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We present a frame-invariant method for detecting coherent structures from Lagrangian
flow trajectories that can be sparse in number, as is the case in many fluid mechanics
applications of practical interest. The method, based on principles used in graph coloring
and spectral graph drawing algorithms, examines a measure of the kinematic dissimilarity
of all pairs of fluid trajectories, either measured experimentally, e.g. using particle
tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity
field. Coherence is assigned to groups of particles whose kinematics remain similar
throughout the time interval for which trajectory data is available, regardless of their
physical proximity to one another. Through the use of several analytical and experimental
validation cases, this algorithm is shown to robustly detect coherent structures using
significantly less flow data than is required by existing spectral graph theory methods.

1. Introduction

The concept of coherence in fluid flows has historically been used to delineate packets of
fluid elements that persist while the flow evolves without significant mixing with the sur-
rounding fluid regions. Coherence can frequently be visualized qualitatively by observing
the evolution of passive tracers in a flow (e.g. Haller (2015), Huhn et al. (2012)). However,
mathematical frameworks are needed to quantify such structures objectively. Eulerian
techniques for coherent structure identification include the q-criterion (Hunt et al. 1988),
λ2 criterion (Jeong & Hussain 1995), and the Okubo-Weiss parameter (Okubo 1970;
Weiss 1991). All of these methods are frame-dependent, however. Frame invariance
is an important characteristic of a method for determining coherent structures; if a
method identifies a structure boundary in one frame of reference, but not in another
(for example, in a rotating reference frame), then the method may not be self-consistent
in its characterization of fluid coherence (Haller 2005).
As an alternative, Lagrangian techniques have also been developed, many based

on analysis of the deformation gradient tensor of the flow field (Haller & Yuan 2000;
Shadden et al. 2005). These methods use information regarding the trajectories of fluid
particles, as opposed to their velocity or acceleration, which ensures frame invariance
since relative particle position does not depend on the reference frame in which it is
measured.
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Despite the vast array of current applications, identification of coherent structures
based on the deformation gradient has some limitations as well. For instance, knowledge of
a discretized version of the entire flow field is typically required, of the sort obtained from
computational analysis or particle image velocimetry (PIV). However, some common
empirical tools for fluid flow measurement do not provide velocity data in the whole
flow field. One such technique, particle tracking velocimetry (PTV), (e.g. Chang et al.

(1984), Racca & Dewey (1988)), is particularly useful in applications where velocity data
in three dimensions is required, or where the entire flow cannot be densely and uniformly
seeded, as in studies of ocean currents. Particle tracking algorithms often result in much
sparser velocity measurements than techniques such as PIV. For example, Davis (1991)
reviews a wide range of studies utilizing artificial ocean drifters to study nominally two-
dimensional ocean surface flows, where the number of drifters ranges from 14 to 300
per study. In three dimensions, a number of PTV studies have utilized between 800 and
5000 particle trajectories (Virant & Dracos 1997; Lüthi et al. 2005; Murai et al. 2007;
Kim et al. 2013). Recently, several PIV and PTV techniques have been developed to
increase the density of data collected (Elsinga et al. 2006; Schanz et al. 2016). Despite
these advances, in many situations seeding the flow with a large number of particles
can be extremely difficult, e.g. in situ measurements of atmospheric and oceanic flows
that rely on naturally occurring particulate fields (Ho et al. 2014; Katija & Dabiri 2008).
Hence, the need for techniques to analyze sparse data persists.
Deformation-gradient based methods for identification of coherent structures fail for

sparse trajectory data due to the assumptions inherent in analyzing the deformation
gradient tensor, ∂x

∂X , where x = x(X) maps the initial location of a fluid element, X,
to its location x at a later time. The principal assumption that is no longer satisfied is
the initial close separation of flow trajectories, since the trajectory spacing cannot be
controlled a priori. Moreover, the determination of the finite time Lyapunov exponent
(FTLE) field requires linearization of the flow map (Haller & Yuan 2000), which also
breaks down for well-spaced flow trajectories. Therefore, an alternate approach is needed
to extract coherent structures from sparse velocity data.
Several methods have been developed recently in an attempt to address this issue, a

number of which are reviewed by Allshouse & Peacock (2015). One such method is based
on braid theory (Allshouse & Thiffeault 2012), which maps two dimensional fluid particle
trajectories into three dimensions, where time is the third dimension. Plotted in this way,
the entwinement of trajectories with each other can be analyzed, and surfaces surrounding
sets of trajectories that do not grow with time can be identified, indicating the presence
of coherent structures. While the braid method is useful for two-dimensional datasets,
its extension to higher spatial dimensions has not yet been achieved. Additionally, the
braid-based analysis can become quite complex and computationally expensive for large
numbers of trajectories.
A second method developed for use with sparse data sets is the cluster-based approach

by Froyland & Padberg-Gehle (2015), and it is well suited for PTV datasets due to its
ability to handle both sparse and incomplete fluid particle trajectories. The method
uses the Euclidean distance from each particle to the center of each of a predetermined
number of clusters to assign to each fluid particle a probability of belonging to each
cluster while simultaneously determining the location of the cluster centers. This is
accomplished using the iterative fuzzy c-means algorithm developed for use in cluster-
theory (Bezdek et al. 1984). While the authors proved that this method can accurately
detect coherent structures from a variety of benchmark flows, in addition to global ocean
drifter data, it has the distinct disadvantage that the number of clusters be known a
priori.
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In order to address the need to determine the number of clusters a priori in the cluster-
based approach of Froyland & Padberg-Gehle (2015), Hadjighasem et al. (2016) recently
developed a method based on spectral graph theory. This method relies on the concept
of a graph, or a set of nodes connected by edges, where in this case, the nodes represent
Lagrangian particles, and the edges are weighted by the inverse of the average distance
between particle pairs. By examining the smallest magnitude eigenvalues associated with
the generalized eigenvalue problem of the graph Laplacian, the authors developed a
heuristic for determining the number of coherent structures in the flow. The authors
use this information as input to the K-means clustering approach to determine the
centers of the coherent structures in the flow. The test-cases used by the authors in
validating this approach demonstrate its effectiveness in identifying coherent structures
without knowing the number of clusters a priori. However, for most flows analyzed, the
number of trajectories used, on the order of tens of thousands, far exceeds the number
of trajectories available for most PTV and ocean drifter datasets. It is also important
to note that the method for determining the number of coherent structures is heuristic
and therefore difficult to generalize. Other graph theory-based methods have also been
developed recently to address the issues associated with current cluster and braid based
approaches (Banisch & Koltai 2016).
We propose an alternate graph theory-based metric that weights the edges not by the

distance between corresponding particles, but by a metric of kinematic dissimilarity,
regardless of spatial proximity. This method is frame invariant because it does not
consider particle velocity, only the spatial location of each fluid particle relative to
other particles in the flow. In analogy to graph coloring algorithms that partition
nodes with large connecting edge weights, the present method solves an eigenvalue
problem to partition fluid particle trajectories according to their kinematic dissimilarity.
This approach can be considered an application of spectral graph drawing, which uses
eigenvectors of matrices associated with a graph to visualize certain characteristics of
the graph (Koren 2005). The present method results in a coherent structure coloring
(CSC) field, where similar values of CSC indicate regions of the flow that are coherent,
according to the present definition. In this way, all coherent structures in the flow
can be identified simultaneously, without prior knowledge of their number. Methods
for extracting individual coherent structures from the CSC field are discussed. The
method was tested using three validation cases, including two canonical analytic flows:
an oscillating quadruple-gyre and a Bickley jet; and one experimental dataset: a two-
dimensional cross-section of a high stroke-ratio vortex ring.
The following section details the mathematical derivation of the algorithm used for

coherent structure identification. Section 3 presents the results of the three test cases
described above and characterizes the sensitivity of the method to certain parameters,
including the number and initial location of the particles. Section 4 compares the results
of the CSC method to the results of other graph theory-based methods. Section 5
summarizes the results of the study and provides avenues for future development.

2. Methods

Coherence, defined here as the kinematic similarity of Lagrangian fluid trajectories,
regardless of their spatial proximity, can be identified in flows with arbitrary time-
dependence using a graph theory-based approach. The graph G is defined as the superset
G = (V,E,W ), where V represents the set of nodes in the graph, E is the set of edges
connecting the nodes, and W are the weights corresponding to the edge set. Assuming
that the trajectories of a set of N Lagrangian fluid particles is known at T time steps, a
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graph representing the flow can be constructed, wherein each node represents a fluid
particle. Unlike previous methods that weight the edges of such a graph based on
the proximity of the fluid trajectories (e.g. using Euclidian distance), here we use a
weight based on kinematic dissimilarity. We hypothesize, and later demonstrate, that
coherent structures can be identified more robustly by quantifying the extent to which
fluid trajectory kinematics are different, rather than the extent to which fluid particle
trajectories remain in proximity over time. To this end, each edge, representing the
connection between a pair of particles, is weighted by the standard deviation of the
distance between the two fluid trajectories over their duration, normalized by the average
distance between the fluid particle trajectories during the same period. The edge weights
can be represented numerically using the weighted adjacency matrixA, where aij contains
the weight of the edge connecting particle i and particle j:

aij =
1

rijT 1/2

[

T−1
∑

k=0

(rij − rij(tk))
2

]1/2

(2.1)

where rij(tk) is the distance between two particles i and j at time tk, and rij is the
average distance between the two fluid particle trajectories.
Graph coloring is a labeling of nodes in a graph such that node pairs with large edge

weights are assigned dissimilar values (Muñoz et al. 2005). This makes graph coloring
a natural tool for coherent structure identification based on the kinematic dissimilarity
metric in equation 2.1. We pose this as the one-dimensional problem of maximizing

z =
1

2

N
∑

i=1

N
∑

j=1

(xi − xj)
2
aij (2.2)

where N is the number of rows and columns in the weighted adjacency matrix A
(i.e. the number of particles) and X is a row vector containing the value of coherent
structure coloring (CSC) associated with each particle. By maximizing z we are in
effect determining CSC values such that fluid particle trajectories that are kinematically
dissimilar (i.e. where the weight of the edge between them aij is large) are assigned CSC
values that are as different as possible. Following Hall (1970), we define the degree matrix
D, which contains the row sums of the adjacency matrix along the diagonal, as

dij =

{

0, i 6= j
∑N

k=1
aik, i = j.

(2.3)

We also define the graph Laplacian, L = D−A. The maximization problem can then be
manipulated as follows:

z =
1

2

N
∑

i=1

N
∑

j=1

(xi − xj)
2 aij (2.4)

=
1

2





N
∑

i=1

x2i

N
∑

k=1

aik − 2

N
∑

i=1

N
∑

j=1

xixjaij +

N
∑

j=1

x2j

N
∑

m=1

amj



 (2.5)

=

N
∑

i=1

x2i

N
∑

k=1

aik −

N
∑

j=1

N
∑

i=1

xixjaij (2.6)

= X ′LX (2.7)

In order to avoid the trivial case where x1 = x2 = · · · = xN = 0, and to bound X
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to finite values, the constraint X ′DX = 1 is imposed (another finite constraint can be
imposed without loss of generality). Given this constraint, the maximization problem can
be written in Lagrangian form as z = X ′LX − λ(X ′DX − 1). As a necessary condition
for z to be a local maximum, dz

dX = 0, yielding 2LX − 2λDX = 0, which can be written
as

LX = λDX (2.8)

which is the generalized eigenvalue problem for the graph Laplacian. The generalized
eigenvector X that maximizes z is the eigenvector corresponding to the maximum
eigenvalue of equation 2.8 (Hall 1970). Each element ofX assigns that value of CSC to the
corresponding fluid particle at the final time of the interval over which particle trajectories
were compared. The CSC vector can be mapped to the space of the original flow with
arbitrary dimensionality based on the spatial locations of the particles. Interpolation
between the particles facilitates construction of the corresponding CSC field. Thus,
regions in the flow with a similar value of coherent structure coloring indicate coherence.

3. Results

The effectiveness of the coherent structure coloring algorithm is demonstrated using
three example flows. The first, a quadruple gyre, is an extension of the double gyre, which
is frequently used in vortex detection algorithm verification (Allshouse & Peacock 2015;
Froyland & Padberg-Gehle 2015). Both the steady and the unsteady cases are examined.
The second verification case is the Bickley jet, which introduces complexities due to the
presence of multiple coherent vortices as well as a meandering jet. Finally, we apply
the CSC method to sparse trajectories derived from a particle image velocimetry (PIV)
dataset of a long stroke ratio vortex ring, where secondary and tertiary rings in addition
to a trailing jet form behind the primary vortex ring. This shows the robustness of the
algorithm to errors associated with experimental data. For the two analytical validation
cases, a fifth-order, Runge-Kutta method was used to determine fluid trajectories. For
the PIV dataset, particle velocities were determined using linear interpolations between
velocity vectors and particles were advected using the Euler method.

3.1. Quadruple Gyre

First, we examine the characteristics of the coherent structure coloring algorithm using
the analytical quadruple gyre flow. This flow is defined by

dx

dt
= −πA sin(πf) cos(πy) (3.1)

dy

dt
= −πA cos(πf) cos(πy)(2ax+ b) (3.2)

where x and y are the spatial coordinates, t is time, and

a = ǫ sin(ωt), b = 1− 2ǫ sin(ωt), f = ax2 + bx. (3.3)

Here we examine two parameter cases: the steady case where A = 0.1 and ǫ = 0; and
the unsteady case where A = 0.1, ǫ = 0.1, and ω = 2π/10. Figure 1 shows the velocity
vector field, streamlines, and coherent structure coloring for the steady quadruple gyre,
tracking only 300 particles over 40 time units. CSC is able to clearly delineate the four
quadrants of the flow, and assigns a high value to the gyre centers. Gyres in opposite
corners have approximately the same value of coloring, due to their identical rotational
orientation (clockwise in the upper left and lower right, and counterclockwise in the
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Figure 1. Steady quadruple gyre flow (a) velocity vector field (b) streamlines (c) coherent
structure coloring using 300 particles, particle locations indicated by black dots

Figure 2. Unsteady quadruple gyre, ǫ = 0.1, A = 0.1, T = [2.5, 42.5] (a) coherent structure
coloring using 300 particles, black dots show final locations of particles that remained in
their initial quadrant, red dots show final locations of particles that switched quadrants
during the coherent structure calculation time interval, (b) Fluid trajectories for particles with
highest (black) and lowest (red) CSC values, (c) FTLE field, calculated over the time interval
T = [2.5, 42.5], using 65,000 particles

upper right and lower left quadrants). This is a result of having a measure of coherence
that does not conflate kinematic similarity and physical proximity. The latter does not
necessarily imply the former, and vice versa. Large weights in the present adjacency
matrix correspond to fluid particles that are kinematically dissimilar, and given that the
weights correspond to the standard deviation of the distance between two particles divided
by their average distance, the mean distance between particles and the standard deviation
in their distances both contribute to coherence as defined by this algorithm.
The flow becomes significantly more complex when periodic oscillatory unsteadiness

is introduced. When comparing the coherence coloring to the FTLE of the same flow
computed using 65,000 particles, seen in figure 2(c), it is clear that the largest positive
value of coherence coloring correctly identifies all four vortex cores. The negative values
of CSC correspond with the regions in which particles have switched quadrants due to
the oscillatory nature of the flow, as indicated by the red dots in figure 2(a). In this case,
the largest kinematic dissimilarity in the flow is between those particles that remain
near the center of the quadrant in which they started, and those particles that switch
quadrants. This is highlighted by the particle traces shown in figure 2(b), which shows the
trajectories of the particles with the largest positive value of coloring (in black) and those
with the largest negative value of coloring (in red). This result is in contrast to the steady
case, in which the sign of vortex rotation was the predominant distinguishing feature.
Notably, the CSC algorithm can be applied recursively to the subset of particles with
similarly high values of CSC in figure 2(a), in order to recover the vortex orientation
information in figure 1(c). This is demonstrated in figure 3. Here we see that for an
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Figure 3. Unsteady quadruple gyre, ǫ = 0.1, A = 0.1, T = [2.5, 42.5], 3000 total particles
(a) coherent structure coloring, black dots show final locations of particles that remained in
their initial quadrant, red dots show final locations of particles that switched quadrants during
the coherent structure calculation time interval. Black lines trace contours of CSC=0.0009, (b)
coherent structure coloring, algorithm applied recursively only to particles whose initial CSC
value was greater than 0.0009

initial CSC field calculated with 3000 particles, all four gyre centers are identified with a
high CSC value. In order to detect more subtle differences between the four gyre cores, a
threshold value of CSC > 0.0009 is set, indicated by the solid black lines surrounding the
gyre cores in 3(a). When the CSC algorithm is applied using only the particles exceeding
this threshold value, the information distinguishing the gyres that rotate clockwise from
those that rotate counterclockwise (as in the steady quadruple gyre case) is recovered.
For this dataset, a cluster-based method using fuzzy c-means clustering would correctly

identify the four quadrants of the steady quadruple gyre as four separate coherent
structures, if it is assumed a priori that there are four clusters present. For the unsteady
case, assuming the presence of four structures, the four gyre cores would again be correctly
identified using this method. However, if more than four coherent structures are assumed,
the clustering method will detect the four cores and a number of additional structures,
some of which may correspond to fluid parcels that did not switch quadrants but are not
adjacent to the gyre cores (Allshouse & Peacock 2015). A braid based analysis for this
flow would likely identify eight structures, again assuming an extension of the results of
the double gyre system in Allshouse & Peacock (2015). In summary, the cluster based
method requires a priori knowledge of the number of structures present, and the braid
based analysis cannot be easily extended to three dimensions and is computationally
expensive. The CSC method addresses all of these issues.

3.2. Bickley Jet

The Bickley jet, another analytical example, is frequently used as a model of zonal jets
in the Earth’s atmosphere (Rypina et al. 2007). It is a periodic flow comprising a spatially
undulatory jet with counter rotating vortices above and below. The flow is described by
the stream function ψ = ψ0 + ψ1, where

ψ0 = c3y − UL tanh (y/L) (3.4)

ψ1 = UL sech2 (y/L)

3
∑

n=1

ǫn cos (kn (x− σnt)) (3.5)
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Figure 4. Bickley jet, (a) velocity magnitude with sample streamlines, (b) FTLE field,
calculated over the time interval t = [0, 3456 × 103] s using 48,000 particles

Figure 5. Bickley jet, (a) CSC contours overlaid with dots indicating final particle positions,
480 particles, t = [0, 3456 × 103] s, (b) Particle tracks for particles with highest (black) and
lowest (red) CSC values

We use similar values of the parameters as in Hadjighasem et al. (2016): U = 62.66
ms−1, L = 1770 km, kn = 2n/r0, c = [0.1446U , 0.205U , 0.461U ], σ = c − c(3), and
ǫ = [0.0075, 0.15, 0.3], and the flow is computed on the interval x = [0, 20 × 106] m,
y = [−3×106, 3×106] m, over the time interval t = [0, 40] days, divided into 607 discrete
time steps. The flow was considered periodic in x. For calculation of the CSC, particles
were initialized randomly in the domain and advected with the flow. The particles were
followed over the entire time interval, even if they left the domain, analogous to how
ocean drifters are tracked. The velocity magnitude of the flow overlaid with streamlines
is shown in 4, along with the FTLE field calculated using 48,000 particles.
Figure 5 shows the results of the coherent structure coloring algorithm using only

480 particles: (a) shows the CSC field overlaid with black dots indicating the final
particle positions, and (b) shows particle tracks for the highest positive coloring values
(in black) and the highest negative coloring values (in red). Without specifying the
number of coherent structures a priori, the algorithm is able to accurately detect the
centers of the three vortices above the jet and two full and two half vortices below.
However, if the seeding density was too low, such that one of the vortices contained no
particles, or only a few, the structure could not be identified. The jet itself is aligned with
the most negative coloring contours, indicating that the largest kinematic dissimilarity
detected is between the jet and the vortices flanking it. It is noteworthy that the
eigenvector associated with the largest eigenvalue of the generalized eigenvalue problem
(i.e. the CSC) provides information about all of the coherent structures simultaneously,
as opposed to N -cut approaches that recover one structure per eigenvalue among those
selected heuristically. This is in part because the present algorithm avoids unnecessarily
restricting the definition of coherence to particles that are physically close; even the
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relative kinematics of particles that are far apart provides useful information regarding
the coherent structures in the flow.
The Bickley jet flow can also be used to characterize the robustness of the CSC method

to broken or incomplete fluid particle trajectory information. Two types of incomplete
datasets are examined, each corresponding to a specific experimental circumstance in
which data might be lost. First, we examine the case in which a fluid particle trajectory
is lost and later recovered, but is still identified as the same particle as before the data
loss. This could be the case for ocean drifters, e.g. when a drifter temporarily goes offline
with associated data loss. Additionally, certain PTV algorithms are capable of linking
broken trajectories if data sets are sparse enough and particle trajectory crossings do
not occur when breaks occur (Li et al. 2008). To characterize the response of the CSC
method to this type of data loss, a dataset containing full trajectories of 480 particles
was manipulated to randomly remove 10%, 50%, and 90% of the trajectory data. When
considering the weight of a pair of particles, the CSC algorithm only considers the
overlapping time interval in which both particles are present. If a particle is not present
during the time step for which the CSC field is computed, the trajectory information for
that particle is not considered in the calculation of the adjacency matrix. Hence, the size
of the adjacency matrix is np × np, where np is the number of particles present in the
domain during the time step in which the CSC field is calculated. For this analysis, it was
ensured that all 480 particles were present in the final time step so that their trajectory
information could be used to calculate the CSC field. This was done so that the analysis
would show the effect of intermittent data loss as opposed to the effect of total number
of particles. The results are shown in figure 6. From this figure it is evident that in the
case where pieces of particle trajectories can be linked and identified as broken pieces
of the same trajectory, intermittent data loss does not adversely affect the robustness of
the CSC algorithm, as long as there are a sufficient number of particles present in the
time step for which the CSC field is calculated.
In order to characterize the CSC method in cases where broken trajectories cannot

be reconstructed and the particle tracks must be treated as independent fluid particles,
a baseline group of 480 particles was again examined. A portion of the position data
was then randomly deleted, and every time a break in the position data occurred,
the remainder of the track was recharacterized as a separate particle trajectory. The
results from this analysis are shown in figure 7. For the case with 480 unbroken particle
trajectories, shown in figure 5(a), all particles have a trajectory length that spans the
entire time domain. For the shorter particle trajectories shown in figure 7, it is evident
that as the average particle trajectory length is shortened, the flanking vortices appear
to blend together into two large coherent structures, one below the jet and one above.
This result can be understood by considering the length of the fluid particle trajectories
relative to the eddy turnover time. Based on the flow velocity around closed streamlines
for the Bickley jet flow at t = 0, the eddy turnover time is estimated to be approximately
279×103 s, and the time interval t = [0, 3456×103] s is equivalent to approximately 12.4
eddy turnover times. Thus, while it is clear that the CSC algorithm is capable of handling
broken trajectories of this type, an average trajectory length of approximately 2.6 eddy
turnover times, as in figure 7(a), is necessary to distinguish individual coherent structures.
Otherwise, there is not enough information is available to effectively characterize the flow,
even if the total observation time is a larger multiple of the eddy turnover time.
It is also useful to analyze and understand the response of the method to a large

number of particles, approaching the quantity used for non-sparse methods such as
FTLE analysis. As such, a CSC analysis of a Bickley jet seeded with 12000 particles
was examined, and the resulting CSC field is shown in figure 8. The features of this
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Figure 6. Bickley jet, 480 particles (a) unbroken particle trajectories (b) CSC field for unbroken
particle trajectories (c) particle trajectories, 10% of position data deleted (d) CSC field for
case where 10% of particle position data is deleted (e) particle trajectories, 50% of position
data deleted (f) CSC field for case where 50% of particle position data is deleted (g) particle
trajectories, 90% of position data deleted (h) CSC field for case where 90% of particle position
data is deleted. Black dots indicate final particle position

CSC field are similar to what would be seen by clustering-based methods, if thresholding
of the CSC were used to separate the vortex cores into distinct structures. There are
also similarities with what would be seen if vortices were extracted from the flow using
the forward and reverse FTLE fields, including the five isolated vortex cores and two
half cores. Although not demonstrated here, the subsequent extraction of the coherent
structures from the CSC field can be performed in a manner similar to the FTLE field
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Figure 7. Bickley jet CSC fields, 480 particles (a) average trajectory length of 2.6 eddy
turnover times (b) average trajectory length of 1.7 eddy turnover times

Figure 8. Bickley jet CSC field, 12000 particles, black dots indicate final particle position

480 particles 2400 particles 12000 particles

adjacency matrix calculation 2.8 s 79.1 s 2345.2 s
eigen-decomposition 0.3 s 1.9s 213.2 s

Table 1. Run times for Bickley jet flow on a single processor

analysis. For example, one option is to use thresholding of the CSC field to determine
boundaries of the coherent structures. Additionally, the spatial gradients of the CSC field
can be used to separate coherent structures from the background flow.
In assessing the feasibility of high resolution CSC analysis, computational time is an

important factor to consider. Table 1 provides a summary of computational run times
on a single processor for the Bickley jet with three seeding densities.

3.3. Vortex Ring

Next, we examine a PIV dataset of a forming vortex ring with a high maximum stroke
ratio. The vortex ring is created in a water tank using a piston forced at speed U a
distance L = Ut though a hollow cylinder of diameter D, which in turn ejects fluid from
an axisymmetric nozzle with a sharp edge. The shear layer formed inside the nozzle due
to the motion of fluid through it rolls up at the nozzle exit forming a vortex ring. If
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Figure 9. Vortex ring, t∗
max

= 8, (a) vorticity field, t∗ = 10.2, (b) FTLE field, calculated over
the time interval t∗ = [8.0, 10.2], using 30,500 particles

the maximum stroke ratio, t∗max = Utmax/D, where tmax is the total time over which
the piston is moving, is greater than 4, then a trailing jet and potentially secondary and
tertiary vortex rings are formed behind the primary vortex ring (Gharib et al. 1998). The
dataset examined here is of a vortex ring formed using a piston traveling with a constant
velocity until a maximum stroke ratio of 8. The Reynolds number based on the diameter
is approximately 1800. Details of the experimental setup and acquisition and processing
of the PIV images for this dataset can be found in Schlueter-Kuck & Dabiri (2016).
Figure 9 (a) shows the vorticity field at t∗ = 10.2, after the piston has stopped

moving, where t∗ = Ut/D is the nondimensional time, equivalent to the number of
piston diameters that the piston has traveled. At this point, the leading vortex ring,
as well as secondary and tertiary vortex rings and a trailing jet, are clearly visible.
The corresponding backward FTLE field, computed using 30,500 particles is shown in
figure 9 (b). Figure 10 shows the CSC calculated using a total of 150, 300, 600, and 2400
particles initiated at the nozzle exit plane near the left of the frame between t∗ = 0.04
and t∗ = 8.4. The CSC algorithm identifies all three vortex rings, which is in qualitative
agreement to the dark ridges of the FTLE field. While the resolution of the CSC contours
increases with the number of particles, it is clear that 300 particles is sufficient to obtain
a qualitatively similar result to the case with eight times as many particles, and to the
FTLE calculation based on 30,500 particles.
The sensitivity of the CSC method to the size of the domain of particles and the time of

release was also characterized using the vortex ring PIV data. In figure 11(a), the entire
flow field was initialized with randomly located particles at t∗ = 0, and subsequently 1200
additional particles were added between t∗ = 0.04 and t∗ = 8.4 at the nozzle exit plane.
Because the CSC algorithm groups regions with a low normalized standard deviation
in relative particle separation, the nominally quiescent background flow was assigned a
CSC value that contrasts most sharply with the entire starting jet flow. Consequently,
details of the internal structure of the vortex ring and trailing jet are lost. However, if
we recursively apply the CSC algorithm only to the flow trajectories in the starting jet,
as shown in figure 11(b), we see that the algorithm is able to detect the structure of the
primary, secondary, and tertiary vortex rings in greater detail, despite the fewer number
of total particles.

4. Comparison with other graph theory-based methods

A related method for coherent structure detection that is also based on graph theory
uses the concept of an eigen-gap heuristic to determine the number of coherent structures
present in the flow (Hadjighasem et al. 2016). For this method, the weights assigned to
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Figure 10. Vortex ring CSC, for particles introduced at nozzle exit plane while vortex ring is
forming, calculated over the time interval t∗ = [8.0, 10.2], (a) 150 particles, (b) 300 particles (c)
600 particles, (d) 2400 particles

Figure 11. Vortex ring CSC, calculated over the time interval t∗ = [8.0, 10.2] (a) 1200 particles
initiated randomly in full domain at t∗ = 0 and 1200 particles introduced at nozzle exit plane
during vortex ring formation time, t∗ = [0.04, 8.4], (b) 1200 particles introduced at nozzle exit
plane during vortex ring formation time, t∗ = [0.04, 8.4]

the edges of the graph are equal to the reciprocal of the average distance between particle
pairs. The generalized eigenvalue problem solved in this method is Lx = λDx, where
L = D−A is the graph Laplacian, and D is the diagonal degree matrix where dii is equal
to the sum of the elements in row i of the adjacency matrix A. This method assumes that
by examining the smallest eigenvalues of the generalized eigenvalue problem, the number
of coherent structures in a flow can be determined by locating the largest numerical gap
between successive eigenvalues; the number of eigenvalues before the gap is assumed to
correspond to the number of coherent regions in the flow.
Here we present an analysis of the aforementioned technique and its response to several

input variables, comparing its robustness to the method introduced in this paper. This
analysis again uses the Bickley jet described by equations 3.4 and 3.5 and the values
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Figure 12. Bickley jet eigenvalue spectra for 1920 particles (a) randomized particle
initialization, sparsification of adjacency matrix for average particle pairwise distances greater
than 3 × 106 m (b) randomized particle initialization, no sparsification of adjacency matrix
(c)gridded particle initialization, sparsification of adjacency matrix for average particle pairwise
distances greater than 3×106 m (d) gridded particle initialization, no sparsification of adjacency
matrix. Dotted vertical lines indicate the expected location of the eigen-gap based on six coherent
structures

of the parameters listed in section 3.2. The response of the eigenvalue spectrum for the
Bickley jet flow to changes in the initial position of tracer particles and to the value of
the sparsification parameter ǫ are shown in figure 12 for 1920 particles and in figure 13
for 480 particles. For the case with 480 particles initialized randomly in the domain, the
exact same particle trajectories were used as in the analysis in section 3.2 to allow for a
direct comparison between the two methods.
Based on prior knowledge of the Bickley jet flow, we expect to resolve six coherent

structures: the five full vortices flanking the meandering jet, and due to the periodic
nature of the flow in the x-direction, two half vortices identified together as a sixth
coherent structure. Thus, the eigen-gap heuristic should predict a numerical gap between
the sixth and the seventh eigenvalues. From figure 12(a), (c) we can see that for 1920
particles, regardless of whether particles are initialized on a Cartesian grid or randomly
throughout the domain, the largest gap in the smallest 20 eigenvalues is between the
sixth and seventh eigenvalues, as expected. However, when the adjacency matrix is not
sparsified to remove weights corresponding to particle pairs with an average distance
greater than 3× 106, as shown in figure 12(b), (d), the eigen-gap is located between the
first and second eigenvalues for the random particle initialization and between the second
and third eigenvalues for the gridded particle initialization. These results indicate that the
eigen-gap heuristic is sensitive to the level of sparsification used in the adjacency matrix.
Consequently, without prior knowledge of the size of the coherent structures to inform
an appropriate level of sparsification, this method is not able to robustly determine the
number of coherent structures in the flow.
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Figure 13. Bickley jet eigenvalue spectra for 480 particles (a) randomized particle initialization,
sparsification of adjacency matrix for average particle pairwise distances greater than 3× 106 m
(b) randomized particle initialization, no sparsification of adjacency matrix (c)gridded particle
initialization, sparsification of adjacency matrix for average particle pairwise distances greater
than 3× 106 m (d) gridded particle initialization, no sparsification of adjacency matrix. Dotted
vertical lines indicate the expected location of the eigen-gap based on six coherent structures
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Figure 14. K-means clustering of the Bickley jet with 480 randomly initialized particles, five
of the ten total clusters identified are shown in (a) and the remaining five in (b)

The analysis of the eigenvalue spectrum for 480 particles, the same number used in
the analysis of coherent structure coloring for the Bickley jet flow in section 3.2, is shown
in figure 13. Here we see in figure 13(a) that for random particle initialization with
sparsification, the eigen-gap is between the ninth and tenth eigenvalues. Additionally,
if the particles are initialized on a grid (figure 13(c)), or sparsification is not used
(figure 13(b)), or both (figure 13(d)), the eigen-gap is also not correctly identified. Based
on this analysis, we can conclude that for small numbers of tracer particles, on the order of
102 to 103, use of the eigen-gap heuristic to determine the number of coherent structures
in the flow is ineffective based on the lack of robustness to initial tracer locations (often
beyond the control of the investigator for experimental applications) and to the level of
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Figure 15. Eigenvectors corresponding to the eigenvalues below the eigen-gap for the Bickley
jet flow with 480 randomly initialized particles

sparsification of the adjacency matrix (which requires a priori knowledge of the size of
the coherent structures, if sparsification is to be used effectively).
Despite an incorrect identification of the eigen-gap, the coherent structures can theo-

retically still be identified using a K-means clustering of the eigenvectors associated with
the eigenvalues below the eigen-gap according to this method. To be sure, if the eigen-
gap heuristic overestimates the number of structures, some structures might be split
into several, and if the number of structures is underestimated, several structures might
be merged together. Thus, for the case where 480 particles were randomly initialized
in the domain and sparsification was used in the analysis (i.e. figure 13(a)), the results
of the K-means clustering is shown in figure 14, and the nine eigenvectors used in the
clustering analysis are shown in figure 15. The clustering analysis searched for ten groups
corresponding to the nine coherent structures expected from the eigen-gap heuristic, in
addition to one structure for the incoherent background flow. In figure 14, these ten
clusters are plotted between two separate panels to aid in visualization of the individual
clusters. From the clustering, we can see that the gray cluster roughly corresponds to
the meandering jet, while the flanking vortices are somewhat consistent with the purple,
yellow, and light green clusters on the top and the dark green, cyan, and magenta clusters
on the bottom. The black, red and blue clusters identify only a few seemingly random
particles each. Even if the three smallest clusters are ignored, the boundaries of the
clusters corresponding to the vortices are significantly different from the boundaries of
the vortices themselves, as observed in the FTLE analysis in figure 4(b). From observing
the eigenvectors used for this analysis, it is evident that the first, second, and fifth
eigenvectors (figure 15(a),(b),(e)) are responsible for the small clusters identified by
the K-means analysis, while the remaining six eigenvectors roughly correspond to the
boundaries of groups of the flanking vortices and meandering jet. Although not shown,
if K-means clustering is performed using the third and fifth through ninth eigenvectors
to identify seven clusters, the clusters identified are almost identical to the clusters in
figure 14 excluding the small blue, red, and black clusters. However, the boundaries of
these clusters are still not consistent with the boundaries of the jet and the vortices.
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5. Conclusions

This paper presents an algorithm for detecting coherence in flows where only sparse
velocity data is available, as is often the case in particle tracking velocimetry, or oceano-
graphic tracking of surface floats. In this regime, alternative methods evaluating coher-
ence either require knowledge of the number of coherent structures a priori, or break
down due to the sparsity of the data. The present method, based on the concepts of
graph coloring and spectral graph drawing, examines the kinematic dissimilarity of every
pair of trajectories, and organizes this data into a weighted adjacency matrix. As such,
we consider a different definition of coherence from other coherent structure detection
methods, which only consider groups of particles that remain close as time progresses
without mixing with the surrounding fluid to be coherent structures. The eigenvector
associated with the maximum eigenvalue of the generalized eigenvalue problem LX =
λDX assigns a value of coherent structure coloring to each particle, such that similar
CSC values indicate coherence in the flow. This algorithm has several inherent strengths,
including that the number of coherent structures does not need to be known a priori.
Additionally, information about all coherent structures in the flow is contained in a single
eigenvector of the generalized eigenvalue problem associated with the graph Laplacian.
The algorithm is also capable of detecting coherent structures with the small number of
trajectories associated with many PTV and ocean drifter datasets, and was shown to be
robust to different types of data loss common in particle/drifter tracking applications.
Although only two dimensional datasets were examined here, the kinematic dissimilarity
metric in equation 2.1 and the subsequent maximization problem can both be extended
to higher dimensions without loss of generality and with limited additional computational
cost, since the adjacency matrix scales with the square of the number of particles,
independent of the dimensionality of their trajectories. The CSC method has the potential
to be extended to analyze other properties of fluid flows in addition to coherence, and it
may also find application in other data analysis problems for which coherent structure
identification remains a challenge.

A MATLAB implementation of the CSC algorithm is available for free download at
http://dabirilab.com/software.

This work was supported by the U.S National Science Foundation and by the Depart-
ment of Defense (DoD) through the National Defense Science & Engineering Graduate
Fellowship (NDSEG) Program.
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Huhn, F., von Kameke, A., Pérez-Muñuzuri, V., Olascoaga, M. & Beron-Vera, F.
2012 The impact of advective transport by the South Indian Ocean Countercurrent on
the Madagascar plankton bloom. Geophysical Research Letters 39 (L06602).

Hunt, J., Wray, A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent
flows. Center for Turbulence Research Report CTR-S88, 193–208.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
Katija, K. & Dabiri, J. 2008 In situ field measurements of aquatic animal-fluid interactions

using a Self-Contained Underwater Velocimetry Apparatus (SCUVA). Limnology and
Oceanography: Methods 6, 162–171.

Kim, D., Hussain, F. & Gharib, M. 2013 Vortex dynamics of clapping plates. J. Fluid Mech.
714, 5–23.

Koren, Y. 2005 Drawing graphs by eigenvectors: theory and practice. Computers and
Mathematics with Applications 49, 1867–1888.

Li, D., Zhang, Y., Sun, Y. & Yan, W. 2008 A multi-frame particle tracking algorithm robust
against input noise. Meas. Sci. Technol. 19 (105401).
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