right are associat-
ed with the tunneling oscillations, whereas the small peaks at
left are associated with disruptions generated by photon ab-
sorption.

VI. FUTURE WORK
As mentioned above, the speed of our system is limited to

the 2ms latency of writing data to and from the motherboard’s
RAM. SQUID readout of TESes cannot currently be serviced
by our system because the electronics need to feedback at
speeds fast compared to the electrothermally accelerated bo-
lometer thermal time constant, typically 0.1-1ms. We are ex-
ploring how to use DMA compilers to write data directly from
the Ethernet card to GPU without accessing the motherboard
RAM, which may reduce the latency for this application.

 a)

b)

Fig 6. (a) QCD time-stream data taken with the GPU/USRP readout.

There is a clear photon absorption at 0.0012s. (b) Histograms of deviations
associated with oscillations seen in (a) The left peaks results from photon ab-
sorption, and the right from undisturbed quantum oscillations. The different
curves correspond to different blackbody load temperatures- blue is 10-21W
and orange 10-17W. The curves are fits to different components in the distri-
butions.

ACKNOWLEDGMENT

The research was carried out at the Jet Propulsion Laborato-
ry, California Institute of Technology, under contract with the
National Aeronautics and Space Administration. We thank
Jonas Zmuidzinas, David Hawkins, and Ryan Monroe for use-
ful discussions. We thank Peter Day, Daniel Cunnane and
Jack Sayers for use of the JPL/Navy camera for testing as well
as Pierre Echternach for use of his QCD testbed and proto-
types. We acknowledge Atilla Kovacs’ pioneering efforts in
this GPU-centric approach.

5

REFERENCES
[1] S. Gordon, B. Dober, A, Sinclair, S. Rowe, S. Bryan, P. Mauskopf, J.

Austerman, M. Devlin, S. Dicker, J. Gao, G. Hilton, J. Hubmayr, G.
Jones, J. Klein, N. Lourie, C. McKenney, F. Nati, J. Soler, M. Strader,
and M. Vissers. “An Open Source, FPGA-Based LeKID Readout for
BLAST-TNG: Pre-Flight Results,” Journal of Astronomical
Instrumentation, vol. 05, No. 04 2016.

[2] S. McHugh, B. Mazin, S. Bruno, S. Meeker, K. O’Brien, R. Duan, R.
Raffanti, and D. Werthimer. “A readout for large arrays fo microwave
kinetic inductance detectors,” Rev. Sci. Inst., vol. 83, no, 4, 2012.

[3] Nvidia CUDA Toolkit 9.1. Available:
https://developer.nvidia.com/cuda-downloads Accessed Oct 27, 2018

[4] USRP UHD Driver. Available: https://www.ettus.com/sdr-
software/detail/usrp-hardware-driver/ Accessed on Oct 27, 2018.

[5] Boost C++ Libraries Available: http://www.boost.org Accessed on: Oct.
27, 2018.

[6] R. G. Lyons, Understanding Digital Signal Processing Section 10.4
(Prentice Hall, 2004).

[7] J. G. Proakis, and D. G. Manolakis, Digital Signal Processing, Section
10.5.2 (Polyphase Filter Structures)

[8] Nvidia cuBLAS Documentation Available:
https://docs.nvidia.com/cuda/cublas/index.htm Accessed on: Oct. 27,
2018.

[9] Nvidia cuFFT Documentation Available:
https://developer.nvidia.com/cufft Accessed on: Oct. 27, 2018.

[10] P. Day, H. LeDuc, B. Mazin, A. Vayonakis, and J. Zmuidzinas “A
broadband superconducting detector suitable for use in large arrays.”
Nature volume 425, pages 817–821 (23 October 2003)

[11] P.M. Echternach, B.J. Pepper, T. Reck and C.M. Bradford: “Single
photon detection of 1.5 THz radiation with the quantum capacitance
detector”, Nature Astronomy Vol 2 90 January 2018 90-97.

