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Abstract 13 

Vibrio cholerae, the facultative pathogen responsible for cholera disease, continues to 14 

pose a global health burden. Its persistence can be attributed to a flexible genetic toolkit 15 

that allows for adaptation to different environments with distinct carbon sources, 16 

including the six-carbon sugar alcohol mannitol. V. cholerae takes up mannitol through 17 

the transporter protein MtlA, whose production is downregulated at the post-18 

transcriptional level by MtlS, a cis-antisense small RNA (sRNA) whose promoter lies 19 

within the mtlA open reading frame. Though it is known that mtlS expression is robust in 20 

growth conditions lacking mannitol, it has remained elusive as to what factors govern 21 

steady-state levels of MtlS. Here, we show that manipulating mtlA transcription is 22 

sufficient to drive inverse changes in MtlS levels, likely through transcriptional 23 

interference. This work has uncovered a cis-acting sRNA whose expression pattern is 24 

predominantly controlled by transcription of the sRNA’s target gene. 25 

 26 

Importance 27 

Vibrio cholerae is a bacterial pathogen that relies on genetic tools, such as regulatory 28 

RNAs, to adapt to changing extracellular conditions. While many studies have focused 29 

on how these regulatory RNAs function, fewer have focused on how they are 30 

themselves modulated. V. cholerae express the non-coding RNA MtlS, which can 31 

regulate mannitol transport and use, and here we demonstrate that MtlS levels are 32 

controlled by the level of transcription occurring in the antisense direction. Our findings 33 

provide a model of regulation describing how bacteria like V. cholerae can modulate 34 

levels of an important regulatory RNA. Our work contributes to knowledge of how 35 
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bacteria deploy regulatory RNAs as an adaptive mechanism to buffer against 36 

environmental flux. 37 

  38 
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Introduction 39 

Vibrio cholerae is the Gram-negative bacterium responsible for the 40 

gastrointestinal ailment cholera, a continuing global health concern that afflicts an 41 

estimated 1-4 million worldwide (1, 2). A facultative pathogen, V. cholerae must adapt to 42 

environmental fluctuations both within and between its two primary habitats - the aquatic 43 

environment and the human small intestine (3). To buffer against such variation, which 44 

can include changes in nutrient availability, salinity, temperature, and acidity, V. 45 

cholerae exercises diverse regulatory mechanisms to accordingly alter its gene 46 

expression profile (4–8). One such method of genetic regulation entails the production 47 

of small regulatory RNAs (sRNA) – short, usually non-coding RNAs that can activate 48 

and/or repress the expression of their target genes at the transcriptional and/or post-49 

transcriptional level through an array of distinct mechanisms (9–11). Most often, the 50 

sRNAs accomplish this regulation by directly base pairing with their target mRNAs, 51 

which can result in translational inhibition, co-degradation, or transcript stabilization. In 52 

rarer cases, sRNAs can also encode protein, attenuate transcription, or even directly 53 

bind regulatory proteins (11–14). In V. cholerae specifically, sRNAs have been 54 

confirmed to play a role in physiological processes such as virulence, quorum sensing, 55 

and biofilm formation (15–18).  56 

sRNAs are typically divided into two categories, trans-acting or cis-acting, 57 

depending on where the sRNA is transcribed relative to the gene(s) it regulates (9). 58 

Trans-acting sRNAs, the more commonly studied of the two types, are transcribed at a 59 

separate genetic locus from the gene(s) they regulate and often function via imperfect 60 

base pairing with their target mRNAs. On the other hand, cis-acting sRNAs are 61 
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 5 

transcribed from the same genetic locus but in an antisense orientation to the genes 62 

they regulate, resulting in extended regions of perfect complementarity. Cis-antisense 63 

RNAs carry the unique advantage of (1) being transcribed proximal to their target, which 64 

results in increased effective molarity, and (2) sharing extended lengths of perfect 65 

complementarity to their target, allowing for stronger duplex formation and thus tighter 66 

regulation (19–21). Although cis-antisense RNAs have garnered significantly more 67 

notice over the past decade, they have received scarce attention compared to their 68 

trans-acting counterparts (19, 20). At the same time, in one study, 47% of the RNAs 69 

transcribed from the V. cholerae genome were antisense transcripts (17). The 70 

importance and function of these antisense transcripts, including the cis-acting sRNAs, 71 

therefore warrants attention. 72 

MtlS is a 120 nt cis-antisense RNA located within the mtl locus of V. cholerae, 73 

which encodes three genes related to the transport and metabolism of mannitol: mtlA 74 

[encoding the mannitol-specific enzyme IIABC component of the phosphotransferase 75 

system (PTS)], mtlD (a mannitol-1-phosphate dehydrogenase), and mtlR (a 76 

transcriptional repressor of mtlA) (Figure 1A) (22–24). Mannitol is one of the most 77 

abundant and widely distributed natural sugar alcohols and the primary photosynthetic 78 

product of brown algae (25, 26). Genes within the mtl locus have been implicated in 79 

pathogenically relevant behaviors including biofilm formation and transitions from the 80 

host into the aquatic environment (8, 27, 28), thereby suggesting mannitol is an 81 

important carbon source in the V. cholerae lifecycle. 82 

Consistent with the importance of mannitol in the V. cholerae life cycle, at least 83 

three regulators collaborate to fine-tune expression of mtlA. The global regulator CRP is 84 
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 6 

a transcriptional activator of mtlA (29). Opposing the activity of CRP, MtlR acts as a 85 

transcriptional repressor of mtlA (23). Studies concerning regulation of the mtl locus 86 

provide a model for maximal mtlA transcription that relies on two conditions: high cAMP-87 

CRP activity and low MtlR activity (23, 29). In glucose-containing medium, low cAMP 88 

levels precludes mtlA from being transcribed. In growth medium excluding mannitol but 89 

supplemented with carbon sources such as mannose, fructose, sucrose, etc., cAMP 90 

levels may be sufficiently high, but high MtlR activity prohibits mtlA transcription. When 91 

mannitol is the sole carbon source, both cAMP-CRP activity is adequately high and 92 

MtlR activity is sufficiently low to allow robust transcription of mtlA. However, neither the 93 

cAMP-CRP and MtlR interface nor the mechanistic basis behind MtlR repression has 94 

been fully defined (23). 95 

The third characterized regulator of mtlA is MtlS, which sits in the intergenic 96 

region between mtlA and VCA1044 (encoding a hypothetical protein), where it shares 97 

71 bp of perfect complementarity with the 5’ untranslated region (UTR) of mtlA. As a 98 

repressor of mtlA, MtlS is expressed abundantly in the absence of mannitol, including 99 

growth in LB or minimal media supplemented with a non-mannitol carbon source (30). 100 

We recently reported that MtlS represses MltA synthesis at the post-transcriptional level 101 

by binding to the 5’ UTR of the mtlA mRNA and occluding ribosomal binding (21). 102 

However, while the regulatory elements governing mtlA expression are relatively well 103 

characterized, we have little understanding regarding the factors that control mtlS 104 

expression.  105 

Several sRNAs have their regulatory basis for expression well characterized. 106 

SgrS and OxyS, two of the most comprehensively studied trans-acting sRNAs from 107 
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 7 

Escherichia coli, fall under the control of transcriptional regulators SgrR and OxyR, 108 

respectively, both of which lie immediately upstream of their cognate sRNAs. These 109 

transcriptional regulators respond to the build-up of intermediates related to the 110 

physiological stress conditions that the sRNAs help the cell adapt against: SgrR senses 111 

the buildup of phosphorylated glycolytic intermediates through an unknown mechanism 112 

(31), while OxyR detects oxidative stress through hydrogen peroxide-driven disulfide 113 

bond formation that result in structural changes for the protein (32, 33). In V. cholerae, 114 

the Qrr sRNAs, which are involved in regulating quorum sensing, are transcribed 115 

through the activity of LuxO, a DNA-binding regulator that is activated via 116 

phosphorylation when the bacteria are at low cell density (16). When present, the Qrr 117 

sRNAs base pair with the 5’ UTR of hapR mRNA, decreasing synthesis of the master 118 

transcriptional regulator of quorum sensing. Qrr sRNAs levels are also subject to 119 

several regulatory feedback loops. In the presence of phosphorylated LuxO, HapR 120 

activates transcription of the Qrr sRNAs, presumably minimizing unnecessary synthesis 121 

of the master regulator (34). The Qrr sRNAs, furthermore, can also repress translation 122 

of LuxO, ultimately allowing for tight control and fine-tuning of Qrr levels to provide 123 

flexible and nuanced regulation of quorum sensing (35). 124 

As for cis-antisense sRNAs, in Shigella flexneri, RnaG is a 450 nt long non-125 

coding RNA that negatively affects transcription of icsA, encoding a protein required for 126 

the invasion of intestine epithelial cells and intracellular spread of the pathogen (12). 127 

RnaG affects icsA expression through a combination of transcriptional interference and 128 

transcriptional attenuation, and the transcription of RnaG itself is mildly repressed by the 129 

nucleoid associated protein H-NS at low temperatures and the transcriptional regulator 130 
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 8 

VirF at high temperatures (12, 36). As H-NS and VirF also affect icsA transcription, the 131 

two proteins and RnaG collaborate for fine-tuned regulation of virulence gene 132 

expression by the pathogen. In Salmonella enterica serovar Typhimurium, transcription 133 

of the 1.2 kb antisense RNA AmgR is activated by the two-component regulatory 134 

system PhoP/PhoQ in response to low Mg2+ concentrations (37). Although longer than a 135 

typical sRNA, AmgR effectively downregulates synthesis of MgtB and MgtC, which are 136 

involved in Mg2+ transport and virulence in mice, respectively. However, it is important to 137 

keep in mind that a majority of the regulatory RNAs whose basis for expression is well 138 

explored, including SgrS, the Qrr sRNAs and AmgR, share the feature of having 139 

promoters that do not lie in the open reading frame of another gene. A number of cis-140 

antisense RNAs, including MtlS from V. cholerae, are transcribed from promoters that 141 

overlap extensively, if not completely, with the coding region of the very genes they 142 

regulate (12, 30, 38–41), which can complicate dissection of their transcriptional 143 

regulation. Indeed, most of these sRNAs are particularly poorly understood when it 144 

comes to the regulation behind their expression.  145 

MtlS exhibits a carbon source-dependent expression profile that logically aligns 146 

with its function as a repressor of mannitol utilization. V. cholerae produce nearly 147 

undetectable amounts of MtlS in conditions where mannitol is the sole carbon source, 148 

but synthesize robust levels of MtlS in growth conditions without any mannitol present 149 

(30). We set out to determine the mechanistic foundation underpinning this pattern. 150 

Here, we report that transcription of MtlS is controlled primarily by the extent of mtlA 151 

transcription occurring in the antisense direction. Rather than utilizing its own promoter 152 

as the basis for sugar-dependent expression, mtlS instead predominantly relies on 153 
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regulatory activity at the mtlA promoter. Our analysis points toward transcriptional 154 

interference as the likely mechanism of action in the regulation of MtlS levels. Our 155 

findings reveal a method of controlling the expression of a cis-antisense regulatory 156 

small RNA, whereby transcription from the opposite antisense gene controls sRNA 157 

levels. 158 

 159 
Results 160 
Transcription of mtlS and mtlA are inversely coupled   161 

We set out to determine how V. cholerae exert control over MtlS levels, 162 

producing the sRNA only when necessary as to repress expression of mtlA. Given that 163 

MtlS sRNA levels in V. cholerae are high in all tested growth conditions lacking mannitol 164 

but barely detectable when cells are grown in minimal medium supplemented with only 165 

mannitol, we speculated whether mannitol played a role in repressing MtlS levels. To 166 

test this question, we grew V. cholerae in minimal media supplemented with a carbon 167 

source in addition to either mannitol or water (Figure 2). We chose to use mannitol, 168 

glucose, sucrose and mannose as representative PTS sugars (sugars whose transport 169 

depends entirely on the PTS) (42), and maltose as a representative non-PTS sugar in 170 

order to assess whether observed phenomena were specific to the PTS system. 171 

Northern blot analysis for MtlS indicated that the addition of mannitol is sufficient to 172 

decrease MtlS sRNA levels (Figure 2A). Paired with glucose, mannitol led to only a 173 

minor decrease in MtlS. However, when paired with a sugar such as mannose or 174 

maltose, the addition of mannitol to the growth medium was sufficient to decrease MtlS 175 

levels over 90%, compared to the control in which only H2O was added to the base 176 

carbon source. 177 
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We then postulated potential conduits through which mannitol could decrease 178 

MtlS levels. We turned our attention to mtlA, since MtlA protein levels inversely mirror 179 

the expression profile of MtlS (i.e. MtlA protein is most abundant when cells are 180 

provided with mannitol as the sole carbon source). Consequently, we questioned 181 

whether mannitol could also be increasing MtlA levels, even when another suitable 182 

carbon source is present. We took the same cell samples that we grew in preparation 183 

for the MtlS northern blot analysis and simultaneously used them to probe MtlA levels 184 

(Figure 2A). We saw a precise inverse trend compared to what we observed for MtlS. 185 

That is, the addition of mannitol upregulated synthesis of MtlA, and the extent to which it 186 

activated mtlA was strictly dependent on the accompanying carbon source. As is the 187 

case for MtlS, mannitol had almost no effect when paired with glucose, but upregulated 188 

mtlA expression when in conjunction with sucrose, mannose or maltose.  189 

The unique ability of glucose to suppress mannitol’s capacity to affect MtlA levels 190 

is likely due to carbon catabolite repression, a phenomenon that describes how a 191 

preferable sugar such as glucose can repress transcription of genes related to the 192 

transport and metabolism of other, less favorable sugars (43, 44). Glucose inhibits CRP 193 

activity by way of downregulating production of its ligand, cAMP (45, 46). mtlA requires 194 

CRP for transcription (29) and it is reasonable to speculate that the addition of mannitol 195 

to medium already containing glucose is insufficient to stimulate transcription of mtlA 196 

since CRP remains inactive.  197 

Our previous investigations into mtlA mRNA levels had previously focused on 198 

growth in minimal medium supplemented with a single carbon source. Thus, we also 199 

evaluated the effect on mtlA mRNA upon adding mannitol to growth medium containing 200 
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 11 

another carbon source. We conducted qRT-PCR with primers specific to mtlA using 201 

total RNA extracted from V. cholerae grown in the same conditions previously described, 202 

with maltose as our representative non-mannitol, non-glucose carbon source (Figure 203 

2B). We observed that cells grown in minimal medium supplemented with both maltose 204 

and mannitol had nearly triple the amount of mtlA mRNA than the cells grown in 205 

medium containing maltose only (compare grey and black bars for “Mal”), indicating that 206 

mannitol is able to increase mtlA mRNA levels in the presence of maltose. We also 207 

noted that, in line with western blot data, mannitol addition was insufficient to upregulate 208 

mtlA RNA levels when paired with glucose (compare grey and black bars for “Glu”; 209 

compare Figures 2A and 2B). Doubling the amount of mannitol in the growth medium 210 

also did not have a significant impact on mtlA mRNA levels (compare grey and black 211 

bars for “Mtl”). Using these same RNA samples, we also performed qRT-PCR using 212 

primers specific to mtlS (Figure 2C) in order to evaluate the reproducibility of the trends 213 

observed from the MtlS northern blot. We saw that the addition of mannitol significantly 214 

decreased MtlS levels in maltose growth conditions but had no significant effect in 215 

glucose- or mannitol-base conditions (compare grey and black bars), both of which 216 

largely align with the conclusions drawn from northern blot analysis (compare Figures 217 

2A and 2C). These data collectively demonstrate two things: (1) the addition of mannitol 218 

can simultaneously increase mtlA mRNA levels and decrease MtlS levels, depending on 219 

the accompanying carbon source, and (2) mtlA and MtlS RNA levels are precisely 220 

coupled – the amount which mtlA mRNA levels increases as a result of mannitol 221 

addition accurately informs the extent to which MtlS levels decrease.  222 

 223 
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 12 

Mannitol can activate the mtlA promoter but does not affect activity at the mtlS 224 

promoter 225 

To dissect the mechanistic basis behind the above observations, we sought to 226 

determine whether the mtlA promoter or the mtlS promoter (or both) was sensitive to 227 

growth conditions in which mannitol is present. Specifically, we evaluated the validity of 228 

three scenarios when mannitol is added to the growth medium: (1) mannitol activates 229 

transcription from the mtlA promoter while also repressing transcription from the mtlS 230 

promoter; (2) mannitol only activates transcription from the mtlA promoter, which 231 

subsequently and indirectly results in lowered MtlS levels; (3) mannitol only represses 232 

transcription from the mtlS promoter, which indirectly results in increased mtlA mRNA 233 

levels. We reasoned that in the latter two scenarios, such sequential regulation might 234 

arise due to factors such as transcriptional interference and co-degradation, which have 235 

both been associated with several cis-antisense RNAs and their targets (19). 236 

Transcriptional interference postulates that when two convergent promoters are spaced 237 

sufficiently close together such as in the case of mtlA/mtlS (Figure 1), the expression of 238 

one gene can interfere with transcriptional read-through from the opposite promoter 239 

(47–49). Co-degradation can occur when two RNAs form a duplex that results in rapid, 240 

RNase-mediated degradation of both transcripts (50, 51). 241 

 To distinguish amongst the three possibilities, we pursued a LacZ reporter-242 

based approach to uncouple transcription between the mtlA promoter and the mtlS 243 

promoter. We fused the region directly upstream of either the transcription start site (+1) 244 

for mtlA or mtlS with the E. coli lacZ gene and inserted the construct in a neutral locus 245 

within the V. cholerae genome. We previously mapped the transcription start sites of 246 
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 13 

both mtlA and mtlS (22, 30). Using Promoter Hunter, we identified putative -10 and -35 247 

elements that precede the +1 site of mtlS (52); the presence of additional regulatory 248 

sequences, however, has not been investigated. Therefore, to ensure that we captured 249 

all essential promoter elements, we used the 500 bp upstream of the mtlS transcription 250 

start site to construct the mtlS-lacZ fusion. For consistency, we also used the 500 bp 251 

upstream for our mtlA reporter, knowing that this fragment would include all empirically 252 

verified regulatory regions such as the five essential activating CRP binding sites 253 

(Figure 1B) (29).  254 

We grew the mtlA and mtlS reporter strains (PmtlA500-lacZ and PmtlS500-lacZ, 255 

respectively) in minimal medium supplemented with a single carbon source in addition 256 

to either water or mannitol, again choosing several PTS sugars (mannitol, glucose and 257 

sucrose) and one representative non-PTS sugar, maltose. We then performed LacZ 258 

assays in order to determine how transcription from each of the promoters behaved 259 

independent of a proximally-located antisense promoter (Figure 3). The PmtlA500-lacZ 260 

strain displayed a pattern of lacZ expression in a manner nearly identical to that 261 

observed of endogenous mtlA through western blot and qRT-PCR analysis (compare 262 

Figures 2AB and 3A). For growth conditions supplemented with a sole carbon source 263 

(grey bars), LacZ activity was highest in medium containing strictly mannitol. Moreover, 264 

addition of mannitol to the growth medium significantly increased reporter activity in a 265 

sugar-dependent manner, with the increase being most pronounced in maltose-266 

containing growth conditions (compare differences between grey and black bars). 267 

However, the PmtlS500-lacZ strain demonstrated an activity profile that deviated from 268 

what was observed for MtlS through northern blot and qRT-PCR analysis (compare 269 
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Figures 2AC and 3B). Reporter activity reflecting MtlS transcription was not consistently 270 

high during growth in medium supplemented with non-mannitol sugars, nor was it 271 

particularly low in medium supplemented strictly with mannitol (compare grey bars). 272 

Reporter activity from the PmtlS500-lacZ strain was elevated when cells were grown in 273 

medium supplemented with glucose, indicating that the sugar may be able to modestly 274 

effect direct upregulation at the mtlS promoter. Importantly, the addition of mannitol to 275 

the growth medium had no significant effect on reporter activity in medium 276 

supplemented with mannitol, glucose or sucrose (compare differences between grey 277 

and black bars). In medium supplemented with maltose, the addition of mannitol 278 

actually led to a small but significant increase in reporter activity. These results 279 

demonstrate that the addition of mannitol to the growth medium does not affect 280 

transcriptional activity from the mtlS promoter in a manner consistent with observed 281 

MtlS levels. Considering too that our PmtlA500-lacZ reporter behaves most consistently 282 

with what we observe with endogenous mtlA expression, our LacZ reporter assay data 283 

point toward mtlA as the pivotal center of regulation at the mtlA/mtlS locus (scenario two 284 

above): the addition of mannitol is able to activate transcription from the mtlA promoter. 285 

However, it remained to be demonstrated whether activation of mtlA was sufficient to 286 

repress MtlS levels. 287 

 288 

Manipulating mtlA transcription results in inverse changes in MtlS levels 289 

We assessed the validity of a regulatory model centered on mtlA by directly 290 

manipulating expression at the mtlA promoter to see if we could drive corresponding 291 

inverse changes in mtlS expression. We first constructed two strains harboring 292 
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mutations in the mtlA promoter region (Figure 1B). The first strain lacks the region that 293 

contains the five CRP-binding sites. These five binding sites were previously shown to 294 

be essential for activation of the mtlA promoter (29). As the fifth CRP binding site 295 

overlaps with the 3’ end of mtlS, we included half of this CRP site to preserve the 296 

integrity of mtlS. The second strain we constructed contains two point mutations in the 297 

expected -10 promoter region of mtlA. Confirming abrogation of mtlA expression in 298 

these mutants, neither of the two strains could grow in medium in which mannitol was 299 

the only carbon source (data not shown). We grew these promoter mutants in medium 300 

supplemented with maltose and conducted qRT-PCR with primers specific to mtlA and 301 

mtlS (Figures 4AB). We observed similar results in both strains: mtlA mRNA levels 302 

decreased significantly compared to wild-type levels, while MtlS levels were upregulated 303 

relative to that of wild-type. These results further confirm that our mutations successfully 304 

obstructed transcription from the mtlA promoter and imply that such obstruction was 305 

sufficient to increase MtlS levels. It is important to note that we performed these 306 

experiments in maltose-containing medium, a representative growth condition 307 

associated with near-absent production of MtlA and abundant production of MtlS in wild 308 

type V. cholerae (Figure 2A). Thus, even in an mtlA-repressive condition, mtlA is not 309 

fully “off,” nor is mtlS fully “on,” since manipulations can still be made to further 310 

decrease or increase RNA levels, respectively.  311 

 While this promoter-ablation approach demonstrated that decreasing mtlA 312 

expression could increase mtlS expression, we also sought the opposite approach and 313 

determined whether increasing mtlA mRNA levels could lower MtlS levels. To 314 

accomplish this, we used a strain with an in-frame deletion of mtlR, which encodes a 315 

 on A
pril 29, 2019 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 16 

transcriptional repressor of mtlA; compared to the wild type, strains lacking MtlR have 316 

higher levels of mtlA mRNA and MtlA protein when grown in minimal medium with 317 

glucose, maltose or mannose as the sole carbon source (23). We previously reported 318 

that MtlR repression of mtlA depends on the supplemented carbon-source. Medium 319 

containing only mannitol results in no observable repression by MtlR, medium 320 

containing only glucose results in low levels of repression, while medium supplemented 321 

with only mannose or maltose results in the highest levels of repression (23). Consistent 322 

with these previous observations, northern blot analysis indicated that deletion of mtlR 323 

lowers MtlS levels in a sugar-dependent manner (Figure 4C). Deletion of mtlR had a 324 

minor effect on MtlS levels when cells were grown in minimal media supplemented with 325 

glucose but resulted in pronounced downregulation when cells were grown with sugars 326 

such as mannose and maltose. These results support a model in which activation of 327 

mtlA transcription can result in decreased MtlS levels. 328 

We did, however, question whether MtlR might affect MtlS levels directly by 329 

acting on the mtlS promoter. To address this, we created an in-frame deletion of mtlR in 330 

both our PmtlA500-lacZ and PmtlS500-lacZ reporter strains and grew the cells in 331 

minimal media supplemented with varying carbon sources (Figures 4DE). We observed 332 

that deleting mtlR did, as predicted, increase LacZ activity from the PmtlA500-lacZ 333 

strain in growth conditions supplemented with a non-mannitol, non-glucose sugar. 334 

However, the lack of MtlR had no effect on LacZ activity in the PmtlS500-lacZ strain, 335 

regardless of the growth medium. These data establish MtlR as an indirect activator of 336 

MtlS transcription by virtue of being a transcriptional repressor of mtlA. The extent to 337 

which MtlR is a repressor of mtlA transcription reflects the extent to which MtlR is an 338 
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indirect activator of mtlS. Overall, these observations point towards a regulatory model 339 

whereby expression of mtlS is dictated by transcriptional activity from the mtlA locus. 340 

Moreover, the LacZ activity from the PmtlS500-lacZ strain, in all conditions tested, is 341 

quite low (compare Figures 3A and 3B, and 4D and 4E); the mtlS promoter may be 342 

fairly weak, particularly in comparison to the mtlA promoter. These observations point 343 

toward transcriptional interference as a likely mechanism by which MtlS levels are 344 

regulated: transcription from the strong mtlA promoter inhibits transcription from the 345 

weaker mtlS promoter. 346 

 347 

mtlA-mediated regulation of mtlS does not depend on co-degradation 348 

 Although the data above support a model in which transcription of mtlA represses 349 

MtlS levels via transcriptional interference, we also considered co-degradation as a 350 

possible mechanism responsible for mtlA-mediated regulation of mtlS. That is, we 351 

speculated that some of the mtlA mRNA transcribed under mannitol-inducing conditions 352 

could be “sacrificed” to pair with and direct the degradation of MtlS sRNAs, resulting in 353 

the lowered levels of MtlS observed in the presence of mannitol. To test this model, we 354 

used a V. cholerae strain harboring a plasmid that expresses the 5’ UTR of mtlA from 355 

an arabinose-inducible plasmid (pmtlA5UTR). This strain was grown in minimal medium 356 

supplemented with maltose, conditions in which MtlS levels are high and mtlA 357 

transcription is low. The addition of arabinose (0.02%) to the growth medium resulted in 358 

high levels of the mtlA 5’ UTR transcript within the first two minutes of induction (Figure 359 

5A).  360 
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We then determined the half-life for MtlS with or without the presence of the 361 

ectopically expressed mtlA 5’ UTR transcript. V. cholerae were grown in maltose 362 

medium to mid-exponential phase at which point arabinose was added to induce 363 

expression of the mtlA 5’ UTR transcript. After two minutes of induction, the 364 

transcriptional inhibitor rifampicin was added. MtlS levels, normalized to the 5S loading 365 

control, before and after the addition of rifampicin were assessed by northern blot 366 

analysis. At each of the analyzed time points, the levels of MtlS remaining, compared to 367 

their respective time point 0, were similar in both the control and the strain ectopically 368 

expressing the mtlA 5’ UTR (Figures 5BC). These results indicate that the addition of 369 

the mtlA 5’ UTR transcript does not negatively impact the stability of MtlS. Neither 370 

increasing the amount of rifampicin used (300 µg/mL vs 200 µg/mL) or increasing the 371 

time between induction of mtlA 5’ UTR transcription and addition of rifampicin (10 min 372 

vs 2 min) affected the results – MtlS levels decreased similarly over the experimental 373 

time frame in all cases (Figure 5D). These data lead us to conclude the repressive 374 

effects of mtlA transcription on MtlS levels are not due to co-degradation of the two 375 

transcripts. At the same time, we consistently noted that the strain harboring 376 

pmtlA5UTR had lower levels of MtlS than the vector control, even after only a brief 377 

induction with arabinose (compare lanes 1 and 5 in Figure 5B). We speculate that the 378 

induced ectopic expression of the mtlA 5’ UTR from a multicopy plasmid may have 379 

decreased transcription from the weak, endogenous mtlS promoter. Alternatively, the 380 

high levels of mtlA 5’ UTR may cause transcriptional attenuation of the sRNA. 381 
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Discussion 382 

The current paradigm in the sRNA field reflects a tendency for sRNAs to have 383 

their regulatory functions comprehensively defined but their molecular basis for 384 

expression underexplored (11, 53). While it is clear that sRNAs play an integral 385 

regulatory role by helping bacteria respond to changes in environmental conditions, 386 

precisely how sRNAs are transcribed in response to said changes remains substantially 387 

less clear. Thus, further studies aimed at dissecting the pathways that govern sRNA 388 

levels will be pivotal toward expanding our knowledge of the functional landscape of 389 

sRNA-mediated regulation.  390 

In this study, we provide evidence for a regulatory model detailing the expression 391 

pattern of MtlS, a cis-antisense RNA from V. cholerae whose function as a repressor of 392 

mtlA has been well defined but whose origin of regulation has yet to be dissected. Here, 393 

we report that mtlS expression is modulated by the level of transcription occurring from 394 

the antisense gene mtlA. This paradigm has MtlS not expressed “in response” to an 395 

environmental stimulus; instead, MtlS levels are adjusted based on the amount of mtlA 396 

being transcribed. In the canonical model of sRNA-mediated gene expression, an 397 

environmental stimulus (e.g. temperature, oxidative stress, toxic byproduct buildup) 398 

signals modulations in sRNA levels that results in regulation of downstream genetic 399 

targets. According to this model, the sRNA acts as an intermediary messenger that 400 

relays environmental cues into appropriate changes in gene expression. However, our 401 

findings demonstrate that MtlS does not appropriately fit into this mold since the 402 

regulation of MtlS levels largely occurs downstream of initial changes in target gene 403 

expression. We propose an alternative model that better accounts for MtlS as a 404 
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secondary regulator. In this model, an environmental cue results in the regulation of a 405 

target gene independent of the associated sRNA. Since expression of the sRNA gene is 406 

intrinsically linked to that of the target gene, sRNA levels subsequently change. This 407 

sRNA can then go on to affect the expression of further downstream targets, which can 408 

include the very target gene the sRNA initially responded to. In the case of MtlS, the 409 

availability of mannitol alters the transcription of the target gene mtlA, which then affects 410 

levels of MtlS, offering further nuanced regulation of mtlA and potentially other targets 411 

as well (J.M. Liu, unpublished data).  412 

Like MtlS, transcription of the cis-acting RnaG is negatively affected by the 413 

transcription of its antisense target icsA (12). The RnaG promoter flanks the start codon 414 

of icsA, with the -35 hexamer positioned within the coding sequence of icsA. The 415 

resulting RnaG transcript is complementary to the first 120 nt of the icsA mRNA. In this 416 

arrangement, transcription from either promoter (which are regulated by known 417 

transcription factors) results in inhibition of transcription from the other through a 418 

transcriptional interference mechanism. In the case of RnaG/icsA, however, it is the 419 

sRNA which possesses the strong dominant promoter that dramatically inhibits 420 

transcription from the icsA promoter (12, 36). In contrast to MtlS and RnaG, the cis-421 

antisense RNA SymR levels remain constant, even when its target, symE mRNA 422 

increases in concentration in response to DNA damage (38). Thus, it is evident that not 423 

all cis-antisense RNAs are regulated alike. What all these examples do have in 424 

common, however, is that in each case the target of the sRNA is under multimodal 425 

regulation involving multiple proteins in addition to the associated cis-acting RNA 426 

allowing for fine-tuned and tight regulation of gene expression.  427 
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 While we were unable to ascertain the precise mechanisms by which mtlA 428 

downregulates MtlS levels, our data and recent literature would suggest that 429 

transcriptional interference is the likely candidate in this cis-antisense system (47). 430 

Transcriptional interference has been postulated to manifest in three various forms – 431 

promoter occlusion, collision, or sitting duck (47, 54), depending on factors such as the 432 

spacing and relative strength of the two promoters. Our LacZ reporter assays suggest 433 

that the mtlS promoter could be up to forty times weaker, depending on the growth 434 

conditions (Figure 3). Such asymmetry in promoter strengths could result in promoter 435 

occlusion, a phenomenon that relies heavily on an RNAP born from an “aggressive” 436 

promoter passing over a “sensitive promoter” and inhibiting access. However, since the 437 

mtlA and mtlS promoters are spaced closely together at <100 nt apart, the mtlA/MtlS 438 

system may instead be subject to sitting duck interference, which describes a collision 439 

event whereby an elongating polymerase removes, via collision, an opposing 440 

polymerase bound in an open complex (54). At the same time, expression of the mtlA 5’ 441 

UTR in trans was able to reduce MtlS levels without affecting the stability of the sRNA 442 

(Figure 5). We therefore cannot rule out transcription attenuation as a model by which 443 

mtlA regulates MtlS – particularly when mtlA 5’UTR levels are very high; future efforts 444 

will focus on teasing apart the contributions of transcriptional interference and 445 

attenuation on MtlS levels. Also, while MtlS levels appear to be mostly governed by 446 

transcription of mtlA, there is evidence that additional factors may affect mtlS. Although 447 

the overall levels of LacZ resulting from the PmtlS500-lacZ construct were quite low, 448 

LacZ activity was consistently higher in glucose medium, and generally lower in maltose 449 

 on A
pril 29, 2019 by guest

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 22 

medium. Thus, it remains to be seen whether environmental stimuli further contribute to 450 

nuanced control of levels of the sRNA.  451 

The mtlA/MtlS system offers a unique regulatory advantage to an organism that 452 

requires tight control over the transport and metabolism of mannitol. In their natural 453 

aquatic environments, V. cholerae likely come across distinct compositions of carbon 454 

sources, where mannitol concentrations can range up to 700 µM (3, 55). Our data 455 

reveal that MtlS constitutes part of a molecular toolkit that helps V. cholerae respond to 456 

these distinct environments and make the appropriate genetic decision regarding the 457 

expression of mannitol-related genes. We note that the addition of mannitol to the 458 

growth medium stimulated mtlA expression to varying degrees depending on the 459 

accompanying carbon source, with stimulation being nearly undetectable in the case of 460 

glucose (Figure 2). Thus, high mannitol concentration is insufficient for V. cholerae to 461 

activate expression of the mtl genes. Rather, mannitol needs to be a preferred carbon 462 

source in the context of other accompanying carbon sources.  463 

 We purport that MtlS serves as a stringent brake that limits expression of mtlA, 464 

reserving full expression only for conditions in which mannitol utilization is metabolically 465 

favored. In a given environment, mannitol must be preferred for V. cholerae to not only 466 

stimulate expression from the mtlA promoter but produce enough mtlA mRNA to 467 

downregulate MtlS levels through transcriptional interference or attenuation. MtlS thus 468 

raises the threshold for what qualifies as a sufficiently mannitol-rich environment for V. 469 

cholerae to devote energy towards costly expression of mtlA. Although E. coli possess a 470 

bona fide mtl operon, they lack a detectable antisense RNA equivalent to that of V. 471 

cholerae (22), implying that V. cholerae has evolved the MtlS sRNA through its own 472 
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evolutionary lineage to better adapt to changes in extracellular mannitol. Our 473 

observations are consistent with a scenario where V. cholerae evolved MtlS through 474 

mutations in the mtlA coding region that both preserved mtlA functionality and produced 475 

a viable promoter, in addition to a viable terminator region, within the antisense strand 476 

(56). Through this process, V. cholerae would have gained access to a repressive cis-477 

antisense sRNA while avoiding the need for a separate set of regulatory mechanics to 478 

govern MtlS levels, since mtlS regulation would be inherently coupled to that of its target 479 

antisense gene. While details remain to be fleshed out, our studies support this model 480 

for regulation of the MtlS cis-antisense RNA and we are eager to discover whether more 481 

cis-antisense RNAs fit a similar mold. 482 

Materials and Methods 483 

Bacterial strains, plasmids, and culture conditions 484 

All plasmids and strains used in this study can be found in Table 1. All primers 485 

used in this study can be found in Table 2. The wild type V. cholerae used in this study, 486 

from which all subsequent strains were constructed, was the O1 biovar El Tor N16961 487 

∆tcpA strain. This strain was used for safety purposes and is highly attenuated for 488 

virulence (57), but still exhibits phenotypes identical to those of the original wild-type 489 

strain N16961 with respect to mtlS and mtlA expression.  490 

V. cholerae strains were struck out on Luria Bertani (LB) plates with the 491 

appropriate antibiotics for 12-16 hours at 37 °C. For liquid cultures, individual colonies 492 

were grown 12-16 hours in 2 mL of LB or 1x M9 minimal medium containing one or 493 

more carbon sources (0.4% w/v each) and supplemented with 0.1% w/v trace metals 494 

(5% MgSO4, 0.5% MnCl2, 0.5% FeCl3, and 0.4% nitrilotriacetic acid). Antibiotics were 495 
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used at the following concentrations: streptomycin (Sm) at 100 µg/mL and carbenicillin 496 

(Cb) at 50-100 µg/mL. Transformation of V. cholerae strains was performed using 497 

plasmids originally propagated in TOP10 E. coli (except for pCVD442-based plasmids, 498 

see below). Plasmid pmtlA5UTR was constructed using primers LIU590-593 and DNA 499 

fragment assembly using the Hi-Fi Master Mix (NEB). 500 

V. cholerae strains harboring chromosomal mutations were constructed as 501 

follows: A plasmid bearing the desired mutation (including point mutations or deletions) 502 

was constructed in the allelic exchange vector pCVD442 via splicing by overlap 503 

extension (SOE)-PCR. Two 500-650 bp DNA fragments flanking the region of interest 504 

were amplified by PCR using the F1/R1 and F2/R2 primer pairs (see Table 2). These 505 

fragments were annealed together and then amplified by PCR using F1 and R2 primers. 506 

The final PCR product was assembled via Hi-Fi DNA Assembly (New England Biolabs) 507 

with the pCVD442 backbone that was prepared using the appropriate pCVD_F and 508 

pCVD_R primers (see Table 2). The resultant plasmid was propagated in E. coli 509 

DH5pir and transformed into E. coli SM10pir before being conjugated into V. 510 

cholerae. Successful conjugates were selected from one round of growth in LB broth 511 

with streptomycin, and resultant colonies were plated on sucrose-medium to screen for 512 

successful vector disintegration. Sucrose-resistant colonies were screened for the 513 

desired mutation by PCR with the F0 and R0 primers.  514 

To assemble the lacZ transcriptional fusion reporters, we first constructed a V. 515 

cholerae strain with a deletion in the promoter region (235 bp upstream) of VC2338, the 516 

V. cholerae homologue of lacZ. This was done to render the VC2338 locus inert, as the 517 

locus is prone to regulation by transcription factors such as CRP-cAMP. The RBS and 518 
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coding sequence of E. coli lacZ [lacZ(Ec)] was then cloned into pCVD442-derivative 519 

pJL1 using primers LIU122, LIU123, LIU124, and LIU125 and DNA fragment assembly 520 

using the Hi-Fi Master Mix (NEB). pJL1 contains an internal fragment of VC2338, which 521 

allowed lacZ(Ec) to be inserted into the VC2338 locus in antisense orientation. We then 522 

fused the 500 bp directly upstream of the +1 site relative to either mtlA or mtlS 523 

transcription to the site immediately preceding the RBS of lacZ(Ec) using the 524 

chromosomal mutation method described above.  525 

 526 

LacZ (beta-galactosidase) assay 527 

All LacZ assays were performed using strains containing a lacZ gene construct 528 

that was inserted into the endogenous lacZ gene in order to disrupt native lacZ 529 

expression. Bacterial samples were taken from back-diluted liquid cultures grown to late 530 

log phase (OD600 1.0-1.5). 200 µL cell samples were loaded onto a clear 96-well plate, 531 

and OD600 measurements were taken using a Synergy 4 Plate Reader (BioTek). From 532 

these samples, 100 µL of cells were lysed for 25-35 min with a 10 µL solution containing 533 

PopCulture Reagent (Novagen) and Lysozyme (ThermoFisher) in a 1000:1 ratio. 30 µL 534 

samples of cell lysate were then incubated with 150 µL of ONPG substrate solution 535 

(60mM Na2HPO4, 40mM NaH2PO4, 1mg/mL ONPG, 2.7 µL/mL ß-mercaptoethanol) in a 536 

96-well plate at 28 °C. Absorbance at 420 nm (OD420) was recorded every 30 s over 60 537 

min by a Synergy 4 Plate Reader (BioTek). Final results were reported as the average 538 

slope (in mean OD420/min) of the 30 s intervals over the course of the 60-min incubation 539 

period, with the units reported as LacZ activity (mean OD420/min/OD600). Statistical 540 

analysis was performed using GraphPad Prism (version 7). 541 
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 542 

Western blot analysis 543 

Cell pellets were prepared from back-diluted liquid cultures grown to mid-log 544 

phase (OD600 ~0.3). Following centrifugation at 8000 x g, 5 min, 4 °C, pellets were 545 

resuspended in M9 medium, mixed 1:4 in SDS sample buffer (250 mM Tris-HCl [pH6.8], 546 

10% SDS, 50% glycerol, 10% ß-mercaptoethanol, 0.5% orange G) and heated at 95 °C 547 

for 10 min. Samples were loaded onto an SDS-containing 10% Tris gel (BioRad) and 548 

run at 200 V for 30 min. Proteins were then transferred to a nitrocellulose membrane 549 

using the TransBlot Turbo Transfer System (BioRad; 7 min at 1.3 amps). Membranes 550 

were incubated with a dilution of primary antibody: 1:5000 of both rabbit anti-FLAG 551 

(AbCam) and mouse anti-RNAP (AbCam) for 1 hr, followed by incubation with a 552 

dilution for secondary antibody: 1:7500 of both IR680-conjugated goat anti-rabbit (Licor) 553 

and IR800-conjugated goat anti-mouse (Licor) for 30 min. IR fluorescence imaging was 554 

conducted using the Odyssey Imager (Licor), and quantification of blots were performed 555 

with ImageStudio Software Version 5 (Licor).  556 

 557 

RNA isolation 558 

To measure mRNA levels of MtlS sRNA, total RNA was isolated from bacterial 559 

culture grown to mid-log phase using the DirectZol RNA Miniprep Kit (Zymo). For half-560 

life experiments, rifampicin (200-300 µg/mL) was added upon cells reaching mid-log 561 

growth, and samples were extracted at the indicated time points. Following 562 

centrifugation (5000 x g, 5 min, 4 °C), pellets were resuspended in TRI Reagent. 563 

Manufacturer instructions were then followed to isolate RNA, with column elution 564 
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performed in DNase and RNase free Ultrapure Water. For qRT-PCR experiments, 565 

remaining DNA was removed from all samples using the TURBO DNA-free kit (Thermo 566 

Fisher Scientific), according to the manufacturer’s suggested protocol. RNA 567 

concentrations were measured using a Take3 plate (BioTek).  568 

 569 

In vitro RNA preparation 570 

 To construct the biotinylated RNA riboprobes, a DNA template was first prepared 571 

in the following PCR reaction: 200 µM dNTPs, 1 µM forward primer, 1 µM reverse 572 

primer, genomic DNA from V. cholerae strain JL2, 1 x buffer, and Taq DNA polymerase 573 

(NEB). The DNA template was then used in an in vitro transcription assay performed 574 

with T7 RNA polymerase according to the manufacturer’s instructions: 0.5 mM rNTPs, 575 

0.3 mM UTP, 0.2 mM biotin-16-UTP, 10 µM DTT (Promega), DNA template, 1 x buffer, 576 

and T7 RNA polymerase (Promega). The reaction was allowed to incubate at 37 °C for 577 

1-3 hr prior to addition of and incubation with RQ1 DNase at 37 °C for 30 min. The 578 

riboprobe was purified using a Micro P-30 column (BioRad).  579 

 580 

Northern blot analysis 581 

To prepare northern blot samples, total RNA was mixed 1:2 in Loading Buffer II 582 

(Life Technologies). RNA was separated on a 10% Tris-borate-EDTA (TBE)-urea gel, 583 

run at 200 V for 50-60 min in 1 x TBE. Transfer to a positively charged nylon membrane 584 

was performed using the TransBlot Turbo Transfer System (BioRad; 7 min at 1.3 585 

amps).  586 
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 Following a wash in 6 x saline sodium citrate (SSC) for 2 min, the nylon 587 

membrane was subjected to UV cross-linking followed by another wash in 1 x SSC for 1 588 

min. The membrane was then pre-hybridized for at least 30 min in ULTRAhyb-OLIGO 589 

buffer (Life Technologies) at 65 °C. Overnight hybridization was performed at 65 °C with 590 

the appropriate riboprobe and 5S DNA probe (IR-800 5S). The membrane was 591 

subsequently washed 2 x 5 min and 2 x 15 min in low and high stringency wash buffer, 592 

respectively, according to the Odyssey northern blot analysis protocol instructions 593 

(Licor). Fluorescence imaging was conducted using the Odyssey Imager (Licor). Band 594 

quantifications were performed using ImageStudio version 5.0 (Licor). Statistical 595 

analysis was performed using GraphPad Prism version 7. 596 

 597 

Quantitative reverse transcription PCR (qRT-PCR) 598 

RNA samples were used for qRT-PCR to quantify relative expression levels 599 

using the Stratagene MX3005P System, the Brilliant II SYBR Green qRT-PCR Master 600 

Mix Kit (Agilent), and primers specific to mtlA, mtlS, and 4.5S. The reactions were set 601 

up in 96-well optical reaction plates and contained 1× Brilliant SYBR Green qPCR 602 

Master Mix, 30 nM ROX reference dye, each primer at 100 nM, 100 ng RNA and 1 µl 603 

RT/RNase block enzyme mixture in a 25 µl reaction. The following conditions were used 604 

for cDNA synthesis and PCR: 30 min at 50 °C, 10 min at 95 °C, and 40 cycles of 30 s at 605 

95 °C and 1 min at 60 °C (Agilent). MxPro QPCR software (v. 4.10) was used to 606 

determine Ct values for each reaction, and relative RNA concentrations were calculated 607 

from the Ct values by comparison to standard curves. All transcript levels were 608 

normalized to a 4.5S RNA endogenous control. No signals were detected in no-609 
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template controls and no-RT controls. Statistical analysis was performed using 610 

GraphPad Prism (version 7).   611 
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Table 1. Strains and plasmids used in this study 620 
Strain or  
Plasmid 

Description or genotype
a
 

 Reference or 
source 

Strains    
     V. cholerae    
          JL2 N16961 ∆tcpA mtlA-FLAG; Sm

R 
 Laboratory strain 

          JL55 N16961 ∆tcpA mtlA-FLAG ∆mtlR; Sm
R
  (23) 

JL142 N16961 ∆tcpA mtlA-FLAG pJML01; Sm
R
Ap

R
  (30) 

          JL463 N16961 ∆tcpA mtlA-FLAG PmtlA_∆CRPbs; Sm
R
  This study 

          JL467 N16961 ∆tcpA mtlA-FLAG PmtlA_-10mut; Sm
R
  This study 

          JL494 N16961 ∆tcpA mtlA-FLAG ∆VC2338 (-235); Sm
R
  This study 

          JL495 
N16961 ∆tcpA mtlA-FLAG ∆VC2338 (-235) 
PmtlA500-lacZ(Ec); Sm

R
 

 
This study 

          JL499 
N16961 ∆tcpA mtlA-FLAG ∆VC2338 (-235) 
PmtlS500-lacZ(Ec); Sm

R
 

 
This study 

JL546 N16961∆tcpA mtlA-FLAG pmtlA5UTR; Sm
R
Ap

R
  This study 

    
     E. coli    

          DH5 F
- 
D(lacZYA-argF) U169 recA1 end A1 hsdR17 supE44 thi-1 

gyrA96 relA1 
 Laboratory strain 

          DH5pir F
- 
D(lacZYA-argF) U169 recA1 end A1 hsdR17 supE44 thi-1 

gyrA96 relA1 ::pir 

 Laboratory strain 

          SM10pir thi recA thr leu tonA lacY supE RP4-2-Tc::Mu ::pir  Laboratory strain 

          TOP10 F– mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 
araD139 ∆(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG 

 Invitrogen 

    
Plasmids    
     pCVD442 oriR6K mobRP4 sacB; Ap

R
  (58) 

     pJML01 pBAD24 derivative with +1 start of transcription after NheI site; 
Ap

R
  

 (22) 

     pmtlA5UTR pBAD24 derivative that expresses the entire 5’ UTR of mtlA; 
Ap

R
 

 This study 

     pJL1 
 

pCVD442 derivative with 2.2kb HpaI-digested VC2338 (V. 
cholerae lacZ) cloned into SmaI site of pCVD442; Ap

R
 

 (59) 

     pJL1::lacZ 
     (Ec) 
 

pJL1 derivative with RBS and coding region of E. coli lacZ 
inserted into the VC2338 fragment of pJL1 in an antisense 
orientation; Ap

R
 

 This study 

a
Sm

R
, streptomycin resistance; Ap

R
, ampicillin resistance. 621 

  622 
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Table 2. Primers and probes used in this study 623 
Primer or probe Sequence (5’3’)

a
 

Northern Blotting  
     IR800-5S IRD800-CTG TTT CGT TTC ACT TCT GAG TTC GGG ATG GAA 
     T7 mtlSfor GGA TCC TAA TAC GAC TCA CTA TAG GGA AAA ACC CGT TGG TGA 

TTC CAT TCG 
     T7 mtlSrev TCC CCC GTT GGA TGT TCC G 

T7 mtlA5UTRfor GGA TCC TAA TAC GAC TCA CTA TAG GGT CCC CCG TTG GAT GTT 
CCG 

T7 mtlA5UTRrev AAA AAC CCG TTG GTG ATT CCA TTC G 
  
qRT-PCR  
     mtlA-FW TCC CCC GTT GGA TGT TCC G 

     mtlA-RV CCG TTG GTG ATT CCA TTC G 
     mtlS-FW TGA TCC CAG ATG AGG TTT TCC 
     mtlS-RV GAT TGA GTG CTT TGA TTG GCG 
     4.5S-FW CTG GTC CTC CCG CAA CAC 
     4.5S-RV GAG ACC CCA GCC ACA TC 
  
Cloning: V. cholerae ∆VC2338 (-235) 
     LIU515 (F1) GCC AAG CTT GCA TGC CGC AAC CGC AGT CAG AAC AC 
     LIU516 (R1) CTC TAC GGC GTA CAT TCG GAG TTG TTC TGC GCT TTG AC 
     LIU517 (F2) GCA GAA CAA CTC CGA ATG TAC GCC GTA GAG CAA AGG C 
     LIU518 (R2) AGT GAA TTC GAG CTC GAC CAT TGC ACC ACA GAT GAA ATG 
     LIU519 (pCVD_F) TGT GGT GCA ATG GTC GAG CTC GAA TTC ACT GGC CGT 
     LIU520 (pCVD_R) CTG ACT GCG GTT GCG GCA TGC AAG CTT GGC GTA ATC ATG 
     LIU521 (F0) CTT GCT CGC TAA CCC AGC G 
  
Cloning: Plasmid pJL1::lacZ(Ec) 
     LIU122 (rev vector) TGT TTC CTG TGT GAA AAA TCA TCA CGC CAT GTA TCA GTG G 
     LIU123 (fwd vector) CTG GTG TCA AAA ATA ATA AAA TCC CCG ATT CAT TGC CGA GC 
     LIU124 (fwd insert) CAT GGC GTG ATG ATT TTT CAC ACA GGA AAC AGC TAT GAC C 
    LIU125 (rev insert) CAA TGA ATC GGG GAT TTT ATT ATT TTT GAC ACC AGA CCA ACT GG 

  
Cloning: V. cholerae PmtlA500-lacZ(Ec) 
     LIU522 (fwd insert) CAT GGC GTG ATG ATT CAT TTC TTC ATC TGG ATC GCA AAG TTG 
     LIU523 (rev insert) GTT TCC TGT GTG AAA TGC TTA GTA CAC AAT CAC TCT ACC AC 
     LIU524 (fwd vector) ATT GTG TAC TAA GCA TTT CAC ACA GGA AAC AGC TAT GAC C 
     LIU525 (rev vector) CCA GAT GAA GAA ATG AAT CAT CAC GCC ATG TAT CAG TGG 
     LIU126 (F0) GCT GAT CGA CCC GCG CAT AC 
     LIU127(R0) CCA ATG ATC CAC AAT GGG TGA ATG C 
  
Cloning: V. cholerae PmtlS500-lacZ(Ec) 
     LIU136 (fwd insert) CAT GGC GTG ATG ATT CTC CAG CCG CTA ATG CGC C 
     LIU130 (rev insert) TGT TTC CTG TGT GAA ACA ACG GGG GAC GCG ATG ATA TC 
     LIU131 (fwd vector) ATC GCG TCC CCC GTT GTT TCA CAC AGG AAA CAG CTA TGA CCA 

TG 
     LIU137 (rev vector) CAT TAG CGG CTG GAG AAT CAT CAC GCC ATG TAT CAG TGG AC 
  
Cloning: V. cholerae PmtlA_CRPbs 
     LIU481 (F1) GCC AAG CTT GCA TGC CTC CTC TCT TCG TGT ACC GC 
     LIU482 (R1) TTT TTT GTG ACT TAC TTT GAT TTC TTG GTG ATC GGC ATT ATC 
     LIU483 (F2) CAC CAA GAA ATC AAA GTA AGT CAC AAA AAA CCC GTT GGT G 
     LIU484 (R2) AGT GAA TTC GAG CTC CCA ACA TTT CAA AGC CAC TGC GC 
     LIU485 (pCVD_F) GCT TTG AAA TGT TGG GAG CTC GAA TTC ACT GGC CGT 
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Table 2 continued  

     LIU486 (pCVD_R) ACA CGA AGA GAG GAG GCA TGC AAG CTT GGC GTA ATC ATG 
     LIU487 (F0) GTG TAG GTC TTC CTA CTT ACG TAT AG 
     LIU377 (R0) GAC CTG TTT CAC TGG CTT GCT G 
  
Cloning: V. cholerae PmtlA_-10mut 
   LIU481 (F1) See above 
   LIU488 (R1) CCC ACC ACA CAA ATT TCG AAT GGA ATC ACC AAC GGG TTT TTT G 
   LIU489 (F2) GGT GAT TCC ATT CGA AAT TTG TGT GGT GGG GTG ATT GTG TAC   
   LIU484 (R2) See above 
   LIU485 (pCVD_F) See above 
   LIU486 (pCVD_R) See above 
   LIU490 (F0) GCT GCA TAA TCT AAA CGA GAT TCCA G 
   LIU377 (R0) See above 
  
Cloning: pmtlA5UTR  
   LIU590 (fwd insert) CTA CTG TTT GCT AGC GTA CTA AGC AAT CAA CGG TTT TTG CC 
   LIU591 (rev insert) AAA ACA GCC AAG CTT CGC GTC CCC CGT TGG ATG TTC CG 
   LIU592 (rev vector) GCT AGC AAA CAG TAG AGA GTT GCG  
   LIU593 (fwd Vector) AAG CTT GGC TGT TTT GGC GGA TG 
a
Underlined regions indicate homology tails for fragment ligation using DNA fragment assembly 624 

 625 
 626 

  627 
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Figure Legends 780 

Figure 1. The mtl gene locus in V. cholerae. (A) VCA1045, VCA1046, and VCA1047 781 

(mtlA, mtlD, and mtlR, respectively) are three unique genes involved in the transport 782 

and/or metabolism of mannitol. MtlS is an antisense sRNA relative to mtlA with 71 bp of 783 

complementarity to the mtlA 5’ UTR. The black arrow marks the +1 site of transcription 784 

of mtlA. The grey dotted line denotes the putative promoter region of mtlS, housed 785 

within the mtlA coding region. (B) Nucleotide composition of the mtlA promoter region 786 

and 5’ UTR, as outlined by the black box in (A). The five empirically verified CRP 787 

binding sites are indicated (29). The brackets denote the region excised in the 788 

PmtlA_∆CRPbs strain. The solid black arrows indicate the two A to G point mutations in 789 

the -10 region of mtlA to construct the PmtlA_-10mut strain. The start of transcription of 790 

mtlA is indicated with a black right-angle arrow. The start of transcription of MtlS is 791 

indicated with a grey arrow that continues along the length of MtlS. Numbering is based 792 

on the transcription start site of mtlA as +1. 793 

 794 

Figure 2. Mannitol addition concurrently increases mtlA and decreases mtlS 795 

expression. V. cholerae were grown to mid-log phase in minimal media with 0.4% (w/v) 796 

mannitol (Mtl), glucose (Glu), sucrose (Suc), mannose (Man), or maltose (Mal) 797 

supplemented with an additional 0.4% mannitol (+Mtl) or an equal volume of water 798 

(+H2O). (A) Cell lysates were subjected to both northern blot (for MtlS) and western blot 799 

analysis (for MtlA). Relative intensities (RI) of each sample compared to Glucose + H2O 800 

(for MtlS analysis) or Mtl + H2O (for MtlA analysis) are shown beneath each band. Blots 801 

are representative of at least two independent experiments. (B,C) Total RNA was used 802 
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for qRT-PCR analysis with primers specific to mtlA (B) or mtlS (C). Levels of mtlA and 803 

MtlS RNA were normalized to an endogenous 4.5S control. Reported are the means 804 

and standard deviations from three biological replicates. *, p < 0.05; NS, not significant, 805 

based on two-tailed unpaired t-test.     806 

 807 

Figure 3. LacZ reporter constructs uncouple transcription between mtlA and mtlS. V. 808 

cholerae strains harboring lacZ transcriptional fusions to the 500 bp upstream of the +1 809 

site of mtlA (A) or mtlS (B) were grown to late-log phase in minimal media 810 

supplemented with 0.4% of the indicated sugar along with an additional 0.4% (w/v) 811 

mannitol (+Mtl) or an equal volume of H2O. LacZ activity is reported as the average 812 

increase in OD420 over the course of the assay, normalized to OD600 (mean 813 

OD420/min/OD600). Reported are the means and standard deviation of 4 biological 814 

replicates. *, statistical analysis indicates that +H2O vs +Mtl are true discoveries (false 815 

discovery rate q-value set to 1%); NS, not significant. All results shown are 816 

representative of at least two independent experiments.  817 

 818 

Figure 4. Manipulating mtlA expression results in corresponding inverse changes in 819 

MtlS levels. V. cholerae strains were grown to mid-log (A, B, C) or late-log (D, E) phase 820 

in minimal media supplemented with the indicated carbon source. (A,B) The V. cholerae 821 

mtlA promoter region was ablated by either deleting the five CRP-binding sites within 822 

the promoter (∆CRPbs) or by creating two point mutations in the -10 promoter region  (-823 

10mut). Total RNA from these strains were used for qRT-PCR analysis with primers 824 

specific to mtlA (A) or mtlS (B). Levels of mtlA and MtlS RNA were normalized to an 825 
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endogenous 4.5S control. Reported are the means and standard deviations from three 826 

biological replicates (except for Mtl and Glu, where n=1). *, p < 0.05; **, p < 0.01, based 827 

on two-tailed unpaired t-test, comparing mutant to WT. (C) Total RNA from WT or ∆mtlR 828 

V. cholerae were used for northern blot analysis. Relative intensities (RI) of each 829 

sample compared to the Mannose WT are shown underneath each band. (D,E) Cell 830 

lysates from WT and ∆mtlR mutants of V. cholerae strains harboring lacZ transcriptional 831 

fusions to the 500 bp upstream of the +1 site of mtlA (D) or mtlS (E) were used for LacZ 832 

assays as in Figure 3. Reported are the means and standard deviation of 4 biological 833 

replicates. *, statistical analysis indicates that WT vs ∆mtlR are true discoveries (false 834 

discovery rate q-value set to 1%); NS, not significant. All results shown are 835 

representative of at least two independent experiments.  836 

 837 

Figure 5. Ectopic expression of the 5’ UTR of mtlA does not affect stability of MtlS. (A) 838 

V. cholerae harboring pmtlA5UTR were grown in minimal medium supplemented with 839 

0.4% (w/v) maltose to mid-log phase, whereupon an aliquot was taken (0 min).  The 840 

remaining cells were induced with 0.02% arabinose and aliquots were taken at the 841 

indicated times. (B) V. cholerae harboring pmtlA5UTR or a vector control were grown as 842 

in (A) and induced with 0.02% arabinose. After 2 minutes, the cells were treated with 843 

200 µg/mL rifampicin and aliquots were taken at the indicated times. Total RNA was 844 

used for all northern blots and 5S RNA was used as a loading control. (C) Quantification 845 

analysis of northern blot from (B) and two additional independent experiments. MtlS 846 

signals were normalized to the 5S loading control and are reported as percentage of the 847 

time point 0 value for each respective strain. Shown are the means and SD for each 848 
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time point. (D) Quantification analysis of northern blots carried out as in (B) but with 849 

either 300 µg/mL rifampicin treatment or a 10-minute induction with arabinose prior to 850 

treatment with rifampicin. 851 

 852 
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