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[1] We analyze spatio-temporal patterns in rotation angles of double-couple–constrained
mechanisms of aftershocks of the 1992 Landers earthquake. The rotation angles provide
information on the distribution of source geometries in different regions of space and time
with respect to the mainshock focal mechanism. The results indicate that the mechanisms
of the early aftershocks are more scattered and less aligned with the mainshock than those
of the long-term events. This is most pronounced around the northern end of the Landers
rupture, least pronounced around the central section, and intermediate around the southern
end of the rupture. The relatively large scatter and misalignment of the mean rotation
angles of the early focal mechanisms around the edges of the Landers rupture suggest
possible volumetric earthquake strain in these regions. The results may reflect isotropic
source terms produced by dynamic generation of rock damage. Synthetic tests indicate that
the observed differences in the rotation distributions of the early and long-term events
around the end regions of the Landers rupture can result from neglecting in the inversion
process isotropic components that are 0.03–0.15 of the total event moments.

Citation: Ross, Z. E., and Y. Ben-Zion (2013), Spatio-temporal variations of double-couple aftershock mechanisms and
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1. Introduction

[2] Most studies on the physics and properties of crustal
earthquakes focus on deviatoric/shear stress-strain compo-
nents. This holds for routine derivations of earthquake
source parameters, laboratory experiments, and simulations
of earthquake and fault dynamics over both short and long
time scales. While the changes of stress and strain during
crustal earthquakes are predominantly deviatoric [e.g., Reid,
1910; Riedesel and Jordan, 1989; Dufumier and Rivera,
1997], even small dynamic variations of volumetric and
normal stress-strain components can have fundamental
implications for many aspects of earthquake and fault
mechanics. For example, the evolution of fault resistance
to motion with slip, and more generally the energy
partitioning during faulting, can be altered dramatically by
changes of normal stress and volumetric deformation. Tran-
sient changes of normal stress may be produced within
earthquake rupture zones by mechanisms ranging from
sliding on rough surfaces, ruptures on bimaterial interfaces
and various fluid-thermal effects [e.g., Brune et al., 1993;
Ben-Zion, 2001; Rice, 2006]. Dynamic changes of elastic

moduli in earthquake source volumes can generate damage-
related radiation associated with a significant isotropic
component [Ben-Zion and Ampuero, 2009]. This is expected
especially near rupture ends, geometrically complex fault
sections and regions without large preexisting faults. Recent
observations of enhanced high-frequency P waves from after-
shocks of the 2010 El Mayor-Cucapah earthquake may reflect
damage-related isotropic radiation from earthquake source
volumes [Castro and Ben-Zion, 2013].
[3] Individual earthquakes may be viewed as sensors of

inelastic strain associated with slip patches of various sizes
distributed throughout the seismogenic zone. The potency
tensors Pij of earthquakes, computed from catalogs of focal
mechanisms, can be used to describe 4-D patterns of seismic
strain fields. The degree of heterogeneity of a seismic strain
field in a region can be quantified by calculating the distribu-
tion of rotations among sets of potency tensors. The stability
of results can be increased using summed potency tensors
instead of individual ones [e.g., Bailey et al., 2010]. Typical
focal mechanism inversions constrain the solutions to be
deviatoric [e.g., Hardebeck and Shearer, 2002; Yang et al.,
2012], so the isotropic components of individual source
tensors are by default zero. Nevertheless, populations of
derived deviatoric mechanisms can be used to track collec-
tively the 4-D variations of the seismic strain field, including
volumetric components, around earthquake rupture zones.
[4] In the present paper, we attempt to find signatures of

volumetric components of faulting by analyzing rotations
of double-couple–constrained focal mechanisms. To have a
high density of events in a geometrically complex area, we
examine aftershocks of the 1992 Mw 7.3 Landers earthquake
(Figure 1). In regions surrounding the north and south ends
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of the Landers mainshock rupture we find clear deviations in
the distribution of rotations of early aftershock mechanism
from the long-term pattern. The deviations decay gradually
within about a year from the time of the Landers mainshock
to the common regional pattern. The results may be
explained in terms of small isotropic source components in
the early aftershocks near the rupture ends, where they are
expected to exist, which were neglected in the derivation
of the double-couple (DC) mechanisms.

2. Methodology and Results

[5] We examine spatio-temporal variations in the orientations
of aftershock focal mechanisms, constrained to be double-

couples, for evidence of isotropic source components.We antic-
ipate the size of the isotropic source component of regular tec-
tonic earthquakes to be generally small, but to increase in
areas (e.g., near rupture ends) where the faulting process is
expected to produce rock fracturing. To have statistically signif-
icant tests, we need a sufficiently large number of events. In this
work we analyze aftershocks of the 1992 Mw 7.3 Landers
earthquake that was associated with complex faulting and
produced a high density of aftershocks in a narrow space-time
window. We assume that early aftershocks respond to and
largely reflect stress-strain changes produced by the mainshock,
and that with increasing time later aftershocks return progres-
sively to a response that reflects the regional background field.

Depth (km)

Figure 1. Aftershocks of the 1992 M 7.3 Landers earthquake (red star and focal mechanism) in the
eastern California shear zone. The study area is divided into three approximately equal regions surround-
ing the two rupture ends and the central section. The epicenter locations (color-coded by depth), and
associated double-couple–constrained mechanisms used in the analysis, are from the regional 1980–2010 focal
mechanism catalog of Yang et al. [2012].

ROSS AND BEN-ZION: DC ROTATIONS AND VOLUMETRIC STRAIN

2348



[6] The source of each earthquake is quantified with the
seismic potency tensor given by [Ben-Zion, 2003]

Pij ¼
Z
V

eTijdV (1)

where eTij is the transformational strain [e.g., Eshelby, 1957]
and V is the source volume. The potency tensor is a strain-
based analog of the seismic moment tensor Mij [Backus
and Mulcahy, 1976; Ampuero and Dahlen, 2005] given by
the product of the potency tensor with the tensor of elastic
moduli at the source [Ben-Zion, 2008; Chapman and Leaney,
2012]. We prefer to use potency tensors because they represent
the seismic source without making assumptions on values of
elastic moduli at the source volumes. The analysis employs
the relocated Southern California focal mechanism catalog of
Yang et al. [2012], constrained to be double-couples and de-
rived with the program HASH using first motion polarities
and amplitude ratios [Hardebeck and Shearer, 2002]. The seis-
mic potency of each event is obtained from the magnitude
using the empirical magnitude-potency scaling relation of
Ben-Zion and Zhu [2002].
[7] The magnitude of completeness of earthquakes in the

Landers area is estimated to be about M 2.2. There are 4139
recorded aftershocks around the Landers rupture with M≥ 2.2
(small circles in Figure 1) from the time of the mainshock
(28 June 1992) until the end of the employed catalog
(31 December 2010). The number of M ≥ 2.2 aftershocks
within 20 days of the mainshock is 1031. To examine after-
shock focal mechanism orientations in regions expected to be
associated with different amounts of rock fracturing, we divide
the study area into three portions. Regions A and C are around
the ends of the Landers rupture while region B is around the
central section of the rupture zone (Figure 1).

[8] An earthquake source tensor can be defined by the
orientations of its principal axes, P, T, and B, and the set
of corresponding eigenvalues. To examine signatures of
possible evolution or heterogeneity in the orientations of
these axes, we need a measure of the difference between
two orientation tensors A and B. This is provided by the
angle necessary to rotate one set of principal axes into
another, which is defined by [Kagan, 1991]

Ω ¼ 2 arccos q0ð Þ (2)

where q0 is the scalar component of a normalized quaternion
q 0 = q0 + q1i+ q2j+ q3k that describes the rotation. The angle
of rotation is defined for 0� ≤Ω ≤ 120�, which means that no
two sets of principal axes can be more than 120� apart. There
are four different ways of rotating a source tensor to the
same final orientation. Here we use the minimum of the four
angles, which can be obtained by [Kuipers, 2002]

Ωmin ¼ arccos
max Tr R1ð Þ;Tr R2ð Þ;Tr R3ð Þ;Tr R4ð Þð Þ � 1

2

� �
(3)
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with eAi and e

B
i being the ith eigenvectors of tensors A and B,

respectively. Below we denote for simplicity the minimum
rotation angle as Ω.
[9] Because the rotation angle does not take into account

the eigenvalues of the source tensors, it solely represents
their angular misalignment. In the following, we use the
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Figure 2. Histograms of rotation angles of the double-couple–constrained mechanisms of aftershocks in
the northern region A of Figure 1. The black dashed lines show the analytic probability density function
for rotation angles between randomly oriented double couples [Kagan, 1992]. (a) Results for events within
20 days of the Landers mainshock. (b) Results for all events in the 1980–2010 catalog. The results show
considerable scatter from the orientation of the Landers mainshock mechanism and overall migration of
angles from high to low values. The bars in the inset show the net changes of probability density for each
bin between Figures 2a and 2b. In Figure 2a there are approximately 9% more the rotation angles above
70� than in Figure 2b and nearly all bins below 70� show a net increase of probability density.
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mainshock potency tensor to define a reference orientation,
and compute the set of minimum rotation angles between
the reference and each of the aftershock tensors within given
spatio-temporal bounds. The sampling distribution of these
angles is an indicator of the heterogeneity of the aftershock
focal mechanism orientations, and traditional statistics can
be used to describe the aspects of the sample. Using the
Landers focal mechanism as a reference allows us to inter-
pret the distribution with respect to the geometry of the
mainshock. If the reference focal mechanism is changed,
the axes of rotation also change leading to a different distri-
bution of angles. We tested alternative reference tensors
derived from weighted and normalized Kostrov summations
of the aftershocks [Kostrov, 1974; Bailey et al., 2010] and
find similar results.
[10] Figure 2a shows the histogram of rotation angles for the

double-couple mechanisms of events within 20 days of the
Landers mainshock in region A, along with the probability
density function (dashed black line) for randomly oriented
double couples [Kagan, 1992]. Figure 2b presents correspond-
ing results for all events in region A with M≥ 2.2, which
provide a reference expectation for the background seismicity
in the examined area. There are 412 events in the 20 day
window and 1074 events that occurred in this region between
the mainshock and the end of the catalog. The mean rotation
angle, Ω, is 65� for the 20 day window and 61� for the long
term data. Additionally, the histogram for the 20 day event
window shows a greater percentage of rotation angles above
70� than the histogram for the long-term window. This sug-
gests that early aftershocks in this region have focal mecha-
nisms less aligned with the mainshock than the background
seismicity in the region. To further quantify the extent of the
differences between these two histograms, we use a two-
sample Mann-Whitney U test [e.g., Hollander and Wolfe,
1973] to assess whether one of two independent samples has
larger values than the other.When conducting this test, we first
remove from the long-term set the events of the 20 day set. The
p-value for the U test is 10�5 and nearly any confidence level
chosen will lead to a rejection of the null hypothesis that the

two samples are from the same population. Some of the
aftershocks in region A are in a zone with east-west orienta-
tion (Figure 1) that has a high angle to most of the other seis-
micity. To test that the scatter in the rotation angles for the
short-term data relative to the long-term events is not
strongly influenced by the seismicity in this east-west
branch, we remove those events and repeat the above statis-
tical tests. The results indicate that the same behavior is
observed with these events removed.
[11] Using the same procedure for the central portion of

the Landers area (region B of Figure 1), we have 1384
events in the long-term set and 349 events in the short-
term set (Figure 3). The histograms appear visually similar,
suggesting that the focal mechanisms of early aftershocks
here are produced in no different proportions than the back-
ground events. The mean rotation angle for events in region
B is 50.6� over the 20 day window and 49.2� over the long
term. The U test for these data sets yields a p-value of 0.37,
from which we conclude that there is no statistical evidence
that one sample has larger values than the other. Performing
similar analyses for events in the southern portion (region C)
of the Landers rupture, we find that the mean rotation angle
in the short term is 51.3� and 48.7� over the long term
(Figure 4). The p-value for the U test in this region is 0.03,
which suggests that the early aftershocks have statistically
larger rotation angles than the background seismicity, as
with the other edge region.
[12] It is useful to examine the magnitude range over

which the results remain statistically significant. For region
A, the p-values are statistically significant at the 95% confi-
dence level or greater for minimum magnitude Mmin in the
range Mmin = 2.2–2.7. Above Mmin = 2.7, the number of
events in each sample is relatively small and, as a result,
the statistical tests are no longer sensitive enough to resolve
these effects. Region C is statistically significant at the 95%
confidence level or greater for Mmin = 2.2–2.6, while region
B is found not to be statistically significant at the 95%
confidence level for any minimum magnitude.
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Figure 3. (a–b) Similar to Figure 2 for events in the central region B of Figure 1. The results exhibit
considerably less scatter and temporal evolution than in region A, with lack of statistically significant
difference between the two populations. The inset in Figure 3b shows that the net changes between
Figures 3a and 3b are relatively small compared to those in Figure 2.
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[13] The results of Figures 2–4 exhibit spatio-temporal
variations in focal mechanism orientations. To obtain addi-
tional information on temporal evolution of these distribu-
tions in each region, we take first focal mechanisms within
5 days of the mainshock and compute the corresponding sets
of rotation angles. This provides roughly 150–200 focal
mechanisms for each region. Then we iteratively increase
the time window duration while keeping the starting time
(mainshock occurrence) fixed. For each window, we com-
pute Ω and continue this process until four years after the
mainshock (28 June 1996). This procedure employs progres-
sively larger number of events that provide increasingly
more stable results that approach gradually (Figure 5) the
long-term values in each of the three regions. In each region,
Ω decreases with time and stabilizes after a certain amount
of time at the long-term values of Figures 2b, 3b, and 4b.
The long-term mean values provide a measurement of how
much the average focal mechanism deviates from the
mainshock source configuration in a given space region.
Because these values are obtained using time windows of
4 years, they should include some events that are not after-
shocks. The mean rotation angles generally decrease mono-
tonically in time, other than for a single data point in region
C at 10 days after the mainshock. This suggests that as time
increases new events are produced with focal mechanisms
that relate more closely to the Landers mainshock than the
earlier aftershocks. Region A has the longest temporal decay
and requires 1–2 years to stabilize. The central region B has
the fastest decay and takes only about six months to stabilize
at the long-term value. The mean rotation angle for region B
appears to decay with time like the other two areas, although
this change is not detectable with the statistics used in the
context of Figure 3. As with the northern edge, region C
has a longer decay than the central section and takes over
one year to stabilize at the long-term value.
[14] An alternative method of analyzing the rotation angles

over time involves using a fixed number of events in the aver-
aging window instead of an increasing amount of time. Using
this type of sampling with various numbers of events per win-
dow produces the overall features of Figure 5, superposed with

temporal oscillations that depend on the number of used
events. A detailed analysis of the temporal oscillations
requires careful analysis of various potential artifacts and is left
for future work.

3. Fault Plane Solution Uncertainties

[15] There is a difference of approximately 4� between the
mean rotation angle measured 5 days after the mainshock
and the mean angle for the long-term seismicity in region
A (Figure 2). The elevated mean rotation angles in the
20 day window relative to the background seismicity, and
longer decay time to the background values near the main
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Figure 4. (a–b) Similar to Figure 2 for events in the southern region C of Figure 1. The results exhibit
intermediate scatter and temporal evolution compared to the results for regions A and B. The inset in
Figure 4b shows the angles mostly decrease from Figures 4a to 4b above 55�.
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rupture ends (Figure 5) are statistically robust results. The
set of faults associated with the Landers aftershocks have
highly complex geometry and are prime settings for the
production of rock damage during failure. Because the focal
mechanism catalog of Yang et al. [2012] was derived with
the constraint that each event is a pure double-couple, an
isotropic component in the true source mechanism will lead
to an error in the fault plane solution. Because isotropic
radiation adds a constant value to every point on the focal
sphere, some P wave radiation pattern values near the
nodal planes may end up having their sign flipped relative
to what is expected for a pure double-couple (Figure 6,
inset). This can produce a large error in the double-
couple–constrained solution. Below we test how significant
such errors can be in the HASH algorithm by using
synthetic first motion polarities.
[16] We represent the geometry of an earthquake source

mechanism with a unit potency tensor P̂ij [e.g., Ben-Zion,
2008]. The far-field P wave radiation pattern of a general
P̂ij can be written [e.g., Pujol and Herrmann, 1990; Aki
and Richards, 2002] as

RP ¼
ffiffiffi
2

p
giP̂ ijgj

� �
(4)

where gi are elements of the direction cosine vector. A
general earthquake source tensor can be decomposed into
isotropic and deviatoric components, with the deviatoric
part having a double-couple term and a remainder term
(e.g., compensated linear vector dipole, referred to as

CLVD). Given our focus on isotropic radiation, we
assume that the deviatoric component is a pure DC and
write P̂ij as [Zhu and Ben-Zion, 2013]

P̂ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
P̂DC
ij þ zP̂ I

ij (5)

[17] Here P̂ I
ij ¼

ffiffi
1
3

p
dij with dij being the identity matrix,

z is the fraction of the isotropic part of the source tensor
taking values from �1 to 1 to account for both implosive
and explosive cases, and P̂DC

ij is the potency tensor for an
arbitrarily oriented double-couple. Using (4), the P wave
radiation pattern for the double-couple component of P̂ij

can be written as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q ffiffiffi
2

p
giP̂

DC
ij gj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
RP
DC (6)

where RP
DC is the P wave radiation pattern for an arbi-

trarily oriented double-couple [Aki and Richards, 2002]
varying from �1 to 1. Similarly, the P wave radiation
pattern for the isotropic component of P̂ij can be written
as

z
ffiffiffi
2

p
giP̂

I
ijgj ¼

ffiffi
2

3

r
zgidijgj ¼

ffiffi
2

3

r
z: (7)

[18] We define an effective radiation pattern RP for a
source mechanism that includes a fraction z of isotropic
component as

RP � RP
DC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
þ

ffiffiffi
2

3

r
z

" #
(8)

[19] Along the double-couple nodal planes, where values
are close to zero, a nonzero value of z can produce a shift of
the actual nodal planes in the observed waveforms. Because
grid search algorithms that use polarities expect each quadrant
in the focal sphere to have the same size, any flipped polarities
introduced by an isotropic component will lead to error in the
derived fault plane solutions and cause a rotation in the
obtained eigenvectors. To obtain quantitative estimates, we
write RP

DC as a function of takeoff angle and azimuth as in
equation (4.89) of Aki and Richards [2002], and use Monte
Carlo simulations in two test cases to generate sets of radiation
patterns for given z values. In the first case, we select 30 take-
off angles drawn from a uniform distribution over [0,90�] and
30 azimuths from a uniform distribution on [0,360�]. These
are used to determine the radiation pattern for a specified
strike, dip, and rake of the double-couple component; the
particular sample size of 30 is an attempt to account for finite
sampling of the focal sphere during any event. We then use
the sign of the radiation pattern, along with the takeoff angles
and azimuths, to determine the fault plane solution with
HASH. This process is repeated 2000 times to get a set of
fault plane solutions indicative of the range possible by the
grid search algorithm.
[20] The assumed fault plane geometry of each event is used

as a reference for computation of rotation angles with the solu-
tions obtained from HASH. If this is done initially with z =0,
the mean rotation angle,Ω0, represents the total uncertainty in
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Figure 6. The uncertainty produced with the HASH algo-
rithm by forcing a source with double-couple and isotropic
components to be purely double-couple. The beach balls
on top illustrate schematically how a small isotropic compo-
nent can flip the polarities at stations near the nodal planes,
leading to a rotation (error) in estimating a double-couple
mechanism. The values shown correspond to an input range
for the isotropic parameter z (equation (5)) in the range
0–0.15. The thick lines show how the inversion errors
(in degrees) increase with z for the three basic double-
couple mechanisms. The results indicate that the mean error
of 4� observed in the focal mechanism catalog (Figures 2–4)
may reflect neglected isotropic components of 0.03–0.15.
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the algorithm itself with 30 stations used. TheΩ0 value can be
used to estimate the added uncertainty, ΔΩz, to a fault plane
solution for a given value of z

ΔΩz ¼ Ωz �Ω0 (9)

where Ωz is the mean rotation angle for a given z. We
investigated three basic focal mechanism cases to document
how the HASH algorithm behaves. Figure 6 shows the
obtained ΔΩz values for each focal mechanism case with
assumed z ranging from 0 to 0.15. For the Landers
mainshock, the difference between the short- (5 day) and
long-term mean rotation angles is approximately 4�. If this
difference is purely due to isotropic component of radiation,
the early aftershocks have on the average z ~ 0.03 assuming
strike slip mechanisms and z ~ 0.14–0.15 for the reverse and
normal cases. Because the distribution of focal mechanisms
in the Landers area (Figures 2–4) is very diverse, the average
z value for this region as estimated by the above technique
would likely fall somewhere in the range of 0.05–0.10.
The focal mechanisms retrieved in the synthetic tests with
z = 0.03 have an increase of the mean inversion misfit by
3.14% compared to the focal mechanisms with z= 0. Exam-
ining the DC-constrained mechanisms of Yang et al. [2012]
for the Landers aftershocks, we find that the mean inversion
misfit for the 20 day window is 3% higher than the misfit for
the long-term window. This is in very good agreement with
our synthetic results.
[21] The synthetic results leading to Figure 6 correspond

to an ideal situation with a uniform coverage of the focal
sphere. To estimate effects of isotropic radiation in a more
typical observational setting, we consider a second test case
with takeoff angles sampled from a distribution that is con-
centrated near the edge of the focal sphere. In this case we
draw takeoff angles from a normal distribution with a mean

of 90� and a standard deviation of 30�. This corresponds to a
situation where the majority of stations are near the edge
of the focal sphere (Figure 7, inset). As before, we perform
sets of 2000 inversions for realizations associated with
30 stations each, and calculate the mean rotation angle
for varying fractions of isotropic component. The inversion
errors for different isotropic components are shown in Figure 7.
Because the station configuration is significantly different
from that of the first case, the estimates of isotropic compo-
nents for a given rotation error in Figure 7 differ from those
of Figure 6, but both test cases produce similar trends. The
reverse and normal focal mechanisms are more sensitive to
the edge of the focal sphere than strike slip mechanisms. Based
on the observed difference in the mean rotation angles of the
short- and long-term results for region A (Figures 2a and 2b),
we estimate average isotropic components of 0.11, 0.07, and
0.04 for events with strike-slip, normal, and reverse mecha-
nisms, respectively. These numbers are in the same range as
those obtained with uniform focal sphere sampling.

4. Discussion

[22] A general faulting process, not limited to a preexisting
planar surface, produces brittle rock damage associated
with changes of elastic moduli within and around the failure
zone [e.g., Lockner et al., 1977; Hamiel et al., 2004;
Stanchits et al., 2006]. Seismic source tensors in regions
sustaining coseismic changes of elastic moduli can have non-
negligible isotropic components [Ben-Zion and Ampuero,
2009]. This is expected especially in regions without
preexisting through-going fault traces, near the rupture ends,
and around fault sections with large geometrical complexity
[Castro and Ben-Zion, 2013]. In sections 2 and 3 we examine
rotation angles of double-couple–constrained focal mechanisms
of the 1992 Landers aftershock sequence [Yang et al., 2012].
The analysis aims to clarify spatio-temporal variations of earth-
quake source tensors and possible existence of volumetric strain
changes in the source volumes. The examined mechanisms are
derived with the HASH algorithm [Hardebeck and Shearer,
2002] as double-couples, so the isotropic components of indi-
vidual source tensors are by default zero. Nevertheless, the
population of the double-couple mechanisms can be used to
assess likely variations of the coseismic strain fields, including
volumetric components, at different locations.
[23] The Landers mainshock propagated primarily in the

north-northwest direction through a complex set of faults
in the eastern California shear zone [Wald and Heaton,
1994]. The curved geometry of the Landers rupture, which
is especially prominent in the northern section, should lead
to coseismic generation of rock damage. The rupture and
arrest processes near the north and south mainshock edges
should include significant volumetric components that
are especially prominent in the main propagation direction
[e.g., Ben-Zion et al., 2012]. We thus expect significant
generation of rock damage around the northern end of the
Landers rupture (Figure 1, region A), relatively minor damage
in the central section (Figure 1, region B) and intermediate
damage near the southern rupture end (Figure 1, region C).
These expectations are consistent with the results of
Figures 2–5. The rotation angles of the double-couple mecha-
nisms of the early aftershocks in region A are closer to the
random distribution than in regions B and C; the difference
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between themean rotation angle of the early aftershocks and the
long-term value is largest in the northern region A, intermediate
in the southern region C, and smallest in the central region B;
the same order characterizes the time scales for the mean rota-
tion angle to stabilize at the long-term value.
[24] Numerous studies have pointed out that faulting on

nonplanar geometries can produce deviatoric source tensors
with CLVD components [e.g., Julian et al., 1998; Bailey
et al., 2010]. In the present work we focus on isotropic
source terms and show that deriving source tensors of
earthquakes with small isotropic components (equations
(5)–(8)) using an inversion algorithm that assumes purely
double-couple mechanisms can lead to the observed varia-
tions in the rotation angles of the double-coupled–constrained
mechanisms (Figures 6 and 7). We note that the analysis of
section 3 intends to demonstrate effects associated with
neglecting isotropic source term. These results do not imply
that the observed variations in rotation angles are produced
exclusively or predominantly by isotropic source components.
A more complete analysis should examine the likely contribu-
tions to scatter in double-couple–constrained mechanisms of
neglecting isotropic and CLVD components (along with other
possible mechanisms). Such analysis requires additional
methods not used in the present paper and is deferred to a
future work.
[25] Our results indicate that aftershock focal mechanisms

become more like the mainshock as time after the parent
event increases. To verify that the observed pattern is not
produced by a changing stations configuration, we examine
(Figure 8) the mean number of polarities used in the grid
search per event for each month following the mainshock.
The results show very similar evolution for regions A and
B where we observe the largest and smallest temporal varia-
tions. Moreover, for the first seven months the station cover-
age does not increase significantly and for two of the regions
it even decreases slightly. As a significant portion of the
temporal decay present in Figure 5 occurs during this time
window, we conclude that the observed phenomena are not
likely the result of an increase in station coverage. It could
be possible that spatio-temporal migration of the examined

events lead to progressive failures on different structures that
contribute significantly to the observed changes in the rota-
tion angle distributions. However, a plot of the aftershocks
in the region color-coded by the occurrence day after the
mainshock (see Figure S1 in the supporting information) does
not show any systematic migration of earthquake epicenters.
[26] Kagan [2000] investigated temporal changes of rota-

tion angle distributions between pairs of earthquakes in the
Harvard CMT catalog with lapse times between event
pairs from 0 to 120 days. In contrast to our results, Kagan
[2000] found that the mean rotation angle increases slowly
with time and interpreted this as indication that earthquakes
occurring closer in time have more similar source processes
than earthquakes occurring further apart. The different
observed patterns may reflect different processes occurring
at the different involved scales. Our study was designed spe-
cifically to analyze low magnitude aftershocks, covering small
spatio-temporal scales that may reflect local processes within
and around the mainshock rupture zone. The global study of
Kagan [2000] with only M> 5.5 events likely average over
the phenomena observed in this study. Furthermore, if the
results of Kagan [2000] were to hold at the same scales of
our study, the observed increase of the mean rotation angle
immediately after the Landers mainshock may provide
stronger evidence of a neglected isotropic component in the
source region.
[27] When conducting the synthetic tests, we estimated the

grid search uncertainty produced by neglecting z by shifting
the total uncertainty for each value of z down with an
amount equal to the mean rotation angle for z = 0. This value
is a measurement of the accuracy of the HASH grid search
algorithm given the number of used stations, assumed sta-
tion sampling over the focal sphere, and assumed focal
mechanism. Subtracting this value is equivalent to lineariz-
ing the uncertainty as a function of z to estimate the added
uncertainty for each value of z. For z values between 0 and
0.2, a linear approximation seems reasonable for all three
basic focal mechanisms (Figures 6 and 7); a simple linear
regression to these data yields R2 values larger than 0.90.
Although the linear trend may not continue beyond 0.20,
we have only considered values below this threshold so the
results provide adequate estimates of the uncertainty pro-
duced due to neglecting z in the grid search.
[28] The results of this study show that early aftershocks

of the 1992 Landers earthquake have source mechanisms
that are less aligned with the mainshock than the background
seismicity occurring in the same region over multiple years.
This could reflect, at least partly, a true phenomenon resulting
from complex coseismic and early postseismic strain fields
near the rupture ends. However, the variations in rotation
angles of the double-couple–constrained mechanisms may
also be produced, at least partially, as artifacts of the inver-
sion process neglecting small isotropic source terms. These
are expected to be generated by damage-related radiation
[Ben-Zion and Ampuero, 2009] and other sources of volumet-
ric deformation in fault sections with large geometrical com-
plexity and near rupture ends [e.g., Sibson, 1986; Ben-Zion
et al., 2012]. A more direct estimate of isotropic earthquake
source terms, and their contribution to scatter in double-
couple–constrained mechanisms, can be done by combining
full derivation of earthquake source tensors with analysis of
the type done here. This will be done in a future work.
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