Supporting Information for A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules

Lixue Cheng and Matthew Welborn

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Anders S. Christensen

Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Basel, Switzerland

Thomas F. Miller III

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA, tfm@caltech.edu (Dated: March 26, 2019)

FIG. S1. Prediction MAE for MOB-ML models trained on the QM7b-T dataset as a function of the number of MOB-ML features selected. Predictions are made for the training set and for a test set comprised of the remainder of QM7b-T, with the number of molecules included in the training set indicated in parentheses. Features are included in order of decreasing RFR-MDA importance. The gray line indicates the number of features employed for training on the QM7b-T dataset in the main text (Fig. 3); here, the ratio of the number of diagonal features to off-diagonal features is fixed at 42:24. Regardless of whether the MOB-ML models are trained using either 50, 80, 100 and 120 molecules, the accuracy of the test-set prediction is relatively insensitive to the number of selected MOB-ML features.

	QM7b-T, MP2/cc-pVTZ		QM7b-T, CCSD(T)/cc-pVDZ		GDB-13-T, MP2/cc-pVTZ	
Training set size	MAE	MAE/heavy atom	MAE	MAE/heavy atom	MAE	MAE/heavy atom
20	4.536	0.6664	4.962	0.7314	8.711	0.6701
30	3.966	0.5844	3.865	0.5690	7.554	0.5811
40	3.183	0.4696	3.605	0.5309	5.731	0.4408
50	2.938	0.4338	3.180	0.4678	5.375	0.4135
60	2.774	0.4094	2.960	0.4371	5.020	0.3862
70	2.660	0.3906	2.540	0.3751	5.055	0.3888
80	2.519	0.3701	2.538	0.3755	4.669	0.3591
90	2.165	0.3116	2.266	0.3354	4.161	0.3201
100	2.085	0.3076	2.187	0.3235	4.150	0.3192
110	1.878	0.2768	2.037	0.3017	3.880	0.2985
120	1.797	0.2650	2.040	0.3023	3.809	0.2930
130	1.747	0.2582	2.013	0.2987	3.746	0.2882
140	1.681	0.2484	1.967	0.2921	3.692	0.2840
150	1.674	0.2475	1.998	0.2962	3.665	0.2820
160	1.645	0.2429	1.921	0.2855	3.654	0.2810
170	1.620	0.2394	1.911	0.2834	3.652	0.2809
180	1.577	0.2333	1.865	0.2778	3.611	0.2778
190	1.511	0.2240	1.827	0.2728	3.592	0.2763
200	1.511	0.2244	1.802	0.2696	3.605	0.2773
210	1.443	0.2140	1.801	0.2696	3.607	0.2774
220	1.427	0.2115	1.802	0.2698	3.617	0.2782

TABLE S1. MAE and MAE/heavy atom of MOB-ML on predicting QM7b-T and GDB-13-T using a model trained on QM7b-T (energies in mH).

	QM7b-T	, MP2/cc-pVTZ	GDB-13-T, MP2/cc-pVTZ				
Training set size	MAE	SEM	MAE	SEM	MAE/heavy atom	SEM/heavy atom	
1	227.7	16.94	444.4	44.37	34.18	3.413	
2	120.5	16.38	212.3	35.36	16.33	2.720	
3	94.65	24.05	169.4	32.20	13.03	2.477	
4	51.88	9.660	115.1	20.51	8.857	1.578	
5	34.99	4.574	78.56	11.20	6.043	0.8618	
6	20.37	1.943	56.29	5.873	4.330	0.4518	
7	23.07	3.799	51.16	8.810	3.935	0.6777	
8	19.04	1.639	42.21	5.878	3.247	0.4521	
9	19.23	1.975	43.06	8.492	3.313	0.6532	
10	14.22	1.671	43.05	6.783	3.312	0.5217	
20	7.823	0.5624	22.80	2.744	1.754	0.2111	
30	6.501	0.5400	17.72	2.161	1.363	0.1663	
40	5.219	0.1874	15.87	1.477	1.221	0.1136	
50	4.567	0.2395	13.64	1.549	1.049	0.1192	
60	3.887	0.1713	11.57	0.6267	0.8897	0.04821	
70	3.889	0.1453	10.11	0.9725	0.7780	0.07480	
80	3.608	0.2412	9.704	1.311	0.7465	0.1008	
90	3.283	0.1016	9.062	0.6463	0.6971	0.04971	
100	3.205	0.08087	8.787	0.7807	0.6759	0.06006	
200	2.396	0.03973	7.265	0.5289	0.5588	0.04068	
300	2.022	0.03468	5.722	0.2212	0.4401	0.01701	
400	1.870	0.01906	5.706	0.2140	0.4389	0.01646	
500	1.760	0.02530	5.615	0.6035	0.4319	0.04642	
600	1.648	0.01538	5.128	0.2007	0.3945	0.01544	
700	1.581	0.02471	4.946	0.1344	0.3805	0.01034	
800	1.503	0.02184	5.140	0.3127	0.3954	0.02405	
900	1.445	0.01963	5.134	0.2843	0.3949	0.02187	
1000	1.408	0.02135	5.584	0.5120	0.4295	0.03938	
2000	1.135	0.01120	4.626	0.1944	0.3559	0.01495	
3000	0.9837	0.003951	4.094	0.1812	0.3149	0.01394	
4000	0.8995	0.006155	3.816	0.1211	0.2935	0.00931	
5000	0.8618	0.005251	3.865	0.1691	0.2973	0.01301	

TABLE S2. MAE of FCHL/ Δ -ML on predicting QM7b-T and GDB-13-T using a model trained on QM7b-T (energies in mH). The standard error of the mean (SEM) over 10 trials is also reported.