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Abstract

We present a model of labor markets that accounts for the social network through which

agents hear about jobs. We show that both wages and employment are positively associated

(a strong form of correlation) across time and agents. We also analyze the decisions of agents

regarding staying in the labor market or dropping out. If there are costs to staying in the labor

market, then networks of agents that start with a worse wage status will have higher drop-out

rates and there will be a persistent di�erences in wages between groups according to the starting

states of their networks.
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1 Introduction

One of the most extensively studied issues in labor economics is the persistent inequality in wages

between whites and blacks.1 Even if one believes any inequality in wages between social groups to

be entirely explainable by di�erences in factors such as education, skills, and drop-out rates; one is

still left to explain why those should di�er.2

The purpose of this paper is to develop a model of how social networks operate in the trans-

mission of job information, and to show that such a model can account for the observed patterns

of wages and employment as well as di�erences in drop-out patterns and their roles in sustaining

inequality. An analysis of social networks provides a basis for observing both higher drop-out rates

in one race versus another and sustained inequality in wages and employment rates even among

those remaining in the labor force.3

Our model builds upon a well-established stylized fact: a signi�cant fraction of all jobs are

found through contacts. While estimates of the percentage of jobs found through social contacts

vary across location and profession, they consistently range between 25 and 80% of jobs in a given

profession.4 We model the transmission of job information among individuals by a function that

keeps track of who �rst heard about a job and who (if anyone) eventually ended up getting an

o�er for that job. The key condition that we impose on this function is that the expected number

of o�ers that a given agent ends up with is nondecreasing in the wage status of other agents.

Allowing agents also to randomly lose jobs, wages can be shown to follow a Markov process, with

state transitions depending on the information transmission network. We prove that the resulting

stationary distribution is strongly associated; that is, the wages of any path-connected agents are

positively correlated under the steady-state distribution. The proof is not as easy as one might

expect, as there is a countervailing e�ect that path-connected agents are sometimes in competition

for information about certain jobs. This entails some within period negative correlation among

the status of certain agents. So we have to prove that the long run bene�ts of improved status

of friends-of-friends outweighs the short run competition that they might represent. Next, to

establish persistent inequality between wages of di�erent types of agents, we analyze drop-out

decisions where agents decide whether to enter the labor market or to drop out. We model the

drop-out decision as a simultaneous-move game, where agents compare the discounted expected


ow of future wages stemming from entering the labor force with the corresponding discounted

costs (such as education costs, opportunity costs, skills maintenance, etc.). Because individual

wages are positively associated across agents, entry decisions in this entry/drop-out game turn

1For instance, see Smith and Welch (1989), Card and Krueger (1992), Chandra (2000), Heckman, Lyons, and

Todd (2000). See Farley (1990) for data on other racial- ethnic groups in the U.S.
2The extent to which inequality is explainable by such factors is still a point of some debate. See for instance,

Darity and Mason (1998) and Heckman (1998).
3A social network model of inequality complementary to other theories. For discussion of some other theories and

the relation of social networks approach, see Calv�o-Armengol and Jackson (2004).
4See Ioannides and Loury (2004) for an excellent and extensive survey on the role of social networks in labor

markets.
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out to be strategic complements. Applying the theory of supermodular games, we deduce that

two di�erent social groups with identical job information networks but di�ering in their starting

wage and employment pro�le will have di�erent drop-outs rates that can be strictly ranked. These

di�erences in drop-out patterns in turn breed persistent di�erences in wages between the two groups.

This theory thus highlights the role of collective employment history in persistent wage inequality

across social groups.5

This paper has a companion paper: Calv�o-Armengol and Jackson (2004), which examines a

speci�c case of the model considered here. The main contributions here are twofold. First, we

consider a much more general model both in the passing of job information and in the structure of

wages and their relation to job o�ers. Most applications would �t into the broader class examined

here rather than the speci�c case examined in the companion paper. Second, we study wage

dynamics rather than just employment dynamics, which is important as much of the empirical

evidence for inequality relates to wage di�erences between races.

We note that the techniques and results that we have developed here also have applications

beyond labor markets. In particular, the association and correlation patterns that we �nd based on

the underlying p's generalize to very di�erent interpretations of the p's � such as the chance that

some agent in
uences the behavior of another agent (such as inducing them to take up smoking,

join a club, engage in crime, etc.). Thus, it can be that the results and tools developed here will be

of use in modeling a wide variety of social interactions where networked relations are important.

2 A Model of Networks in Labor Markets

We begin with a formal description of our model.

2.1 Wage and Employment Status

The random variable Wit keeps track of the wage of agent i at time t. Wit takes on values in IR+;

the unemployment wage is 0. The vector wt = (w1t; : : : ; wnt) is a realization of wage levels at t.6

We represent random variables by capitol letters and realizations by small letters. The sequence

of random variables fW0;W1;W2; : : :g comprises the stochastic process of wage status.

The random variable Sit is the employment status of agent i at time t. Employment status is

derived from wage status. We set sit = 1 when i is employed, and sit = 0 otherwise. So, the vector

st 2 f0; 1g
n is a realization of the employment status at t.

5This complements a large body of theoretical work built on models of discrimination (e.g., Becker 1957, Arrow

1972), imperfect capital markets (Loury 1981), and local public goods (Benabou 1993, 1996 and Durlauf 1996), among

others. See Calv�o-Armengol and Jackson (2004) for additional discussion.
6While we use the term wages, this random variable might be thought of as representing the expected discounted

value of wages in a position. This distinction can be important in situations where some jobs have lower starting

salaries but higher overall discounted sum of future wages.

2



2.2 Labor Market Turnover

Labor market turnover proceeds repeatedly through two phases.

� In one phase, agents hear about new jobs. If an agent directly hears about a job vacancy, then

she either keeps that information or passes the job on to one of her contacts in the network.

� In the other phase, each currently employed agent i is �red with probability bi 2 (0; 1), termed

the breakup rate.

These phases occur repeatedly over time. The way we index periods is thus un-important. It

is convenient to consider the hiring phase �rst and then the breakup phase.

2.3 Speci�cs of Information Transmission

The job transmission and o�er generation is described by a function pij : IRn
+ ! [0; 1]. Here

pij(Wt�1) is the probability that i originally hears about a job and then it is eventually j that ends

up with an o�er for that job.

The function pij is a reduced form that can accommodate a variety of situations, including

selective passing of information, passing multiple times and/or to multiple agents, and competition

among agents for the same job. All that is important for our analysis is to keep track of who �rst

heard about a job and who (if anyone) eventually ended up getting an o�er for the job.

Let pi(w) =
P

j pji(w). This is the expected number of o�ers that i will get when the wage

state in the last period is w. We take the realizations under pji(w) and pki(w) independent.
7

Let p denote the vector of functions across i and j. Let w denote the maximum value in the

range of wages. The functions pij are assumed to satisfy the following conditions on their support:

(1) pji(w) is nondecreasing in w�i and nonincreasing in wi for every ji,

(2) pji(w) > 0 implies pji(w�i; w
0
i) > 0 when wi � w0i < wi for each ji; and pi(w) > 0 for any w

and i such that wi < wi

(3) if pi(w) > pi(w�j ; ewj) for j 6= i and ewj, then pi is increasing in wj whenever wi < wi.

(1) encompasses the idea that other agents are (weakly) more likely to directly or indirectly pass

information on that will reach i if they are more satis�ed with their own position, and also that

they might have better access to such information as their situation improves. It also encompasses

the idea that other agents are (weakly) less likely to compete with i for an o�er if they are more

satis�ed with their own position. The second requirement is similar but keeps track of i's wage.

7Note that this is very di�erent from the realizations under pij and pik, which will generally be negatively cor-

related. So we are just assuming that j and k do not coordinate on whether they pass i a job. If indirect passing

is present, then this embodies an assumption that the correlation in indirect passing is negligible. This is only a

simplifying assumption, as when periods become small the probability of more than one job being in the system at

a time becomes negligible.
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Note that this allows for i to be more likely to directly hear about a job as i's situation worsens

(allowing for a greater search intensity).

(2) requires that if an agent is not at their highest wage level, then there is some probability

that they will obtain an o�er both directly and from other agents who pass them information. This

is important in making sure that i does not have incentives to turn down a job in order to in
uence

the probability of getting multiple o�ers in some future period.

(3) is a simplifying assumption. This guarantees that if i's probability of hearing about a job is

sometimes sensitive to j's status, then it is sensitive to j's status whenever i is not at the highest

wage level. This simply allows us to make statements about strictly positive correlations that do

not need to be conditioned on particular circumstances.

Let us brie
y describe a couple of examples that �t into our model.

First, consider a network of connections among agents described by a weighted and directed

graph g, an n � n matrix with gij 2 IR+. Jobs are all identical (e.g., unskilled labor) and wages

depend only on whether a worker is employed or not. At the beginning of each period, agent i

hears of some available job with probability ai 2 (0; 1). When i hears of a job and is unemployed,

then i takes the job. If i is employed, then he randomly picks an unemployed acquaintance with

weights proportional to gij and passes the information along. If all direct contacts are employed,

then the information is lost. The special case where the ai's are the same across i and where gij

takes on values either 0 and 1 and gij = gji is analyzed in Calv�o-Armengol and Jackson (2004). We

can also allow agents to relay information in the case that all of their acquaintances are employed.

Next, let jobs be heterogeneous and wages take on di�erent values. Let wi be the highest wage

attainable by agent i. At the beginning of each period, agent i hears about a job opening o�ering

a wage wi with probability awi
i 2 (0; 1). If i directly hears about a new job that pays a higher wage

than i's current job position, then agent i keeps that information.8 If the new job does not o�er

any improvement, then agent i randomly passes the information on to one of his direct contacts

with a current wage lower than that of the new job, with weights related to link intensities.

2.4 The Determination of O�ers, Wages, and Employment

Determination of O�ers

Let Oit be the random variable denoting the number of new opportunities that i has in hand

at the end of the hiring process in period t. Given Wt�1 = w, the distribution of Ot is governed by

the realizations of the pij(w)'s.

Determination of Employment

The employment status evolves as follows. If agent i was employed at the end of time t � 1

and/or receives o�ers in period t, then the agent is employed (Sit = 1) with probability (1 � bi)

and is unemployed (Sit = 0) with probability bi. If agent i was unemployed at the end of time t� 1

and receives no new o�ers, the agent stays unemployed (Sit = 0).

8A given agent may end up with o�ers for several jobs, as we discuss next. So holding on to information does not

necessarily imply that an agent takes that job.
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Determination of Wages

The evolution of wages is as follows. The function wi : IR+ � f0; 1; 2; : : :g ! IR+ describes the

wage that i obtains as a function of i's previous wage and the number of new job opportunities that

i ends up with at the end of the hiring phase. It is increasing in past wages, with wi(Wi;t�1; Oit) �

Wi;t�1.
9 We also assume that wi(Wi;t�1; Oit) is nondecreasing in the number of new o�ers received,

Oit, and that wi(0; 1) > 0 so that a new job brings a positive wage. The wage might be increasing

in the number of o�ers an agent has because competition between employers bids the wage up (e.g.,

see Arrow and Borzekowski (2001)), or simply due to a better match.

We assume that wi takes on a �nite set of values that fall in simple steps so that if w0 > w are

adjacent in the range of wi, then w0i = wi(w; 1). Wages are thus delineated so that an agent may

reach the next higher wage level with one o�er. We assume that the highest wage an agent may

obtain is above 0, that is wi > 0, and that wi(w
0; o) � wi(w; o + 1) for any o and w0 and w such

that w0i > wi. Having a higher wage is thus at least as good as having one additional o�er starting

from a lower wage (at least in expectations).

The wage of agent i then evolves as Wit = wi(Wi;t�1; Oit)Sit, where Sit keeps track of i's

employment status after the breakup phase.

Networks

We say that i is connected with j if pi(w) 6= pi(w�j; ewj) for some w and ewj.

The term \connected" does not necessarily mean that i and j pass information to each other;

it is just that their statuses directly or indirectly a�ect each other's probability of hearing about a

job.10 Let

Ni(p) = fj j i is connected with jg

We assume that connections are at least minimally reciprocal, so that i 2 Nj(p) if and only if

j 2 Ni(p). In the absence of such an assumption, all of the nonnegative correlation results that we

establish still hold; however, for strictly positive correlations to ensue, it must be that information

can have implications that travel suÆciently through the network to have one agent's status a�ect

another.

By keeping track of further levels of \connection" (i is connected to j is connected to k...), we

partition the set of agents so that all the agents in any element of the partition are path connected

to each other. We denote this partition by �(p).

We assume that any element of the partition, � 2 �(p), contains at least two agents, as

completely isolated agents have dynamics of wages and employment that are trivial.

An Economy

Given a speci�cation of N , pi's, and bi's, and an initial distribution over states �0, the stochastic

process of employment fS1; S2; : : :g and wages fW1;W2; : : :g is completely speci�ed. We refer to

the speci�cation of (N; p; b) satisfying the properties that we have outlined as an economy.

9Below, we discuss a direct extension of the model to include multiple job types, so that wages depend on the

number of o�ers for di�erent job types.
10Note that it is also possible that pij > 0, but i and j not be \connected" in cases where pi does not depend on

wj .
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3 The Dynamics and Patterns of Wage and Employment

It is easy to show that improving the state of an agent's neighbors' wages and/or employment will

improve the agent's future wages in the sense of �rst order stochastic dominance; and similarly, if

we add new neighbors to an agents' neighborhood. Deriving correlation patterns among agents'

wages is more diÆcult, and what we turn to now.

3.1 Wage Patterns and Dynamics

Suppose that agents are more likely to pass job information to direct connections with lower wages

than to those with higher wages. Take an agent who has a low wage, but whose wage is still higher

than some other agents who compete with her for information about a job. Then, this agents' next

period expected wage may be lower than what she would expect by quitting her job. Indeed, if she

were to quit her job, more of her connections may pass information to her, yielding to a positive

probability of getting several o�ers at once. This case is not precluded under the assumptions on

p. It is due to the fact that the model does not fully separate the arrival of o�ers over time. This

diÆculty is overcome when we look at �ne enough subdivisions of a period. Then, the probability

of obtaining more than one o�er becomes negligible compared to the probability of just one o�er.

T -period Subvidisions

Starting from an economy (N; p; b), the T -period subdivision, denoted (N; pT ; bT ), is such that

bTi = bi
T
and pTij =

pij
T

for each i and j.

Association

While �rst order stochastic dominance is well suited for capturing distributions over a single

agent's status, we need a richer tool for discussing interrelationships between a number of agents at

once. There is a generalization of �rst order stochastic dominance to random vectors, association,

introduced into the statistics literature by Esary, Proschan, and Walkup (1967).

A probability measure � describing a random vector (e.g., W de�ned on IRn) is associated if

Cov� (f; g) � 0

for all pairs of non-decreasing functions f : IRn ! IR and g : IRn ! IR, where Cov(f; g) is the

covariance E�[f(W )g(W )]�E�[f(W )]E�[g(W )].

Association tells us good news in the sense of higher values of Wi; i 2 fi1; : : : ; i`g about any

subset of agents (here, fi1; : : : ; i`g) is good (not bad) news for any other set of agents.

We say that W1; : : : ;Wn are associated if these are random variables described by an associated

measure �. Independent random variables are associated. Also, if W is a random vector described

by �, then association of � implies that Wi and Wj are non-negatively correlated for any i and j.

Strong Association

We also de�ne a strong version of association, useful to establish strictly positive relationships.
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A probability measure � describing a random vector on IRn is strongly associated relative to

the partition � if it is associated, and for any � 2 � and nondecreasing functions f and g

Cov� (f; g) > 0

whenever there exist i and j such that f is increasing in wi for all w�i, g is increasing in wj for all

w�j, and i and j are path connected under �.

Strong association captures the idea that better information about any of the dimensions in �

leads to strictly higher expectations regarding every other dimension in �. One implication of this

is that Wi and Wj are positively correlated for any i and j in �.

Theorem 1 Consider an economy (N; p; b). For all T , let �T be the (unique) steady state distri-

bution of (N; pT ; bT ).

� The limit, �, of the steady state distributions �T is strongly associated relative to �(p). Thus,

the wages of any path connected agents are positively correlated under � and �T for large

enough T .

� Starting from the steady state distribution, there is a strictly positive correlation between the

wage statuses of any path connected agents and at any times. That is, for any times t and t0

and large enough T ,

CovT
�
WitWjt0

�
> 0;

where i and j are path connected and CovT is the covariance associated with the T -period

subdivision starting at time 0 under the steady state distribution �T .

The theorem states that any path connected agents have positively correlated wage levels in

steady state and across time, and in fact exhibit strong association. The limit of the steady state

distributions as T becomes large is a very natural thing to consider, as it is a Poisson birth/death

process which would naturally describe the job search. The reason we work with a discrete time

approximation is purely for tractability in separating out the hiring and break-up phases.

The proof of Theorem 1 is long and appears in the appendix. The proof can be broken down

into several steps. The �rst step shows that for large enough T the steady state distribution is

approximately the same as one for a process where the realizations of pij(w) across di�erent j's

is independent. The idea is that for large enough T , the probability that just one job is heard

about overwhelms the probability that more than one job is heard about. This is also true under

independence. The proof then uses a characterization of steady state distributions of Markov

processes by Freidlin and Wentzel (1984) (as adapted to �nite processes by Young (1993)). We use

the characterization to verify that one can simply keep track of the probabilities of just a single job

event to get the approximate steady state distribution for large enough T . Next, note that under

independence of job hearing, there are no short-run negative conditional correlations. So we can

establish that the conclusions of the theorem are true under the independent process. Finally, we

come back to show that the same still holds under the true (dependent) process, for large enough

T .
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3.2 Employment Patterns and Dynamics

One might conjecture (as we initially did) that it would be a simple corollary to Theorem 1 for

employment to exhibit the same positive correlation structure as wages. While the strong associa-

tion of wages ensures that employment is weakly associated across agents, it is still possible for two

agents to have positively correlated wages and yet have their employment status be independent.

This is illustrated in the following example.

Example 1 Positive Correlation of Wages but Independence of Employment.

Let agent i's wages take on three values f0; 1; 2g and agent j's wages take on two values f0; 1g.

Let i and j be path connected (but say not connected).11 Consider a limiting steady state distri-

bution which has the following marginal distribution on Wi and Wj:

wj = 0 wj = 1

wi = 2 1
12

1
4

wi = 1 1
4

1
12

wi = 0 1
6

1
6

Under this distribution, Wi and Wj are positively correlated. Yet, Si and Sj are independent:

sj = 0 sj = 1

si = 1 1
3

1
3

si = 0 1
6

1
6

This points out that much richer information can be obtained by tracking wages as opposed to

employment, which is simply 0-1. For instance, if agents have reasonably high employment rates,

then network e�ects will mainly be observed through their wage dynamics and correlations, as the

quality of their jobs may vary dramatically even though their employment status may not.

This type of distribution cannot arise if p is a function of S rather than of W . With that added

condition we can establish variations of Theorem 1 for employment by similar methods.12

4 Dropping Out and Long-Run Inequality

Consider the following game endogenizing the network structure. Let di 2 f0; 1g denote i's decision

of whether to stay in the labor market. Each agent discounts future wages at a rate 0 < Æi < 1 and

pays an expected discounted cost ci � 0 to stay in. Agents dropping out get a payo� of zero.

11That is, i and j wage statuses do not in
uence each other, but i and j are connected through a chain of agents

whose wages statuses do in
uence each other.
12Having �xed an initial state W0, an economy induces a Markov chain on the state Wt. Note that this does not

correspond to a Markov chain on the state St, as the probability of transitions from St to St+1 can still depend on

Wt (rather than just St) and hence on t for a given starting distribution. Nevertheless, as the wage states do form a

Markov chain, there is a steady state distribution induced on the wage state W . As S is a coarsening of W , there is

a corresponding steady state distribution on S.
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An augmented economy is (N; p; b; c; Æ), where c and Æ are vectors of costs and discount rates.

When an agent i exits the labor force, we reset the p's so that pij(w) = pji(w) = 0 for all j and

w, but do not alter the other pkj's. The agent who drops out has his or her wage set to zero.13

Therefore, when an agent drops out, it is as if the agent disappeared from the economy.

Fix an augmented economy (N; p; b; c; Æ) and a starting state W0 = w. A vector of decisions d

is an equilibrium if for each i 2 f1; : : : ; ng, di = 1 implies

E

"X
t

ÆtiWit jW0 = w; d�i

#
� ci;

and di = 0 implies the reverse inequality.

The \drop-out" game is supermodular (see Topkis (1979)) which leads to the following lemma.

Lemma 1 Consider any augmented economy (N; p; b; c; Æ) and state W0 = w. There exists T 0 such

that for any T -period subdivision of the economy (T � T 0), there is a unique equilibrium d�(w) such

that d�(w) � d for any other equilibrium d.

We refer to the equilibrium d�(w) in Lemma 1 as the maximal equilibrium.

Theorem 2 Consider any augmented economy (N; p; b; c; Æ). Consider two starting wages states,

w0 � w with w 6= w0. There exists T 0 such that the set of drop-outs under the maximal equilibrium

following w0 is a subset of that under w for any T -period subdivision (T � T 0); for some speci�ca-

tions of the costs and discount rates the inclusion is strict. Moreover, if d�(w)i = d�(w0)i = 1, then

the distributions of i's wages and employment Wit and Sit for any t under the maximal equilibrium

following w0 �rst order stochastic dominate those under the maximal equilibrium following w, with

strict dominance for large enough t if d�(w)j 6= d�(w0)j for any j who is path connected to i. In

fact, for any increasing f : IRn
+ ! IR and any t

ET
�
f(Wt)

��W0 = w0; d�(w0)
�
� ET [f(Wt) jW0 = w; d�(w) ] ;

with strict inequality for some speci�cations of c and Æ.

Theorem 2 shows how persistent inequality can arise between two otherwise similar groups with

di�erent initial employment conditions.

4.1 Multiple Job Types

The model we have presented does not di�erentiate between di�erent types of jobs: wages depend

only on current wage levels and the number of received o�ers. In some situations, a worker might

be quali�ed for di�erent types of jobs and might even have di�erent networks for di�erent types

of jobs. The model is easily extended to accommodate such situations by simply keeping track

13This choice is not innocuous, as we must make some choice as to how to reset the function pkj when i drops out,

as this is a function of wi. How we set this has implications for agent j if agent j remains in the economy.
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of o�ers for di�erent types of jobs via di�erent p's. Wages are then a function of the best o�er

received in a given period. The monotonicity conditions readily extend as do all of our results.

As an illustration, consider a world with two types of jobs �low-skilled and high-skilled, where

high-skilled jobs pay a higher wage rate than low-skilled jobs. If an agent is unemployed and

receives o�ers only for low-skilled jobs, then he or she will take a low skilled job. If an agent hears

about a high-skilled job, then he or she will take a high-skilled job. If an agent is unemployed,

then he or she will only pass on information about low-skilled jobs if he or she also happens to

get information about a high-skilled job. If an agent is already employed, then the probability of

passing on information about both low-skilled and/or a high-skilled job is higher. The monotonicity

conditions still naturally hold.14
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Appendix

The following de�nitions and lemmas are useful in the proof of Theorem 1.

� and � are two probability measures on a state space that is a subset of IRn. � dominates � if

E� [f ] � E� [f ]

for every non-decreasing function f : IRn ! IR.15 The domination is strict if strict inequality holds

for some non-decreasing f . When n = 1, domination reduces to �rst order stochastic dominance.

Lemma 2 Consider two measures � and � on IRn which have supports that are a subset of a �nite

set W � IRn. � dominates � if and only if there exists a Markov transition function � :W ! P(W )

(where P(W ) is the set of probability measures on W ) such that

�(w0) =
X
w

�ww0�(w);

where � is a dilation (that is �ww0 > 0 implies that w0 � w). Strict domination holds if �ww0 > 0

for some w0 6= w.

Thus, � derives from � by an \upwards" shift of mass under the partial order � over w 2W .

Proof of Lemma 2: This follows from Theorem 18.40 in Aliprantis and Border (2000).

The set of subsets of states such that if one state is in the event then all states with at least as

high wages (person by person) are also in is:

E = fE �W j w 2 E;w0 � w ) w0 2 Eg:

Variations of the following useful lemma appear in the statistics literature (e.g., see Section 3.3

in Esary, Proschan and Walkup (1967)). We include a proof of this version for completeness.

15We can take the probability measures to be Borel measures and E�[f ] simply represents the usual
R
IRn

f(x)d�(x).
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Lemma 3 Consider two measures � and � on W . Then, � (E) � � (E) for every E 2 E, if and

only if � dominates �. Strict domination holds if and only if the �rst inequality is strict for at

least one E 2 E. The measure � is associated if and only if �(EE0) � �(E)�(E0) for every E and

E0 2 E. The association is strong (relative to �) if the inequality is strict whenever E and E0 are

both sensitive to some � 2 �.16

Proof of Lemma 3: First, suppose that for every E 2 E :

� (E) � � (E) : (1)

Take any f non-decreasing. Enumerate r1; : : : ; rK the elements on its range, rK > rk�1 : : : > r1. Let

EK = f�1(rK). f non-decreasing implies that EK 2 E . Inductively, de�ne Ek = Ek+1[ f
�1(rk�1).

Clearly, Ek 2 E . Note that
17

f(w) =
X
k

(rk � rk�1)IEk
(w):

Thus,

E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek) and E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek):

By (1), E�(f(Wt)) � E�(f(Wt)) for every non-decreasing f . This implies dominance. If �(E) >

�(E) for some E, then E�(IE(Wt)) > E�(IE(Wt)), and strict dominance follows.

Next let us show the converse. Suppose that � dominates �. For any E 2 E , let f(w) = IE(w).

This is a non-decreasing function. Thus, E�(IE(Wt)) � E�(IE(Wt)), and so � (E) � � (E).

To see that strict dominance implies that � (E) > � (E) for some E, note that under strict

dominance we have some f for which

E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek) > E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek):

Since �(Ek) � �(Ek) for each Ek, this implies that we have strict inequality for some Ek.

The proof for association (and strong association) is a straightforward extension of the above

proof that we leave to the reader (or see Esary, Proschan and Walkup (1967)).

Lemma 4 Let � be associated and have full (�nite) support on values of W . If f is nondecreasing

and is increasing in Wi for some i, and g is a nondecreasing function which is increasing in Wj

for some j, and Cov�(Wi;Wj) > 0, then Cov�(f; g) > 0.

Proof of Lemma 4: We �rst prove the following Claim.

Claim 1 Let � be associated and have �nite support. If f is an increasing function of Wi which

depends only on Wi, and g is an increasing function of Wj which depends only on Wj, and

Cov� (Wi;Wj) > 0, then Cov� (f (W ) ; g (W )) > 0.
16E is sensitive to � if its indicator function is. A nondecreasing function f : IRn ! IR is sensitive to � 2 �

(relative to �) if there exist x and ex� such that f(x) 6= f(x��; ex�) and x and x��; ex� are in the support of �.
17IE is the indicator function of E.
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Proof of Claim 1: We write

Cov� (Wi;Wj) =

Z +1

�1

Z +1

�1
Cov�

�
IWi

(s) ; IWj
(t)
�
dsdt; 18

where IWi
(s) = 1 if Wi > s, and IWi

(s) = 0, otherwise. By assumption, Cov� (Wi;Wj) > 0.

Therefore, Cov�
�
IWi

(s) ; IWj
(t)
�
> 0 for a set of s; t's. Also,

Cov� (f (Wi) ; g (WJ)) =

Z +1

�1

Z +1

�1
Cov� (If (s) ; Ig (t)) dsdt; (2)

where If (s) = 1 if f (Wi) > s, and If (s) = 0, otherwise. For each s as described above, there

exists some s0 such that IWi
(s) = 1 if and only if If (f (s

0)) = 1, and similarly for t, g, and t0.

Therefore, Cov� (If (f (s
0)) ; Ig (g (t

0))) > 0. Given the �nite support of W , the sets of such s; t's

and corresponding s0; t0's are unions of closed intervals with nonempty interiors. By association

also we know that Cov� (If (f (s)) ; Ig (g (t))) � 0 for any s; t. Since this expression is positive on a

set with positive measure, and everywhere nonnegative, it follows from (2) that Cov� (f; g) > 0.

Next consider f that is increasing inWi, but might also depend onW�i. Label the possible wage

levels of i by wk
i where w1

i = 0 and wK
i = wi. Let 
 = minK�k>1;w�i

f(wk
i ; w�i) � f(wk�1

i ; w�i).

By the increasing property of f it follows that 
 > 0. De�ne f 0(wk
i ) = f(0; : : : ; 0) + k 
2 . Let

f 00(w) = f(w) � f 0(wi). It is easily checked that f 00 is non-decreasing. Similarly de�ne g0 and g00

for g relative to Wj. Then

Cov(f; g) = Cov(f 00; g00) + Cov(f 00; g0) + Cov(f 0; g00) + Cov(f 0; g0):

By association, each expression is nonnegative. By Claim 1 the last expression is positive.

Fix the economy (N; p; b). Let P T denote the matrix of transitions between di�erent w's under

the T -period subdivision. So P T
ww0 is the probability that Wt = w0 conditional on Wt�1 = w.

Let P T
wE =

P
w02E P T

ww0 .

Lemma 5 Consider an economy (N; p; b). Consider w0 2 W and w 2 W such that w0 � w, and

any t � 1. Then there exists T 0 such that for all T � T 0 and E 2 E

P T
w0E � P T

wE :

Moreover, if w0 6= w, then the inequality is strict for at least one E.

Proof of Lemma 5: Let us say that two states w0 and w are adjacent if there exists ` such that

w0�` = w�` and w0` > w` take on adjacent values in the range of `'s wage function.

We show that

P T
w0E � P T

wE :

18See, for instance, Corollary B in Section 3.1 of Szekli (1995). As � has �nite support, these integrals trivially

exist.
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for large enough T and adjacent w and w0, as the statement then follows from a chain of comparisons

across such w0 and w. Let ` be such that w0` > w`. By de�nition of two adjacent wage vectors,

w0i = wi, for all i 6= `. We write

P T
wE =

X
o

ProbTw(Wt 2 EjOt = o)ProbTw(Ot = o);

where ProbTw is the probability conditional on Wt�1 = w. Note that by property (1) of p, p`j(w
0) �

p`j(w) for all j 6= `. Also since w0k = wk for all k 6= ` property (1) also implies that pij(w
0) � pij(w)

for all j 6= ` and for all i. These inequalities imply that ProbTw0(O�`;t) dominates Prob
T
w(O�`;t). It

is only `, whose job prospects may have worsened.

Since w0` > w`, given our assumption on wages (that wi(w
0; o) � wi(w; o+1) for any o and w

0 and

w such that w0i > wi), it is enough to show that for any a, ProbTw0(O`;t � a) � ProbTw(O`;t � a+1).

This holds for large enough T , given the independence of di�erent realizations of pj` and pi` for

i 6= j and property (2) of p, as then the probability of any given number of o�ers is of a higher

order than that of a greater number of o�ers (regardless of the starting state).19

To see the strict domination, consider E = fwjw` � w0`g. Since (for large enough T ) there is a

positive probability that ` hears 0 o�ers under w, the inequality is strict.

Given a measure � on W , let �P T denote the measure induced by multiplying the (1�n) vector

� by the (n � n) transition matrix P T . This is the distribution over states induced by a starting

distribution � multiplied by the transition probabilities P T .

Lemma 6 Consider an economy (N; p; b) and two measures � and � on W . There exists T 0 such

that for all T � T 0, if � dominates �, then �P T dominates �P T . Moreover, if � strictly dominates

�, then �P T strictly dominates �P T .

Proof of Lemma 6:

[�P T ](E)� [�P T ](E) =
X
w

P T
wE (�w � �w) :

By Lemma 2 we rewrite this as

[�P T ](E)� [�P T ](E) =
X
w

X
w0

�w0�w0wP
T
wE �

X
w

�wP
T
wE :

As the second term depends only on w, we rewrite that sum on w0. Then, since � is a dilation (and

�w0w > 0 only if w � w0) we can sum over w � w0:

[�P T ](E) � [�P T ](E) =
X
w0

�w0

0@ X
w�w0

�w0wP
T
wE � P T

w0E

1A :

Lemma 5 implies that for large enough T , P T
wE � P T

w0E whenever w � w0. Thus since �w0w � 0 andP
w�w0 �w0w = 1; the result follows.

19This holds provided w0
` < w`, but in the other case, the agent is already at the highest wage state and so the

claim is veri�ed.
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Suppose that � strictly dominates �. It follows from Lemma 2 that there exists some w 6= w0

such that �w0w > 0. By Lemma 5, there exists some E 2 E such that P T
wE > P T

w0E. Then

[�P T ](E) > [�P T ](E) for such E, implying (by Lemma 3) that �P T strictly dominates �P T .

Proof of Theorem 1: Recall that P T denotes the matrix of transitions between di�erent w's.

Since P T is an irreducible and aperiodic Markov chain, it has a unique steady state distribution

that we denote by �T . The steady state distributions �T converge to a unique limit distribution

(see Young (1993)), which we denote ��.

Let P
T
be the transition matrix where the process is modi�ed as follows. Starting in state w,

in the hiring phase each agent i hears about a new job (and at most one) with probability pi(w)
T

and this is independent of what happens to other agents, while the breakup phase is as before with

independent probabilities bi
T
of losing jobs. Let �T be the associated (again unique) steady state

distribution, and �� = limT �
T (which is well-de�ned as shown in the proof of Claim 2 below).

The following claims establish the theorem.

Claim 2 �� = ��.

Claim 3 �� is strongly associated.

The following lemma is useful in the proof of Claim 2.

Let P be a transition matrix for an aperiodic irreducible Markov chain on a �nite state space

Z.

For any z 2 Z, let a z-tree be a directed graph on the set of vertices Z, with a unique directed

path leading from each state z0 6= z to z. Denote the set of all z-trees by Tz. Let

pz =
X
�2Tz

�
�z0;z002�Pz0z00

�
: (3)

Lemma 7 Freidlin and Wentzel (1984):20 If P is a transition matrix for an aperiodic, irreducible

Markov chain on a �nite state space Z, then its unique steady state distribution � is described by

�(z) =
pzP

z02Z pz0
;

where pz is as in (3) above.

Proof of Claim 2: Given w 2W , we consider a special subset of the set of Tw, which we denote

T �
w . This is the set of w-trees such that if w0 is directed to w00 under the tree � , then w0 and

w00 are adjacent. As P T
w0;w00 goes to 0 at the rate 1=T when w0 and w00 are adjacent,21 and other

transition probabilities go to 0 at a rate of at least 1=T 2, it follows from Lemma 7 that �T (w) may

be approximated for large enough T byP
�2T �

w

h
�w0;w002�P

T
w0w00

i
PbwP�2T �bw ��w0;w002�P

T
w0w00

� :
20See Chapter 6, Lemma 3.1; and also see Young (1993) for the adaptation to discrete processes.
21Note that under property (3) of p, since w0 and w00 are adjacent, it must be that P T

w0;w00 6= 0.
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Moreover, note that for large T and adjacent w0 and w00, P T
w0w00 is either bi

T
+o(1=T 2) (when w0i > w00i )

or pi(w
0)

T
+o(1=T 2) (when w0i < w00i ), where o(1=T

2) indicates a term that goes to zero at the rate of

1=T 2. For adjacent w0 and w00, let eP T
w0w00 = bi

T
when w0i > w00i , and

pi(w0)
T

when w0i < w00i .
22 It then

follows that

��(w) = lim
T!1

P
�2T �

w

h
�w0;w002�

eP T
w0w00

i
PbwP�2T �bw

h
�w0;w002�

eP T
w0w00

i : (4)

By a parallel argument, this is the same as ��(w).

Proof of Claim 3: Equation 4 and Claim 2 imply that

��(w) = lim
T!1

P
�2T �

w

h
�w0;w002�

eP T
w0w00

i
PbwP�2T �bw

h
�w0;w002�

eP T
w0w00

i :
Multiplying top and bottom of the fraction on the right hand side by T , we �nd that

��(w) =

P
�2T �

w

h
�w0;w002�

bPw0w00

i
PbwP�2T �bw

h
�w0;w002�

bPw0w00

i ; (5)

where bP T is set as follows. For adjacent w0 and w00 (letting i be the agent for whom w0i 6= w00i )bP T
w0w00 = bi when w0i > w00i , and pi(w

0) when w0i < w00i ,
23 and bP T

w0w00 = 0 for non-adjacent w0 and w00.

The proof of the claim is then established via the following steps.

Step 1: �� is associated.

Step 2: �� is strongly associated.

Proof of Step 1: We show that for any T and any associated �, �P
T
is associated. From this,

it follows that if we start from an associated �0 at time 0 (say an independent distribution), then

�0(P
T
)k is associated for any k. Since �T = limk �0(P

T
)k for any �0 (as �T is the steady-state

distribution), and association is preserved under (weak) convergence,24 this implies that �T is

associated for all T . Then again, since association is preserved under (weak) convergence, this

implies that limT �
T = �� is associated.

So, let us now show that for any T and any associated �, � = �P
T
is associated. By Lemma 3,

we need to show that

�(EE0)� �(E)�(E0) � 0 (6)

for any E and E0 in E . Write

�(EE0)� �(E)�(E0) =
X
w

�(w)
�
P
T
wEE0 � P

T
wE�(E

0)
�
:

Since Wt is independent conditional on Wt�1 = w, it is associated.25 Hence,

P
T
wEE0 � P

T
wEP

T
wE0 :

22We take T high enough such that all coeÆcients of the transition matrix eP are between 0 and 1.
23If pi(w

0) > 1 for some i and w0, we can divide top and bottom through by some �xed constant to adjust, without

changing the steady state distribution.
24See, for instance, P5 in Section 3.1 of Szekli (1995).
25See, for instance, P2 in Section 3.1 of Szekli (1995).
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Substituting into the previous expression we �nd that

�(EE0)� �(E)�(E0) �
X
w

�(w)P
T
wE

�
P
T
wE0 � �(E0)

�
: (7)

Under the properties of the pij's, both P
T
wE and

�
P
T
wE0 � �(E0)

�
are non-decreasing functions of

w. Thus, since � is associated, it follows from (7) that

�(EE0)� �(E)�(E0) �

"X
w

�(w)P
T
wE

# "X
w

�(w)
�
P
T
wE0 � �(E0)

�#
:

Then since
P

w �(w)
�
P
T
wE0 � �(E0)

�
= 0 (by the de�nition of �), the above inequality implies (6).

Proof of Step 2: We have already established association. Thus, we need to establish that for

any f and g that are increasing in some wi and wj respectively, where i and j are path connected,

Cov��(f; g) > 0:

By Lemma 4 it suÆces to verify that

Cov��(Wi;Wj) > 0

For any transition matrix P , let Pwij =
P

w0 Pww0w0iw
0
j, and similarly Pwi =

P
w0 Pww0w0i. Thus

these are the expected values of the product WiWj and the wage Wi conditional on starting at w

in the previous period, respectively.

Let

CovTij =
X
w

�T (w)P
T
wij �

X
w

�T (w)P
T
wi

X
w0

�T (w0)P
T
w0j:

It suÆces to show that for each i; j for all large enough T , we have CovTij > 0.

The matrix P
T
has diagonal entries P

T
ww which tend to 1 as T ! 1 while other entries tend

to 0. Thus, we use a closely associated matrix, which has the same steady state distribution, but

for which some other entries do not tend to 0.

Let

P T
ww0 =

(
TP

T
ww0 if w 6= w0

1�
P

w00 6=w TP
T
ww00 if w0 = w.

One can directly check that the unique steady state distribution of P T is the same as that of P
T
,

and thus also that

CovTij =
X
w

�T (w)P T
wij �

X
w

�T (w)P T
wi

X
w0

�T (w0)P T
w0j:

Note also that transitions are still independent under P T . This implies that starting from any w,

the distribution P T
w is associated and so

P T
wij � P T

wiP
T
wj:
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Therefore,

CovTij �
X
w

�T (w)P T
wiP

T
wj �

X
w

�T (w)P T
wi

X
w0

�T (w0)P T
w0j:

Note that P T
wi converges to

ePwi, where ePwi is the rescaled version of bP (de�ned in the proof of

Claim 2),

ePww0 =

(
T bPww0 if w 6= w0

1�
P

w00 6=w T bPww00 if w0 = w.

It follows that

lim
T!1

CovTij �
X
w

��(w) ePwi ePwj �X
w

��(w) ePwiX
w0

��(w0) ePw0j:

Thus, to complete the proof, it suÆces to show thatX
w

��(w) ePwi ePwj >X
w

��(w) ePwiX
w0

��(w0) ePw0j : (8)

Viewing ePwi as a function of w, this is equivalent to showing that Cov( ePwi; ePwj) > 0. From Step 1

we know that �� is associated. We also know that ePwi and ePwj are both non-decreasing functions

of w.

First let us consider the case where j 2 Ni(p).
26 We know that ePwi is increasing in wi, and also,

given the assumptions on p, that ePwi is increasing ni wj for j 2 Ni(p). Similarly, ePwj is increasing
in wj . (8) then follows from Lemma 4 (where we apply it to the case where Wi =Wj), as both ePwi
and ePwj are increasing in wj .

Next, consider any k 2 Nj(p). Repeating the argument above, since ePwj is increasing wj we

apply Lemma 4 again to �nd that Wi and Wk are positively correlated. Repeating this argument

inductively leads to the conclusion that Wi and Wk are positively correlated for any i and k that

are path connected.

The �rst part of Theorem 1 now follows from Claim 3 since �T ! ��.We now show the second

part. We know from Claim 3 that �� is strongly associated. The result then follows by induction

using Lemma 6,27 and then taking a large enough T so that �T is close enough to �� for the desired

strict inequalities to hold.

Proof of Lemma 1: Consider what happens when an agent i drops out. The resulting w0 is

dominated by the w if that agent does not drop out. Furthermore, from Lemma 6 for large enough

T , the next period wage distribution over other agents when the agent drops out is dominated

by that when the agent stays in, if one were to assume that the agent were still able to pass

job information on. This domination then easily extends to the case where the agent does not

pass any job information on. Iteratively applying this, the future stream of wages of other agents

is dominated when the agent drops out relative to that where the agent stays in. This directly

26If i is such that Ni(p) = ;, then strong association is trivial. So we treat the case where at least two agents are

path connected.
27While Lemma 6 does not state that the strict inequalities are preserved on given elements of the partition �(p),

it is easy extension of the proof to see that this is true.
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implies that the drop-out game is supermodular. The lemma then follows from the theorem by

Topkis (1979).

Proof of Theorem 2: Let w � w0 and d 2 f0; 1gn. We �rst show that for large enough T

ET
�
f(Wt)

��W0 = w0; d
�
� ET [f(Wt) jW0 = w; d ] :

Lemma 5 implies that for a �ne enough T -period subdivision and for every non-decreasing f ,

ET
�
f(W1)

��W0 = w0; d
�
� ET [f(W1) jW0 = w; d ] :

Lemma 6 and a simple induction argument then establish the inequality for all t � 1. The inequality

is strict whenever f is increasing and w0 > w.

Next, let d � d0. For a �ne enough T -period subdivision and for every non-decreasing f , given

that drop-outs have wages set to the lowest level it follows that

ET
�
f(W1)

��W0 = w; d0
�
� ET [f(W1) jW0 = w; d ]

As before, the inequality extends to all t � 1 by induction. Again, f increasing and d0 > d imply a

strict inequality. Combining these observations, we �nd that for large enough T when w0 � w and

d0 � d

ET
�
f(Wt)

��W0 = w0; d0
�
� ET [f(Wt) jW0 = w; d ] (9)

Consider the maximal equilibrium d�(w). By (9), for large enough T and all t

ET
�
Wit

��W0 = w0; d�(w)
�
� ET [Wit jW0 = w; d�(w) ]

Thus, X
t

ÆtiE
T
�
Wit

��W0 = w0; d�(w)
�
�
X
t

ÆtiE
T [Wit jW0 = w; d�(w) ]

If d�(w)i = 1, thenX
t

ÆtiE
T
�
Wit

��W0 = w0; d�(w)
�
�
X
t

ÆtiE
T [Wit jW0 = w; d�(w) ] � ci

and so also for all d0 � d�(w), if i is such that d�(w)i = 1, thenX
t

ÆtiE
T
�
Wit

��W0 = w0; d0
�
� ci: (10)

Set d0i = d�(w)i for any i such that d�(w)i = 1. Fixing d0 for such i's, �nd a maximal equilibrium at

w0 for the remaining i's, and set d0 accordingly. By (10), it follows that d0 is an equilibrium when

considering all agents. It follows that d0 � d�(w). Given the de�nition of maximal equilibrium, it

then follows that d�(w0) � d0 � d�(w).
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