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Abstract 

We present one of the jirst attempts towards automatic 
retrieval of documents, in the noisy environment of uncon- 
strained, multiple authol; handwritten forms. The docu- 
ments were written in cursive script for which conventional 
OCR and text retrieval engines are not adequate. We fo- 
cus on a visual word spotting indexing scheme for scanned 
documents housed in the Archives of the Indies in Seville, 
Spain. The framework presented utilizes pattern recogni- 
tion, learning and information fusion methods, and is mo- 
tivated from human word-spotting studies. The proposed 
system is described and initial results are presented. 

1. Introduction 

In this paper, we present preliminary research on a visual 
word spotting indexing scheme for the archival and retrieval 
of scanned historical documents housed in the Archives of 
the Indies in Seville, Spain. An example of a digitized doc- 
ument is given in Fig. 1. These documents were written 
in cursive script by multiple authors, and are hundreds of 
years old (many of which date back to Columbus's era). 
There exists a tremendous need for scholars to constantly 
search and explore the contents of such archives. However, 
conventional OCR and text retrieval engines are inadequate 
for such tasks [l]. Existing OCR systems often rely upon 
the ability to cleanly segment the words prior to recogni- 
tion. The documents in our database exhibit many prob- 
lems which would certainly cause such systems to fail. We 
must contend with noise introduced by the photocopying 
and scanning processes, as well as stray marks, underlines, 
and overlapping words. Under these conditions perfect seg- 
mentation would be impossible. We have developed an al- 
ternative strategy for the indexing and retrieval of such doc- 
uments based on learning a set of keyword signatures of 
particular words of interest. 

Our approach applies many standard image processing 

Figure 1. A sample page from the Archives. 

techniques in the preprocessing of the documents, and the 
extraction of the spatial characteristics of the words. In 
addition, we attempt to characterize words via signatures 
motivated from human word spotting experiments. The 
recognition strategy is based upon probabilistic signature 
matching, in which we view the entire word globally, rather 
than segmenting and recognizing the individual letters of 
the word. We investigate the ability to use such signatures, 
together with advanced encoding schemes and learning, to 
facilitate the spotting of keywords in handwritten cursive 
documents. 

2. Background 

Very little work has been previously published on the 
recognition of cursive documents. Most of the work on 
handwritten material has focused on data collected from 
the U.S. Postal Service, with the emphasis being the auto- 
matic extraction and recognition of addresses and zip-code 
information. Recent research has focused on the general is- 
sues of line extraction, word segmentation, alignment and 
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recognition. The differences between the postal application 
and our word spotting task include the availability of a pri- 
ori knowledge in a restricted domain (digits, city-names, 
states), and the possibility of exploiting context (across 
words) in the recognition process. 

In [2], Manmatha, et al. introduce the topic of “keyword 
spotting” in single authored archived manuscripts. Their 
framework entails segmenting the document into words, 
and then matching actual word images with each other to 
create equivalence classes. Each class consists of multiple 
instances of the same word; the words in these classes can 
be used for indexing the document. A given word image 
is used as a template and matched against all other word 
images. This is repeated for every word in the document. 
Matching is based on entire words, rather than segmenting 
the words further into individual letters or connected com- 
ponents. The experiments performed match 2 pages from 
2 authors with a given input word, and produce as output a 
ranked set of best-matched candidate words. 

In this paper, we also focus on the matching of words 
in a given historical document. However, we avoid the page 
segmentation problem by incorporating a focus-of-attention 
module (described below), to identify candidate locations 
prior to performing the word-level matching. The main dif- 
ferences from the above referenced work are that we do not 
limit ourselves to documents written by a single author, in- 
stead we attempt keyword matching in a multi-authored do- 
main exhibiting high variability within each keyword class; 
and the word matching is performed using a feature-space 
representation (rather than in the raw pixel domain). 

3. The System 

The system we propose is composed of several modules, 
as outlined below. 

Focus-of-attention module: This module involves nor- 
malized cross-correlation of the document image with a 
set of keyword prototypes (templates) which have been ex- 
tracted from a training set of documents. A set of candidate 
locations is extracted, with the different locations ranked by 
correlation strength. The locations of the top correlation 
peaks are then passed along to the preprocessing stage. An 
example is presented in Fig. 2. Computational consider- 
ations involved in the normalized cross-correlation proce- 
dure are derived in Appendix A. 

Preprocessing module: Having isolated the regions of 
interest, various preprocessing routines are applied to regu- 
larize the appearance of words lying within the attentional 
window, and to remove noise. 

Estimation of Word Zones: The word image is subdi- 
vided into three zones: Upper, Middle, and Lower, using 
projection analysis. The horizontal projections of each row 
in the image consist of a simple running count of the “on” 

Keyword 
Prototypes 

Document Pane 

Candidate Reglons 
Attentbnal Window 

Figure 2. Focus-of-Attention module: Nor- 
malized cross-correlation of the document 
image with a set of keyword prototypes is per- 
formed to identify candidate locations. 

pixels in each column. The resulting histogram is used to 
estimate of the top-line, center-line, and base-line of the 
word [3]. The height of the middle zone is a good estimate 
of the lower-case characters‘ height, while the upper and 
lower bounds provide information about the maximum and 
minimum escalations called the ascenders and descenders, 
respectively. 

Filtering of Stray Marks: Connected component anal- 
ysis (or eight-way connectivity) is used next to determine 
the number of connected stroke regions in the word im- 
age. For each connected region extracted, the “bounding 
box” is found, which enables the computation of location, 
dimension, and centroid information. Using this informa- 
tion, components found to be far away from the top-line and 
base-line of the word are estimated to be stray marks, and 
thus deleted. An example of an input image and the filtered 
output, following zoning and stray-mark removal, is shown 
in Fig. 3. 

Skeletonization: For feature extraction, it is necessary to 
first skeletionize the word image. In this step we remove 
extra pixels to produce a thinned image of the word. The 
process of thinning by successive deletion is much like that 
of erosion: the pixels to be removed are marked and are re- 
moved in a second pass. This is repeated until there are no 
more redundant pixels, at which point the remaining pix- 
els are those belonging to the skeleton of the object. The 
skeleton remaining must possess the following properties: 
1. Thinned regions should be one pixel wide. 2. The pixels 
comprising the skeleton should lie near the center of a cross 
section of the region. 3. Skeletal pixels must form the same 
number of regions as those of the original binary image. A 
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Figure 3. Example of an input image and the 
filtered output, following zoning and stray- 
mark removal. 

Figure 4. Profile Signature Extraction 

number of methods were implemented and tested, and the 
Zhang-Suen [4] method was found to perform the best (see 
Appendix B). 

Feature-extraction module: We utilize a combination 
of global and local features in the form of profile signatures 
and morphological cavities to characterize a word. Human 
word spotting experiments have shown that global shape 
information is one of the most important cues we use to 
distinguish words. The general shape of a word may be 
approximated using simplified projile signatures. Vertical 
projection analysis is used to determine the upper (North) 
and lower (South) profiles of the word. West and East pro- 
files are generated by horizontal projection analysis and are 
used to detect descenders and ascenders. Fig. 4. shows 
an example of the profile signatures extracted for the word 

Figure 5. Morphological Cavity Feature Ex- 
traction 

governador. 
Cavity features are essentially the gaps between the 

strokes of the word. They capture local variations in the 
word, which are useful in discriminating words having the 
same general shape. There are six cavity feature types: east, 
west, north, south, center, and hole. A cavity is a region 
of points bounded by the character stroke on at least three 
sides (named by the side on which they are not bounded). A 
hole is a region completely bounded, while a center cavity 
is surrounded on all four sides, but is not a hole. A mor- 
phological algorithm [5] is used to compute the cavity fea- 
tures using combinations of dilations or smears, in different 
directions and intersections, and generating six feature im- 
ages, as shown in Fig. 5 (see Appendix C). 

4. Keyword Signatures 

We define keyword signatures as the collection of fea- 
tures which characterize a keyword, and which allow its 
matching with candidate words from the documents. In this 
work, we focus on holistic signatures, that characterize the 
entire word, without breaking it into individual letters or 
strokes. The features we use are motivated from studies of 
human visual word-spotting [6] .  Examples of such features 
include the relative frequency of ascenders and descenders 
in the word; their relative coordinates in the word; and intra- 
word gaps. These features are captured by the profile and 
cavity information extracted. Recall that descenders are the 
portions of a character that fall below the base-line of a 
word. Their presence results in strong valleys in the South 
Profile. Ascenders are the portions of a character that fall 
above the top-line of a word, which are detected as peaks in 
the North profile. 
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Profile Encoding: One dimensional transform methods 
are used to encode the North and South profiles as well as 
their difference, into feature vectors that are suitable for 
matching. The desired transform should concentrate the 
energy associated with the profile signatures into as few 
coefficients as possible. A variety of methods were tried 
such as: Discrete Cosine Transform (DCT); Fast Fourier 
Transform (FFI’); Real Cepstrum; Median Coarse Coding; 
and the Haar, Mallat, and 4-PT Daubechies Wavelet Trans- 
forms. All encoding methods were applied to the three pro- 
files, with the top 20 coefficients of each retained for match- 
ing (producing a 60-dim. feature vector). We found that 
the DCT performed best due to the fact that successive Val- 
ues of the profile signatures were often highly correlated. 
This is particularly true for the lower profile which tends 
to exhibit a flat response except in areas where a descen- 
der exists (see Fig. 4). In this case, the DCT is known to 
perform very close to the optimal KLT - Karhunen-Loeve 
Transform. This is particularly true for the lower profile 
which tends to exhibit a flat response except in areas where 
a descender exists (see Fig. 4). In addition, the DCT han- 
dles signals with trends, which occur when there exists an 
ascender or descender. 

Cavity Encoding: Graph-based models in which the rel- 
ative 2D spatial arrangement is preserved, are used to en- 
code the cavity features, as well as the descender and as- 
cender information. The feature attributes incorporated into 
the graph are the type, size, and relative location of each 
feature. Fig. 6 shows two examples of graphical models: 
the data graph associated with the attentional window (top), 
and the prestored keyword graph (bottom). 

Keyword Signature Matching: The process of match- 
ing the keyword signatures to the signatures generated from 
the data contained in the attentional window is shown in Fig 
6. First, the DCT encoded profile signatures are matched. 
We experimented with using a number of measures of sim- 
ilarity including: Cross-correlation; Cosine similarity; Eu- 
clidean distance; City-block distance; Minkowski distance; 
and Dynamic Time Warping of raw profiles. We found that 
the best classification performance was achieved using a K- 
nearest-neighbor (K = 5) classifier with the Minkowski dis- 
tance (r = 4): 

n 

dminlc(X,Y) = cc IY i  - zilr)l’T (1) 

The profile matching score is incorporated into the keyword 
signature graph as an additional feature. 

Probabilistic graph matching based on Bayesian eviden- 
tial reasoning is used to find the best match between the 
keyword signatures, and those generated by words lying in 
the candidate regions. At this time, the matching algorithm 
only aggregates positive evidence in the form of correspon- 
dences between the graphs. Fig. 7 shows the information 

i=l 

7 

: Partial Data Graph 

Figure 6. Keyword signature matching, where 
?C-Cavity (H,N,S,E,W,C), D-Descender, A- 
Ascender, P-Profile Coefficients. 

fusion process under an evidential reasoning framework. 
We treat the features extracted as information sources (Si), 
and view the correspondences between the data graph and 
the keyword graph as evidence (Ei) pointing to the hypoth- 
esis that the word in the attentional window is an instance 
of the input keyword (H).  

Bayesian theory [7] uses an “Odds-Likelihood Ratio” 
formulation of Bayes’ rule to aggregate the evidence from 
multiple sources. The a priori odds, O(H) ,  of a given hy- 
pothesis, H ,  is related to its apriori probability, P ( H ) ,  by 
the following relations: 

and 

(3) 

where - I H  means “not H’. Thus a hypothesis with a prob- 
ability of 0.2 has odds of 0.25 (or “4 to 1 against”), and a 
hypothesis that is absolutely certain (i.e., has a probability 
of 1) will have infinite odds. The likelihood of the evidence 
E;, given that the hypothesis H is true, is: 

(4) 
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Figure 7. Information fusion through eviden- 
tial reasoning. 

with P(EilH) derived from the statistics of the training 
set. The formula for updating the odds (i.e., the a poste- 
riori odds) of a hypothesis H ,  given the evidence observed, 
Ei, is: 

n 

O(HIE1, E2, ..., J%) = O ( H )  n L ( E , I H )  ( 5 )  
i= l  

Statistical independence of the evidence sources is as- 
sumed, with an initial a priori odds of 1 to 1 for each hy- 
pothesis H or P ( H )  uniformly distributed. The “belief’ or 
a posterior probability for a hypothesis is: 

The classification is chosen to be that hypothesis H having 
the greatest probability given the accumulated evidence. 

5. Experimental Results 

The database we currently hold has on the order of 
100 document pages, which were scanned in at 150 dpi 
from photocopying copies of manuscripts contained in the 
Archives of the Indies in Seville, Spain. We were also pro- 
vided with a set of meaningful “keywords” to be used as in- 
dices. Initial experiments focused on the recognition of two 
keywords: governador and provincia which appeared in 66 
of the documents. We present results using three types of 
feature inputs: 1. Profile features only. 2. Cavity features 
only. 3. Combination of both profile and cavity features. 
All classification percentages reported were computed with 
no rejection threshold applied to the matching confidence. 
Table 1 shows the K-nearest-neighbor (K = 5) classification 
results obtained using only the profile signatures (60 dimen- 
sional DCT encoded feature vector), with the Minkowski (r 
= 4) similarity metric. The overall classification accuracy 
achieved was 82.58%. For the cavity experiment, the six 
cavity feature maps were coarsely encoded to generate a 

provincia 

Table 1. Classification results on two key- 
words, using DCT encoded profile informa- 
tion. Overall correct classification is 82.6%. 

provincia 

Table 2. Classification results on two key- 
words, using coarsely encoded cavity in- 
formation. Overall correct classification is 
78.0%. 

36 element vector. Table 2 shows the K-nearest-neighbor 
(K = 5) classification results obtained using only the en- 
coded cavity feature maps, with the a cosine similarity met- 
ric. The overall classification accuracy achieved was 78%. 
Finally, the probabilistic graph matching of keyword sig- 
natures which include both cavity and profile information, 
produced the best result of 91.7% (see Table 3). The in- 
crease in the percentage of correctly classified words can be 
attributed to the fact that the feature sets exhibit some error 
independence (i.e., they are complementary feature sets). 
That is, the incorrect classifications produced by one set 
of features, become the correct classifications of the other 
set, which is exploited by the Bayesian evidential reasoning 
framework. 

It is evident that the “word spotting” task we have set out 
to tackle is a difficult one, even in this presented two-word 
case. The scenario of multiple-author documents produces 
large variability in the in-class word characteristics. While 
across classes, similar length words exhibit strong similar- 

provincia 

Table 3. Classification results on two 
keywords, using keyword signatures and 
Bayesian inferencing. Overall correct clas- 
sification is 91.7%. 
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Ranked Keyword Matches Confid. lo.,= 

Figure 8. Correctly identified words (2 key- 
word experiment). For each test case (left col- 
umn), the ranked keyword matches are given 
along with the matching confidence associ- 
ated with the first keyword (leftmost center 
column). 

ity, as in this two-word case where both words are initial- 
ized with a descender. Even so, our preliminary results are 
comparable to the results presented in the single-authored 
(Zdocument case) [2]. 

Examples of correctly classified samples and incorrectly 
classified samples are presented in Fig. 8 and Fig. 9 respec- 
tively. For each test case, the ranked keyword matches are 
given along with the matching confidence associated with 
the first keyword (leftmost center column). It is interesting 
to note the correspondence between the percentage value 
and the visually perceived similarity between words. A high 
confidence level is present for the correctly classified cases, 
with a much reduced level associated with the incorrectly 
classified ones. As mentioned earlier, no rejection thresh- 
old is applied. Incorporating a rejection threshold of 60%, 
for example, would have enabled the removal of many of 
the misclassified cases shown, thereby leading to a much 
higher percentage level. 

In our graph-matching scheme, we only consider node 
correspondences as evidence, and do not penalize for any 
lack of correspondence due to word-length differences. 
This allows for the association of an abbreviated word with 
its full-word counterpart (as in the topmost example in Fig. 
8). However, this can also lead to an increase in misclassi- 
fication (as in the bottom-most example in Fig. 9). In this 
case, the use of a penalty term would be advantageous. 

In the second set of experiments we augment the 
database to 4 keywords: el rey, governadol; Peru, provin- 
cia, which were contained in 50 documents. Using profile 
information alone percent correct is 54.5% (see Table 4), 
for cavity information alone the classification accuracy is 
64.0% (see Table 5).  Combining profiles with cavities in 
the Bayesian framework increased the classification rate to 

I Test Case Ranked Kevword Matches IConfid. I 

Figure 9. Incorrectly identified words (2 key- 
word experiment). 

el rey 

29 
provincia 32 

Table 4. Classification results on four key- 
words, using DCT encoded profile informa- 
tion. Overall correct classification is 54.5%. 

72% (see Table 6). Examples of correctly classified sam- 
ples and incorrectly classified samples are presented in Fig. 
10 and Fig. 11 respectively. The lower classification per- 
centage can be attributed to the addition of the keyword 
Peru, which introduces confusions since it shares the same 
shape with the abbreviated forms of governador and provin- 
cia. In order to improve the discrimination ability of key- 
word signatures, we intend to extend our feature set to in- 
clude directional line segments and infliction points. 

keyword 
el rey 
govemador 

provincia 

correct error 

27 23 
29 

Table 5. Classification results on four key- 
words, using coarsely encoded cavity in- 
formation. Overall correct classification is 
64.0%. 
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6. Conclusion 

Test Case I Ranked Kevword Matches 

el rey 

27 23 
movincia 42 

Confid. 

Table 6. Classification results on four 
keywords, using keyword signatures and 
Bayesian inferencing. Overall correct clas- 
sification is 72.0%. 

1 0.82715 1 I 

Figure I O .  Correctly identified words (4 key- 
word experiment). 

r Test Case I Ranked Kevword Matches I Confid. 

Figure 11. incorrectly identified words (4 key- 

In this work we are presenting one of the first attempts 
in the literature to handle documents in the noisy environ- 
ment of unconstrained, multiple author, cursive handwritten 
forms. We introduce a framework which is motivated from 
human visual cognition, and which utilizes tools from pat- 
tern recognition, learning and information fusion. Learning 
techniques are utilized in the encoded-signature domain, to 
learn characteristic signatures of keywords for storage in a 
database. Our goal is to demonstrate that bringing in these 
new perspectives will allow for new methods to be devel- 
oped in document indexing and retrieval. 

Appendix 

A. Normalized Cross-Correlation Computa- 
tion For Focus-Of-Attention 

A keyword template, T ,  is compared the document im- 
age, I ,  using normalized cross-correlation. The computed 
similarity measure is insensitive to linear transformations of 
gray scale: 

In eqn. 7, p is a scalar which varies between -1 (anti- 
correlated) and +1 (perfectly correlated). The most likely 
locations of a keyword in an document image are found 
using eqn. 7. Direct calculation of the normalized cross- 
correlation equation is very time consuming, therefore we 
perform the computation in the frequency domain. A nor- 
malized keyword template T‘ is computed by: 

Next, the P I  term of eqn. 8 is approximated by convolv- 

(9) 

Once the local mean image is computed, we can then 
subtract it from the original image and convolve the squared 
result with a Gaussian. This approximates the local vari- 
ance: 

(10) 

ing the image with a Gaussian kemel, G: 

P I b ,  Y) = (G * *m, Y) 

&w) = (G * * ( I  - PI)2)(x,Y) 
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as: 
The normalized the document image is then computed 

Finally, an approximation of the correlation coefficient 
at each image location (x,y) is given by correlating T’ and 
1’: 

(12) 

This technique has several advantages. Once the docu- 
ment image is normalized in eqn. 11, any number of key- 
word templates can be efficiently matched against the doc- 
ument using eqn. 12.The locations of the top correlation 
peaks are then passed along to the feature extraction stage 
(see Fig. 2). 

P(Z,  Y) = (T‘ 0 m z ,  U). 

B. The Zhang-Suen Method For Skeletoniza- 
tion 

The Zhang-Suen method determines whether a pixel can 
be eroded by looking only at its eight neighbors. There are 
two rules used to decide whether or not a pixel may be re- 
moved. The first rule is that a pixel can be deleted only if 
it has more than one and fewer than seven neighbors. By 
neighbors we mean 8-adjacent object pixels. This rule en- 
sures that the end points of the skeleton are not eroded away 
and that pixels are stripped away from the boundary of the 
region, not from the inside. The second rule states that a 
pixel can be deleted only if it is connected to only one other 
region. This ensures that the skeletal pixels form the same 
number of regions as those of the original binary image. 

To thin a region these rules must be applied to all of the 
pixels that belong to the region, and those pixels satisfying 
the previous conditions can be removed. This is done again 
and again until no more pixels can be deleted, at which point 
the remaining pixels should be a skeleton. When a pass 
through the image results in no pixel deletions, the thinning 
procedure is finished. 

C. Cavity Extraction 

Let N, S ,E, and W denote structuring elements which 
are rays in the directions north, south, east, and west. The 
cavity feature images are then computed according to the 
following morphological algorithm: 

N F  = N n ( I  e s)c n l  e E n I e w n B 
SF = ( I e N ) c n I e s n I e E n I e w n B  
E F  = I e N n I e s n I  e E n (I@ w ) ~  n B 
W F  = N n i e  s n ( I  CB n w n B 
CF = I@ N n I @  s n I e E n I e  w n B 
HF = (span - until(BORDER, B,T) U I )c  

The cavity feature images are denoted as HF, CF, NF, 
SF, EF, and WF, which are the hole, center, north, south, 
east and west feature maps respectively. I denotes the orig- 
inal binary image of the word, and B the background, or 
complement, of the image I. 

A hole is any region of background that is completely 
surrounded by the foreground in the word image. In the ex- 
pression for the hole feature image (HF), BORDER denotes 
the image that consists of the one-pixel-wide border around 
the edge of the image, which is assumed to be completely 
contained in the background. T represents the 3 x 3 binary 
structuring element (N,S,W,E). The function span-until rep- 
resents the iteration of the conditional dilation operation. 

Acknowledgments 
We would like to thank Victoria Carmona Vergara of 
Seville, Spain, and Kanna Shimizu for their help in gener- 
ating our database of documents. This work was supported 
in part by ARPA and ONR grant no. N00014093-1-0990, 
Patricia Keaton is supported by a Hughes Doctoral Fellow- 
ship, and Hayit Greenspan is supported in part by and Intel 
research grant. 

References 

[l] Mori, S., Suen, C., Yamamoto, K., “Historical review 
of OCR research and development”, Proceedings ofthe 
IEEE, vol. 80, no. 7, pp. 1029-1058, 1992. 

[2] Manmatha, R., Han, C., Riseman, E. M., “Word spot- 
ting: A new approach to indexing handwriting”, IEEE 
Proceedings CVPR-96, pp. 631-637, June 1996. 

ley, 1994. 
[3] Parker, J. R., “ Practical Computer Vision using C,” Wi- 

[4] Zhang,T.Y. and Suen,C.Y., “A Fast Parallel Algorithm 
for Thinning Digital Patterns”, Communications of the 
ACM, Vol. 27, NO. 3, pp.236-239, 1984. 

[5] Gader, P., Gillies. A., Hepp, D., “Handwritten Char- 
acter Recognition”, Digital Image Processing Methods, 
Marcel Dekker, pp. 223-260, 1994. 

[6] Humphreys, G. W. and Bruce, V., “Visual Cognition 
- computational, experimental and neuropsychologi- 
cal perspectives”, Chapter 7, Lawrence Erlbaum Asso- 
ciates Ltd., Publishers, U.K., 1989. 

[7] Jensen, Finn V., “An Introduction to Bayesian Net- 
works”, Springer-Verlag, New York, New York, 1996. 

81 


