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Supplementary Figures

Supplementary Figure 1: Magnetic-field strength. Magnetic-field strength on axis and 2.5 mm
off axis due to the permanent ring magnet configuration calculated using the FEMM finite element
code1. Bx is aligned parallel to the direction of flow of the jets while By is perpendicular to the
flow.

Supplementary Notes

Supplementary Note 1: Turbulence Scales

In table 1, we use 2 mm as the driving scale of the plasma. This value is twice the grid spacing,
where the factor of two comes from magnification of the grid due to the expansion of the plasma.
The distance between the plasma source and the grid is equal to the distance between the grid and
the collision region. This estimate of the driving scale is further supported by the early-time density
power spectrum, which deviates from a power law at a wavenumber corresponding to 2 mm, and,
more phenomenologically, by the size of the initial perturbations that can be seen at early times
in Fig. 2a of the main paper. The outer scale of the plasma grows with time, and, therefore, lies
between the identified value, 2 mm, and the total extent of the plasma, 5 mm. This conclusion is
supported by Fig. 3 in the main manuscript, where a power law holds up to increasingly larger
scales at later times. We note that the viscous-dissipation scale is of the order of 100 nm, far smaller
than the resolution limit of the experiment.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216303687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Supplementary Tables

Quantity Origin Value

Average atomic weight (A) C2H2F2 10.66 a.m.u.

Ion density (ni) Spectroscopy 2 - 3×1017 cm−3

Electron density (ne) Interferometry 3 - 6×1017 cm−3

Average ion charge (Z∗) ne
ni

1 - 2

Temperature (kBTe = kBTi) Spectroscopy 3 - 4 eV

Static magnetic field (B0) Permanent Magnets 180 mT

Advected magnetic field (∆B) Induction Loop 50 mT

Thermal β 2µ0
nikBTi+nekBTe

B2
0

40

Turbulent β 2µ0

1
2
AniV

2
turb

B2
0

500

Alfvén Velocity B0√
µ0Ani

2.5 km/s

Sound speed (cs)

√
ZkBTe+ 5

3
kBTi

A
10-12 km/s

Debye Length (λD)

√
ε0/e2(

ne
kBTe

)
+

(
Z2ni
kBTi

) 10 nm

Coulomb Logarithm (log∆) log λD(
e2

4πε0kBTe

) 4

Ion thermal collision time (τi) (4πε0)2 3
√
mi(kBTi)

3
2

4
√
π log∆e4Z4ni

10 ps

Electron thermal collision time (τe) (4πε0)2 3
√
me(kBTe)

3
2

4
√

2π log∆e4Z2ni
0.5 ps

Viscosity (ν) 0.96nikBTiτi
mini

3 cm2/s

Resistivity (η) 1
µ0

0.51me
nee2τe

106 cm2/s

Electron-ion equilibration time (τie)
(4πε0)2

1.8
(mekBTi+mikBTe)

3
2

(mime)
1
2 Z2e4ni log ∆

∼10 ns

Ion mean free path (λii)
(
kBTi
A

) 1
2
τi 100 nm

Scale Length (L) 2 mm 200 µm

Velocity (Vturb) < Vjet =66 km/s 10-50 km/s

Eddie turnover time L
Vturb

30 ns 4 ns

Mach number (Mturb) Vturb/cs ∼6 ∼1-6

Fluid Reynolds number (Re) VturbL/ν ∼ 105 ∼ 104

Magnetic Reynolds number (Rm) VturbL/η ∼1 ∼0.1

Viscous dissipation scale (lν) L/Re
3
4 100 nm

Supplementary Table 1: Plasma Parameters. Summary of relevant plasma parameters. Values
correspond to data taken 600 ns after the start of the drive laser. The S.I. unit system used for all
physical quantities in the above formulas and values, except the values of temperature expressed
in eV and atomic mass expressed in a.m.u..

2



Supplementary Methods

Calibration of magnetic-field induction loop

The design and calibration of the induction loop (“B-dot probe”) was described by Everson et al.2.
The Fourier transform of the produced voltage is related to the spectrum of the magnetic field via

Vmeas(ω)

B(ω)
= aNg

ω

1 + (ωτs)2
(ωτs + i), (1)

where τs is a quantity that depends on both the self- and mutual inductances of the circuit.
To calibrate the probe, a known time-varying magnetic field is generated with a Helmholtz coil,

driven by a network analyzer that sweeps a reference frequency, Vref(ω), between 9 kHz to 500
MHz. The magnetic field at the center of the Helmholtz coil is given by

B(ω) =

(
4

5

)3/2 µ0
rRp

[2Vref(ω)], (2)

where r and Rp are the radius and resistance of the Helmholtz coil, respectively. Introducing
an electrical time delay τ into supplementary eq. 1, and replacing the magnetic field with that
produced by the Helmholtz coil, we obtain the frequency-resolved response of the probe2:

Vmeas(ω)

Vref(ω)
= 2

(
4

5

)3/2
µ0

rRp
aNg

1

1 + (ωτs)2

{[
ωτs cos(ωτ)− sin(ωτ)

]
+ i
[
ωτs sin(ωτ) + cos(ωτ)

]}
, (3)

where N = 2 is the number of turns in the probe, and g = 0.5 the gain of the differential amplifier.
The probe’s cross sectional area, a, relaxation time, τs, and the overall delay time, τ , are varied
to fit the theoretical response to the calibration data. The real and imaginary components of the
probe’s frequency response are given in supplementary figure 2, along with a least-mean-squares
fit of supplementary eq. (3) to the data. Values of the fitting parameters are given within 95%
confidence bounds. Our calibration procedure showed that the frequency resolution of the probe is
approximately ω ≈ 250 MHz. We estimate averaging effects due to finite size will impact frequen-
cies higher than the frequency resolution of the probe.

Extraction of density power spectra from Schlieren images

Schlieren images of the density variation in the turbulent plasma were taken at a series of times
after the collision. The images have a pixel size of 50 µm and a resolution of better than 500 µm,
where the resolution was calculated from the FWHM of a knife edge placed in the focus of the
imaging system. We characterized the relative fluctuations in detected intensity by performing
spectral analysis of the jet-interaction region. In order to distinguish small-scale density variation
from large-scale inhomogeneities of the interaction region, we constructed a relative-intensity map,

I(x, y) =
Iraw(x, y)

MIsmoothed(x, y) + (1−M)Iraw(x, y)
− 1, (4)

where M is a mask with value 1 in the center of the plasma and 0 outside the extent of the plasma.
A two-dimensional Nuttall window is used to transition smoothly between the two. Ismoothed is
a coarse-grained mean field calculated using a 100 × 100-pixel smoothing filter, where 100 pixels
correspond to the approximate extent of the plasma (∼5 mm).
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Supplementary Figure 2: Induction-loop calibration. The real (left) and imaginary (right)
components of the frequency response of the induction loop (B-dot probe), as determined from the
calibration with the Helmholtz coil. Values of the fitting parameters from supplementary eq. (3)
are given with 95% confidence bounds. The deviation between the theoretical fit, dashed line, and
the calibration data occurs around 250 MHz.

The power spectra were then calculated by taking average values from a logarithmically binned
annular histogram of a two-dimensional fast Fourier transform (FFT) applied to the relative-
intensity image. To minimize the impact of detector-based defects in the image, the median,
rather than the mean, was used as a measure of central tendency for each bin: the former is more
robust against the outlying values typically associated with such features. The efficacy of these
methods has been successfully demonstrated previously3 and tested by superimposing such defects
on simulated Gaussian fields with prescribed spectra. Error estimates were performed by carrying
out the above analysis on four regions in the image, with the standard deviation used to define the
error bars in Figs. 3(a-c). The upper limit of the power spectra in Figs. 3(a-c) is defined by the
resolution of the Schlieren diagnostic,

√
2 × 2π/500 µm. The lower limit is instead given by the

size of the windowing function discussed above, 2π/5 mm.
Schlieren is an imaging technique sensitive to density variations in the plasma. The plasma

is illuminated with columnated parallel light, and an imaging system is used to form an image of
the plasma on the detector. An additional focusing lens and a knife edge, positioned between the
plasma and the detector, block any undeflected light. Thus, the intensity of the image formed is
proportional to the angular deflection acquired by the rays as they go through the plasma. For small
deflections, the observed intensity of the Schlieren image I(x, y) is proportional to the gradient of
the refractive index along a direction orthogonal to the knife edge, x, integrated along the path of
the light ray4. As the electron density, ne, is much smaller than the critical density of the plasma,
the intensity, I(x, y), is given by,

I(x, y) ∝
∫
∂ne
∂x

dz, (5)

where x and y are the spatial coordinates of the image plane and z is the direction normal to it.
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The 2D power spectrum of the intensity is, therefore,

P I2D(kx, ky) =

∣∣∣∣∫∫ I(x, y)e−i(xkx+yky)dxdy

∣∣∣∣2
∝
∣∣∣∣∫∫∫ ∂ne

∂x
e−i(xkx+yky)dxdydz

∣∣∣∣2
∝ k2x

∣∣∣∣∫∫∫ nee
−i(xkx+yky)dxdydz

∣∣∣∣2
∝ k2x

∫
Pn3D(k)δ(kz)dkz

(6)

where k =
√
k2x + k2y + k2z . The right hand side of supplementary eq. (6) is simply the kz = 0 cut

through the 3D Fourier spectrum of the electron density, ne. Thus,

P I2D(kx, ky) ∝ k2xPn3D(
√
k2x + k2y). (7)

Switching to polar coordinates (kx = k cosφ, ky = k sinφ) and averaging over φ gives

〈P I2D(k, φ)〉 ∝ k2Pn3D(k). (8)

The 3-D power spectrum of an isotropic density field is related to its 1-D density power spectrum
by Pn1D(k) = 4πk2Pn3D(k). Therefore,

〈P I2D(k, φ)〉 ∝ Pn1D(k), (9)

i.e., the angle-averaged intensity spectrum is proportional to the 1-D density power spectrum.
This relationship is confirmed by the results of numerical calculations, shown in figure 3. By the

inverse discrete Fourier transform of a 3-D power law, we construct a density field on an 80×80×80
grid. The desired power spectrum is scaled to give a maximum electron density of 5 × 1017/cm3,
and each Fourier harmonic is assigned a random phase. From synthetic Schlieren radiographs the
power-law exponent of the angularly averaged intensity power spectrum was calculated, and com-
pared to the exponent of the true 1-D density power spectrum. Figure 3 confirms the one-to-one
relationship for the case where the intensity is proportional to the displacement of the spot at the
knife edge, as assumed in equation (5). However, we note that equation (5) is an approximation,
and the intensity of the image will be a more complicated function of the size and shape of the
spot at the knife edge. Simulating a 100 µm FWHM Gaussian beam, with an initial position either
behind or centered on the knife edge, we find a relationship within 10% of that given by equation
(9). A similar result is found when simulating a circular flat-top spot. This result is due to the
fact that the overlap between the spot and and knife edge is approximately linear for the small
deflections achieved during the experiment.

Magnetic field as velocity tracer

In the main manuscript, we utilize the statistical properties of the magnetic-energy spectrum to infer
the properties of the velocity spectrum. The relationship between the two is a natural consequence
of the induction equation,

∂B

∂t
+ u.∇B = B.∇u−B∇.u + η∇2B. (10)
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Supplementary Figure 3: Numerical Validation of Supplementary Equation 9 For con-
structed density fields, as described in the text, we show the relationship between the exponents of
the 1-D density power spectrum and the angularly averaged intensity power spectrum, calculated
from synthetic Schlieren images. Assuming the intensity of the Schlieren is proportional the mag-
nitude of the displacement of the focal spot, as in Eq. (5), the one-to-one relationship is recovered
(black-solid line). Assuming only positive displacements contribute towards the Schlieren image, as
provided by a knife-edge, changes the relationship very little (black-dashed line). Utilizing a more
realistic model of the overlap between the knife-edge and the laser spot, as described in the text,
reproduces the one-to-one relationship to within 10% of that assumed by Eq. (9). The shaded
region represents ±10% of Eq. (9).

We note that although the ion gyroradius is large, of the order of a few mm, the MHD approximation
is valid at all length scales considered, due to the small ion-ion collisional mean free path, of the order
of 100 nm. Hence, we are in a regime where collisions dominate and the ions remain unmagnetized.

If the magnetic field is written as a sum of a uniform externally applied mean field and a
fluctuating component, B = B0 + δB, equation (10) becomes

∂δB

∂t
+ u.∇δB = (B0 + δB).∇u− (B0 + δB)∇.u + η∇2δB. (11)

In the limit of small Rm, δB� B0 and the diffusion term dominates over the nonlinear terms and
the time derivative (quasistatic approximation). Then

η∇2δB = −B0.∇u + B0∇.u. (12)

By taking the spatial Fourier transform we find

ηk2δB̃ = i(k.B0)ũ− iB0(k.ũ), (13)

where tildes denote Fourier-transformed quantities. Compared to the incompressible case24,25, there
is an additional term on the right-hand side. Let B0 = B0x̂, where x̂ = (1, 0, 0), and b̃ = ηk2δB̃/B0.
Then equation (13) becomes

b̃ = ikxũ− ix̂k.ũ. (14)

If the turbulence is unaffected by B0 and is isotropic, then the velocity correlation tensor can be
written as the sum of symmetric and antisymmetric parts, with the symmetric tensor itself written
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as the sum of incompressible and compressible components:

〈ũiũ∗j 〉 = I(k)

(
δij −

kikj
k2

)
+ C(k)

kikj
k2

+H(k)εijl
kl
k
, (15)

where I(k), C(k) and H(k) are functions of k only. From equation (14), we then find the magnetic-
field correlation tensor:

〈b̃ib̃∗j 〉 = k2x〈ũiũ∗j 〉+ x̂ix̂jkmkn〈ũmũ∗n〉 − kxkmx̂i〈ũmũ∗j 〉 − kxknx̂j〈ũiũ∗n〉. (16)

With the aid of equation (15), this becomes

〈b̃ib̃∗j 〉 = I(k)k2x

(
δij −

kikj
k2

)
+H(k)k2xεijl

kl
k

+ C(k)

(
k2x
k2
kikj + k2x̂ix̂j − kxx̂ikj − kxx̂jki

)
. (17)

In particular, the spectrum of any component of the field that is perpendicular to the mean field is

〈|b̃y|2〉 = I(k)k2x

(
1−

k2y
k2

)
+ C(k)

k2xk
2
y

k2
, (18)

and the spectrum of the component parallel to the magnetic field is

〈|b̃x|2〉 = I(k)k2x

(
1− k2x

k2

)
+ C(k)k2

(
1− k2x

k2

)2

. (19)

Averaging these spectra over angles, we find

〈|b̃y|2〉 =
k2

15
[4I(k) + C(k)] , (20)

〈|b̃x|2〉 =
k2

15
[2I(k) + 8C(k)] . (21)

Solving these equations simultaneously, we find

I(k) =
1

2k2
(8〈|b̃y|2〉 − 〈|b̃x|2〉), (22)

C(k) =
1

k2
(2〈|b̃x|2〉 − 〈|b̃y|2〉). (23)

Thus, if we can measure or infer the angle-averaged spectra of two components of the perturbed
inductive magnetic field, we can determine both the compressible and incompressible parts of the
velocity spectrum.

Taking the trace of equation (15) and angle-averaging, we find that the total 1-D velocity power
spectrum is given by

E(k) = 4πk2〈|ũ|2〉 = 4π [2I(k) + C(k)] = 4π
[
7〈|b̃y|2〉+ 〈|b̃x|2〉

]
, (24)

where the last expression follows from equations (22) and (23). Finally, the spectrum of b̃ is related
to the spectrum of δB̃ by a factor of k4, giving

E(k) ∝ k4(7〈|δB̃y|2〉+ 〈|δB̃x|2〉). (25)

7



In the next section, we shall argue that wave-number spectra of magnetic fluctuations can be inferred
from their frequency spectra. In our measurements, we have found that, within experimental error,
the slopes of these frequency spectra were similar in the perpendicular and parallel directions: see
Figure 4. Therefore, we may expect, for scaling purposes,

E(k) ∝ k2M(k), (26)

where M(k) ∝ k2〈|δB̃x|2〉 ∝ k2〈|δB̃y|2〉 is the 1-D spectrum of the magnetic energy.

Supplementary Figure 4: Temporal evolution of the magnetic field. (a) Induction-loop mea-
surements of the evolution of the y and x components of the magnetic field, i.e., of the fluctuations
perpendicular and parallel to the direction of the external magnetic field. The shaded regions
represent the extent over which the windowing function was applied in order to calculate the
magnetic-field power spectra in the main paper. (b) Corresponding spectral index of the temporal
magnetic field power spectrum, M(ω), obtained from the perpendicular and parallel magnetic field
measurements. The error in the Mach number arise due to uncertainties in the measurement of the
thermodynamic conditions of the plasma, as shown in Figure 2 of the main paper. The spectral
index error bars represent the variation found by shifting the Fourier transform window by 20 ns
in either direction.

Relationship between frequency and wave-number spectra

The magnetic-field spectra discussed above are wave-number-resolved power spectra, whereas the
induction loop of the B-dot probe measures frequency-resolved spectra. Had there been a mean flow
past the B-dot probe, one would have expected the frequency spectrum measured by the probe’s
induction loop to follow the same scaling as the wave-number spectrum. This approximation does
not hold in our case. However, a relation between the frequency and wavenumber spectra measured
by the probe can still be found. Let us assume that there is a random flow of the largest eddies.
This is justified in the experiment: from optical spectroscopy, we observe no shifts in the emission
lines, which would otherwise indicate some mean flow at the outer scale. This random motion at the
largest scale will then impose the stochastic version of the Taylor hypothesis, but there will be some
effective, finite frequency interval between the outer scale and the scale where Taylor hypothesis
kicks in. In that interval, a fixed probe would measure the “true” (Lagrangian) frequency spectrum.

In order to support the above considerations, we have performed large-scale simulations using
the FLASH code5–9. To simplify the analysis, we have simulated a subsonic turbulent plasma,
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Supplementary Figure 5: Numerical Validation of the Lagrangian Spectrum Approxima-
tion (a) Simulations performed using the FLASH MHD code demonstrate that for a subsonic tur-
bulent plasma, with no mean flow, the wave-number-resolved velocity power spectrum is consistent
with a Kolmogorov power law. (b) For the same simulation, the frequency-resolved velocity power
spectrum, obtained from the temporal evolution of the velocity at the center of the simulation, is
shown to have an ω−2 slope, consistent with the Lagrangian frequency spectrum.

as described in Ref.3, and focused our analysis at the flow collision region. In this case, we get
a wave-number-resolved velocity power spectrum that is consistent with a Kolmogorov slope, as
shown in Figure 5a. From the temporal profile of the velocity taken at a fixed point in the center
of the interaction region, where the probe is located, we construct the frequency-resolved power
spectrum. Figure 5b shows that this power spectrum is best fit by an ω−2 slope, supporting the
expectation above that the probe measures a different power spectrum in frequency. For reference,
we have also plotted a ω− 5

3 slope, as would be expected in the presence of a large mean flow.
We note that the argument above may not hold at the smallest scales where a mean flow is

effectively provided by the larger eddies in the plasma. Indeed, the spectrum shown in Figure 5b
begins to deviate from an ω−2 slope at frequencies approximately 10 times the outer-scale frequency.
In the experiment, this corresponds to frequencies beyond the resolution of the probe.

Let us now establish a relationship between this frequency spectrum and the wave-number
spectrum of the underlying velocity field. We begin by assuming that velocity and magnetic-field
increments at scale ` behave as power laws:

u(`) ∼ `α, B(`) ∼ `β. (27)

The corresponding wave-number-resolved power spectra are

E(k) ∼ k−(2α+1), M(k) ∼ k−(2β+1). (28)

From equation (26), we infer, for the two scaling exponents, the relationship

β = α+ 1. (29)

The Lagrangian frequency corresponding to scale ` is ω ∼ u(`)/` ∼ `α−1. Therefore, the velocity
and magnetic-field increments associated with this frequency are

u(ω) ∼ ω
α
α−1 , B(ω) ∼ ω

β
α−1 (30)
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and the corresponding frequency spectra are

E(ω) ∼ ω
2α
α−1

−1 ≡ ωκ, M(ω) ∼ ω
2β
α−1

−1 ≡ ωξ. (31)

If we now denote the exponent of the velocity’s wave-number spectrum σ = −(2α+ 1), we may use
equations (29) and (31) to relate it to the exponents κ and ξ of the velocity and magnetic field’s
frequency spectra:

σ = −3κ+ 1

κ− 1
, σ = −3ξ + 5

ξ − 1
. (32)

We see that the Kolmogorov power spectrum σ = −5/3 corresponds to κ = −2, in agreement with
the FLASH simulations presented in Figure 5. For reference, blue the Kolmogorov power spectrum
σ = −5/3 corresponds to ξ = −5, and the Burgers spectrum σ = −2 to ξ = −7.

Extraction of temperature, density and turbulent broadening from optical spectroscopy

The plasma temperature, mass density and turbulent velocity are inferred from the spatially re-
solved measurement of the Carbon II and Fluorine II spectral lines (see Figure 2 of the main
manuscript). The spectroscopy was performed with an imaging spectrometer, coupled to an in-
tensified CCD camera with a 20 ns gate width. The spatial resolution was set by the 50 µm slit
of the spectrometer and the overall magnification was 0.17. Calibration was performed with a
mercury lamp using the 404.6 nm, 407.8 nm and 435.8 nm lines giving 17.6 pixels/nm dispersion
and λ/∆λ ≈ 2, 000 spectral resolution, where λ is the measured wavelength.

For the fit, we utilized the three emission lines (located at approximately 425 nm, 427 nm, and
430 nm) that were consistently present across the extent of the plasma and above the noise level.
Both the ratio and the width of Carbon and Fluorine emission lines were fitted using the collisional-
radiative code PrismSPECT10 assuming nonlocal thermodynamic equilibrium transition rates. The
conditions achieved in this experiment are in the regime where the line ratio of the emission spectra
is independent of electron density, because, for optically thin plasmas, the collisional deexcitation of
atomic levels dominates over spontaneous radiative decay21. This occurs when the electron density

ne � 1.7×1014T
1/2
e (∆E)3 cm−3, where both Te and ∆E are given in electronvolts. For our plasma

temperature (Te ≈ 3 eV) and optical transitions (∆E ≈ 2.9 eV), we find this condition to be
ne � 7× 1015 cm−3, which is well satisfied in the regime of the experiment.

We performed 323 different simulations with mass densities ranging from 0.05 to 1×10−5 g/cm3

and temperatures spanning 2.8 to 4 eV. The simulations contain both natural and thermal broaden-
ing processes, which are strongly dependent on the ion species. In addition, a species-independent
broadening was added to the spectra: we use this additional broadening to model the combined
effect of the instrument resolution and turbulent motions within the plasma. Since the turbulent
broadening affects all emission lines equally, we are able to deduce the temperature, density and
turbulent velocity from the spectra. Since the calculated turbulent velocity is determined along the
path of the emission line, the 3-D turbulent velocity reported in the main paper (Vturb) is related to
the measured 1-D turbulent velocity (V1d) by Vturb =

√
3V1d, assuming isotropy11. The measured

turbulent velocity is a spatially averaged quantity, where the size of the spatial average is given by
the slit width of the spectrometer. Taking this into account along with the magnification of the
system, we estimate the spatial averaging of this quantity to be over a ∼ 300 µm region.

By performing a least-mean-squares fit between the experimental spectrum and the spectrum
produced by PrismSPECT, we can produce a spatially resolved measurement of the electron tem-
perature, mass-density and turbulent velocity at different times throughout the experiment. Ex-
ample spectra for three distinct spatial regions, all taken at 600 ns, are shown in figure 6. We
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note that the fluorine line at 430 nm corresponds to 3p − 3s transitions, while the one at 425 nm
to 3d− 4f transitions. At temperatures &3 eV, we would expect a larger fraction of fluorine ions
to be in high-lying states, which explains why the line at 425 nm is more intense that the one at
430 nm. However, near the edge of the interaction region, the plasma cools down and gradients in
the temperature are likely to affect the 430 nm line more. This would explain the poor fits seen
in figure 6, where, away from the central region, the strong gradients cannot be fit by a spectrum
corresponding to a single thermodynamic condition.
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Supplementary Figure 6: Spatial variation of the optical emission. Example line-outs of the
emission spectra across the spatial extent of the plasma at 600 ns. In the three bottom panels,
we show the corresponding best-fit spectra from the collisional-radiative code PrismSPECT, along
with the respective best-fit temperature, density and turbulent velocity.

Calculation of electron density and ionization from optical interferometry

A Mach-Zehnder optical interferometer was used to measure the free-electron density in the colliding
jets. The interferometer utilized the same probe beam as the Schlieren imaging system, a Photonic
Solutions Powerlite Nd:YAG Laser. The laser wavelength was 532 nm with a ∼5 ns pulse duration.
The images were recorded on an intensified Princeton Instruments PI-MAX CCD camera with
a 4 ns gate width. The analysis was carried out using the branch-cut technique12 within the
interferometry analysis software IDEA 1.713. The high linear densities and large spatial variation
present in the data precludes Abel inversion. Therefore, we obtain an estimate of the average
electron density by assuming cylindrical symmetry and assuming the extent of the plasma in the z
direction to be the same as its extent in the y direction.

Supplementary figure 7 gives an average electron density ne ∼ 2 × 1017 cm−3 at t = 400 ns,
increasing to a peak value ne ∼ 6 × 1017 cm−3 by t = 600 ns. Combining this with the ion-
density measurement obtained from the optical spectroscopy, we derive an average ionization state
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Supplementary Figure 7: Temporal evolution of the electron density. Images showing the
temporal evolution of the electron density in the collided plasma, obtained via optical interferom-
etry. The sharp lines present in the image indicate phase breaks in the interferometry due to high
density gradients.

Z∗ ≈ 1− 2. This is in agreement with the mean charge state calculated using the collisional–
radiative code PrismSPECT, which for the temperatures and densities achieved in the experiment
gives Z∗ ≈ 1.6.
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