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To reduce experimental effort associated with directed protein
evolution and to explore the sequence space encoded by mutating
multiple positions simultaneously, we incorporate machine learn-
ing into the directed evolution workflow. Combinatorial sequence
space can be quite expensive to sample experimentally, but
machine-learning models trained on tested variants provide a fast
method for testing sequence space computationally. We validated
this approach on a large published empirical fitness landscape for
human GB1 binding protein, demonstrating that machine learning-
guided directed evolution finds variants with higher fitness than
those found by other directed evolution approaches. We then
provide an example application in evolving an enzyme to produce
each of the two possible product enantiomers (i.e., stereodiver-
gence) of a new-to-nature carbene Si–H insertion reaction. The
approach predicted libraries enriched in functional enzymes and
fixed seven mutations in two rounds of evolution to identify var-
iants for selective catalysis with 93% and 79% ee (enantiomeric
excess). By greatly increasing throughput with in silico modeling,
machine learning enhances the quality and diversity of sequence
solutions for a protein engineering problem.

protein engineering | machine learning | directed evolution | enzyme |
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Nature provides countless proteins with untapped potential
for technological applications. Rarely optimal for their

envisioned human uses, nature’s proteins benefit from sequence
engineering to enhance performance. Successful engineering is
no small feat, however, as protein function is determined by a
highly tuned and dynamic ensemble of states (1). In some cases,
engineering to enhance desirable features can be accomplished
reliably by directed evolution, in which beneficial mutations are
identified and accumulated through an iterative process of mu-
tation and testing of hundreds to thousands of variants in each
generation (2–4). However, implementing a suitable screen or
selection can represent a significant experimental burden.
Given that screening is the bottleneck and most resource-

intensive step for the majority of directed evolution efforts, de-
vising ways to screen protein variants in silico is highly attractive.
Molecular-dynamics simulations, which predict dynamic struc-
tural changes for protein variants, have been used to predict
changes in structure (5) and protein properties caused by mu-
tations (6). However, full simulations are also resource-intensive,
requiring hundreds of processor hours for each variant, a
mechanistic understanding of the reaction at hand, and, ideally, a
reference protein structure. A number of other less computa-
tionally intensive physical models have also been used to identify
sequences likely to retain fold and function for further experi-
mental screening (7–9).
An emerging alternative for screening protein function in silico is

machine learning, which comprises a set of algorithms that make
decisions based on data (10). By building models directly from data,
machine learning has proven to be a powerful, efficient, and ver-
satile tool for a variety of applications, such as extracting abstract
concepts from text and images or beating humans at our most
complex games (11, 12). Previous applications of machine learning

in protein engineering have identified beneficial mutations (13) and
optimal combinations of protein fragments (14) for increased en-
zyme activity and protein stability, as reviewed recently (15). Here
we use machine learning to enhance directed evolution by using
combinatorial libraries of mutations to explore sequence space
more efficiently than conventional directed evolution with single
mutation walks. The size of a mutant library grows exponentially
with the number of residues considered for mutation and quickly
becomes intractable for experimental screening. However, by
leveraging in silico models built based on sampling of a combina-
torial library, machine learning assists directed evolution to make
multiple mutations simultaneously and traverse fitness landscapes
more efficiently.
In the machine learning-assisted directed evolution strategy

presented here, multiple amino acid residues are randomized in
each generation. Sequence–function information sampled from
the large combinatorial library is then used to predict a restricted
library with an increased probability of containing variants with
high fitness. The best-performing variants from the predicted
libraries are chosen as the starting points for the next round of
evolution, from which further improved variants are identified.
We first investigate the benefits of in silico screening by machine
learning using the dataset collected by Wu et al. (16), who studied
the effects on antibody binding of mutations at four positions in
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human GB1 binding protein (theoretical library size, 204 =
160,000 variants). We then use machine learning-assisted directed
evolution to engineer an enzyme for stereodivergent carbon–silicon
bond formation, a new-to-nature chemical transformation.

Results
Directed Evolution and Machine Learning. In directed evolution, a
library of variants is constructed from parental sequences and
screened for desired properties, and the best variants are used to
parent the next round of evolution; all other variants are dis-
carded. When machine learning assists directed evolution, se-
quences and screening data from all of the variants can be used
to train a panel of models (covering linear, kernel, neural net-
work, and ensemble methods; SI Appendix, Model Training). The
models with the highest accuracy are then used to screen variants
in a round of in silico evolution, whereby the models simulate the
fitnesses of all possible sequences and rank the sequences by
fitness. A restricted library containing the variants with the
highest predicted fitnesses is then constructed and screened
experimentally.
This work explores the full combinatorial space of mutations

at multiple positions. Fig. 1 illustrates the approach considering a
set of four mutated positions. In a conventional directed evolu-
tion experiment with sequential single mutations, the identifi-
cation of optimal amino acids for N positions in a set requires N
rounds of evolution (Fig. 1A). An alternative directed evolution
approach is to randomly sample the combinatorial space and
recombine the best mutations found at each position in a sub-
sequent combinatorial library (Fig. 1B). Machine learning-
assisted evolution samples the same combinatorial space with
comutated positions in silico, enabling larger steps through se-

quence space in each round (Fig. 1C). In this approach, data
from a random sample of the combinatorial library, the input
library, are used to train machine learning models. These models
are used to predict a smaller set of variants, the predicted library,
which can be encoded with degenerate codons to test experi-
mentally (17). The best-performing variant is then used as the
parent sequence for the next round of evolution with mutations
at new positions.

Validation on an Empirical Fitness Landscape. We first investigated
this machine learning-assisted approach on the large empirical
fitness landscape of Wu et al. (16), who studied protein G do-
main B1 (GB1) binding to an antibody. Specifically, we compare
the final fitnesses reached by simulated directed evolution with
and without machine learning based on testing the same number
of variants. The empirical landscape used here consists of mea-
surements of 149,361 of a total of 160,000 (204) variants from
NNK/NNS saturation mutagenesis at four positions known to
interact epistatically. The fitness of protein GB1 was defined as
the enrichment of folded protein bound to the antibody IgG-Fc
measured by coupling mRNA display with next-generation se-
quencing. The landscape contains a fitness maximum at 8.76,
with a fitness value of 1 set for the parent sequence and 19.7% of
variants at a reported value of 0. On this landscape, the simu-
lated single-mutant walk (described later) reached 869 fitness
peaks, 533 of which outperformed the wild-type (WT) sequence
and 138 of which had fitness less than 5% of the WT fitness. A
full description of the epistatic landscape is provided in the
thorough analysis of Wu et al. (16).
We first simulated single-mutation evolutionary walks starting

from each of the 149,361 variants reported. The algorithm pro-
ceeded as follows: in each single-mutation walk, all possible
single amino acid mutations were tested at each of the four
mutated positions. The best amino acid was then fixed at its
observed position, and that position was restricted from further
exploration. This process continued iteratively with the remain-
ing positions until an amino acid was fixed at each position. As a
greedy search algorithm that always follows the path with
strongest improvements in fitness, this single-mutation walk has
a deterministic solution for each starting variant. Assuming each
amino acid occurs with equal frequency and that the library has
complete coverage, applying the threefold oversampling rule to
obtain approximately 95% library coverage (18, 19) results in a
total of 570 variants screened (SI Appendix, Library Coverage).
Another technique widely used in directed evolution is re-

combination. For a given set of positions to explore, one method
is to randomly sample the combinatorial library and recombine
the mutations found at each position in the top M variants. This
process is shown in Fig. 1B. For N positions, the recombinatorial
library then has a maximum of MN variants, and we selected the
top three variants, for a maximum recombinatorial library size of
81. An alternative recombination approach is to test all possible
single mutants from a given parent sequence and recombine the
top three mutations at each position, for a fixed recombinatorial
library size of 81. However, this alternative recombination does
not perform as well on the GB1 data set (SI Appendix, Fig. S1B).
Compared with these recombination strategies, the machine
learning-assisted approach has the distinct advantage of pro-
viding estimates for the variability at each position (as opposed
to taking the top three mutations at each).
To compare the distribution of fitness values of the optimal

variants found by the described directed evolution methods,
shallow neural networks were trained with 470 randomly selected
input variants, from which 100 predictions were tested, for a total
screening burden equivalent to the single-mutation walk. Al-
though the number of variants tested was determined by com-
parison with another method (a single-mutant walk) and the
ratio of training variants vs. predicted variants was set through

Fig. 1. (A) Directed evolution with single mutations. If limited to single
mutations, the identification of optimal amino acids for N positions requires
N rounds of evolution. (B) Directed evolution by recombining mutations
found in best variants from a random combinatorial search. (C) Machine
learning-assisted directed evolution. As a result of increased throughput
provided by screening in silico, four positions can be explored simulta-
neously in a single round, enabling a broader search of sequence–function
relationships and deeper exploration of epistatic interactions.
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experimental convenience (the size of a deep-well plate), from a
modeling perspective, these design choices could be improved to
increase the expected fitness improvement (SI Appendix, Fig.
S1A). Histograms of the highest fitnesses found by these ap-
proaches are shown in Fig. 2A and reiterated as empirical cu-
mulative distribution functions in Fig. 2B.
As shown in Fig. 2, with the same number of variants screened,

machine learning-assisted evolution reaches the global optimum
fitness value in 8.2% of 600 simulations, compared with 4.9% of
all starting sequences reaching the same value through a single-
mutant walk and 4.0% of simulated recombination runs. Addi-
tionally, on this landscape, the machine-learning approach
requires approximately 30% fewer variants to achieve final re-
sults similar to the single-mutant walk with this analysis. Perhaps
more importantly, a single-mutant walk is much more likely to
end at low fitness levels compared with approaches that sample
the combinatorial library directly. To this end, the machine learning
approach has an expected fitness value of 6.42, compared with
5.41 and 5.93 for the single-step walk and recombination,
respectively.
Interestingly, the accuracy of the machine learning models as

determined on a test set of 1,000 random variants not found in
the training set can be quite low (Pearson’s r = 0.41, SD = 0.17).
However, this level of accuracy as measured by Pearson’s r ap-
pears to be sufficient to guide evolution. Although perfect ac-
curacy does not seem to be necessary, if the accuracy of the

models is so low that predictions are random guesses, this ap-
proach cannot be expected to outperform a single-mutant walk
(SI Appendix, Fig. S1A). As an algorithm, evolution is focused on
identifying optimal variants, and the development of a measure
of model accuracy biased toward correctly identifying optimal
variants will likely improve model selection. This validation ex-
periment gave us confidence that machine learning-assisted di-
rected evolution can find improved protein variants efficiently.

Application to Evolution of Enantiodivergent Enzyme Activity. We
next used machine learning-assisted directed evolution to engi-
neer an enzyme to produce each of two possible product enan-
tiomers. For this demonstration, we selected the reaction of
phenyldimethyl silane with ethyl 2-diazopropanoate (Me-EDA)
catalyzed by a putative nitric oxide dioxygenase (NOD) from
Rhodothermus marinus (Rma), as shown in Fig. 3. Carbon–silicon
bond formation is a new-to-nature enzyme reaction (20), and
Rma NOD with mutations Y32K and V97L catalyzes this re-
action with 76% ee (enantiomeric excess) for the (S)-enantiomer
in whole-cell reactions (SI Appendix, Table S1).
Silicon has potential for tuning the pharmaceutical properties

of bioactive molecules (21, 22). Because enantiomers of bio-
active molecules can have stark differences in their biological
effects (23), access to both is important (24). Screening for
enantioselectivity, however, typically requires long chiral sepa-
rations to discover beneficial mutations in a low-throughput
screen (25). We thus tested whether machine learning-assisted
directed evolution can efficiently generate two catalysts to make
each of the product (S)- and (R)-enantiomers starting from a
single parent sequence.
We chose the parent Rma NOD (UniProt ID D0MGT2) (26)

enzyme for two reasons. First, Rma NOD is native to a hyper-
thermophile and should be thermostable. Because machine
learning-assisted directed evolution makes multiple mutations
per iteration, a starting sequence capable of accommodating
multiple potentially destabilizing mutations is ideal (27). Second,
although we previously engineered a cytochrome c (Rma cyt c)
to >99% ee for the (R)-enantiomer, WT Rma cyt c serendipi-
tously started with 97% ee (20). We hypothesized that a parent
enzyme with less enantiopreference [76% ee for the (S)-enan-
tiomer in whole cells] would be a better starting point for engi-
neering enantiodivergent variants.
During evolution for enantioselectivity, we sampled two sets of

amino acid positions: set I contained mutations to residues K32,
F46, L56, and L97; and set II contained mutations to residues
P49, R51, and I53 after fixing beneficial mutations identified
from set I. For both sets, we first tested and sequenced an initial
set of randomly selected mutants (i.e., the input library) to train
models. We next tested a restricted set of mutants predicted to
have high selectivity (i.e., the predicted library). The targeted
positions are shown in a structural homology model in Fig. 4A.
Set I positions were selected based on proximity to the putative
active site, whereas set II positions were selected based on their
proximity to the putative substrate entry channel.
Machine learning models are more useful when trained with

data broadly distributed across input space, even if those data are
noisy (28). When designing a training set for machine learning-
assisted directed evolution, it is thus important to maximize the
input sequence diversity by avoiding disproportionate amino acid
representation (e.g., from codon usage). We therefore used
NDT codons for the input libraries. NDT libraries encode
12 amino acids having diverse properties with 12 unique codons
(18), thus minimizing the probability that an amino acid is
overrepresented in the initial training set (29). Notably, the
parent amino acid at a site is still considered by the model even if
it is not encoded by the NDT codons, as sequence–function data
are available for the parent sequence.

Fig. 2. (A) Highest fitness values found by directed evolution and directed
evolution assisted by machine learning. The distribution of fitness peaks
found by iterative site-saturation mutagenesis from all labeled variants
(149,361 of 204 possible covering four residues) is shown in red. The distri-
bution of fitness peaks found by 10,000 recombination runs with an average
of 570 variants tested is shown in blue. The distribution of the highest fit-
nesses found from 600 runs of the machine learning-assisted approach is
shown in green. A total of 570 variants are tested in all approaches. For
reference, the distribution of all measured fitness values in the landscape is
shown in gray. (B) The same evolutionary distributions are shown as em-
pirical cumulative distribution functions, where the ordinate at any specified
fitness value is the fraction of evolutionary runs that reach a fitness less than
or equal to that specified value. Machine learning-assisted evolution walks
are more likely to reach higher fitness levels compared with conventional
directed evolution.
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The evolution experiment is summarized in Fig. 4B. In the first
round, Rma NOD Y32K V97L (76% ee) was used as a parent for
NDT mutagenesis at the set I positions. From 124 sequence–
function relationships sampled randomly, models were trained to
predict a restricted set of selective variants. Specifically, a variety
of models covering linear, kernel, shallow neural network, and
ensemble methods were tested on each library, from which the
optimum models were used to rank every sequence in the the-
oretical library by its predicted fitness. Under strict limitations in
experimental throughput, and with one 96-well plate as the
smallest batch size, we settled on two plates of input data for
each round of evolution and one plate of tested predictions.
However, increased throughput allows for increased likelihood
of reaching the landscape’s optimum (SI Appendix, Fig. S1A).
The lower numbers of variants input in Fig. 4C compared with
two full 96-well plates of sequencing reflect failed sequencing
reads of these two plates.
From the predicted libraries for both enantiomers, two vari-

ants, called VCHV (86% ee) and GSSG (62% ee) for their amino
acids at positions 32, 46, 56, and 97, were identified by screening
90 variants for each. VCHV and GSSG were then used as the
parent sequences for the second round of mutagenesis at the
three positions in set II. VCHV was the most selective variant in
the initial screen, but was less selective in final validation. The
approach of experimentally testing a library predicted by models
trained on a randomly sampled input library was repeated. From
those predicted libraries, we obtained two variants with mea-
sured enantioselectivities of 93% and 79% ee for the (S)- and
(R)-enantiomers, respectively. These two enantioselective en-
zymes were achieved after obtaining 445 sequence–function re-
lationships for model training and testing an additional
360 predicted variants, for a total of 805 variants tested experi-
mentally covering seven positions, as summarized in Fig. 4C.

Machine Learning Identifies Diverse Improved Sequences. Compari-
son on the empirical protein GB1 dataset showed that machine
learning-assisted directed evolution is more likely than directed
evolution alone to identify improved variants. However, another
benefit of this approach is the ability to identify a diverse set of
sequences for accomplishing a specific task. Having diverse so-
lutions is attractive, as some of those variants may satisfy other
design requirements, such as increased total activity, altered
substrate tolerance, specific amino acid handles for further
protein modification, or sequence diversity for intellectual
property considerations (30). By enabling exploration of the
combinatorial space, machine learning-assisted directed evo-
lution is able to identify multiple solutions for each engineering
objective.
Tables 1 and 2 summarize the most selective variants in the

input and predicted libraries for position sets I and II. The input
library for set I is the same for both product enantiomers. The
parent sequences for set II, VCHV and GSSG, are identified in
the tables. The improvement in total activity measured in whole
cells compared with the starting variant (32K, 46F, 56L, 97L)

obtained after two rounds of machine learning-assisted directed
evolution is also shown in Table 2. Although evolved for enan-
tioselectivity, the variants have increased levels of (cellular) ac-
tivity. Negative controls with cells expressing nonheme proteins
yield a racemic mixture of product enantiomers as a result of a
low level of nonselective background activity from free heme or
heme proteins. Increasing the cellular activity of the Rma NOD
protein can overcome this background activity and appears in the
screen as improved selectivity if the protein is selective. Thus,
enhanced activity is one path to higher selectivity. The two var-
iants most selective for the (S)-enantiomer differ by less than 1%
in ee. However, the 49P 51V 53I variant from VCHV has higher
total activity under screening conditions. By providing multiple
solutions in a combinatorial space for a single design criterion,
machine learning is able to identify variants with other beneficial
properties.
The solutions identified by this approach can also be non-

obvious. For example, the three most (S)-selective variants in the
initial input for position set I are YNLL, CSVL, and CVHV. The
three most selective sequences from the restricted, predicted li-
brary are VGVL, CFNL, and VCHV. If only considering the last
residue in bold, the predicted library can be sampled from the
top variants in the input library. However, for each of the other
three positions, there is at least one mutation that is not present
in the top three input sequences.

Machine Learning Predicts Regions of Sequence Space Enriched in
Function. Although the machine learning-assisted approach is more
likely to reach sequences with higher fitness, as demonstrated in
simulations using the human GB1 dataset, there may well be
instances in which other evolution strategies serendipitously
discover variants with higher fitness more quickly. Therefore, as
the purpose of library creation is to increase the likelihood of
success, we caution against focusing solely on examples of individ-
ual variants with higher fitness and propose an alternative analysis.
Sequence–fitness landscapes are typically represented with

fitness values on the vertical axis, dependent on some ordering of
the corresponding protein sequences. Representing this high-
dimensional space, even when it is explored with single muta-
tions, is complicated and requires the sequencing of each variant
(31). However, in functional protein space, the engineer is primarily

Fig. 4. (A) Structural homology model of Rma NOD and positions of mu-
tated residues made by SWISS-MODEL (47). Set I positions 32, 46, 56, and
97 are shown in red, and set II positions 49, 51, and 53 are shown in blue. (B)
Evolutionary lineage of the two rounds of evolution. (C) Summary statistics
for each round, including the number of sequences obtained to train each
model, the fraction of the total library represented in the input variants,
each model’s leave-one-out cross-validation (CV) Pearson correlation, and
the number of predicted sequences tested.

Fig. 3. Carbon–silicon bond formation catalyzed by heme-containing Rma
NOD to form individual product enantiomers with high selectivity.
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concerned with fitness. Therefore, an alternative representation of
a library is a 1D distribution of fitness values sampled at random for
each encoded library. In other words, the sequences are dis-
regarded for visualization, and the library is represented by the
distribution of its fitness values. Each subplot in Fig. 5 shows the
input and predicted (output) library as kernel density estimates
in each round of evolution for (R)- and (S)-selectivity as fitness.
This representation shows the main benefit of incorporating
machine learning into directed evolution, which is the ability to
focus expensive experiments on regions of sequence space enriched
in desired variants.
A few things are immediately clear with this visualization.

First, the distribution of random mutations made in the input
libraries is shifted toward the parent in Fig. 5, as has been shown
previously (32). In other words, random mutations made from an
(R)-selective variant are more likely to be (R)-selective. More
importantly, the machine-learning algorithm is able to focus its
predictions on areas of sequence space that are enriched in high
fitness, as can be seen in the shift in distribution from input to
predicted libraries. Specifically, 90 predicted variants were tested
for predicted library sizes of 864 for the (S)-enantiomer and
630 for the (R)-enantiomer in position set I. In position set II, the
predicted library sizes were much smaller, at 192 and 90 variants
for the (S)- and (R)-enantiomer, respectively. Ninety variants were
tested for these predicted libraries, which were sequenced for
redundancy (because of the smaller theoretical library size) to
yield 47 and 39 unique variants. Thus, machine learning optimized
directed evolution by sampling regions of sequence space dense in
functionality. Notably, the machine learning algorithms appear to
have more pronounced benefits in position set II, likely as a result
of the smaller number of positions explored and larger number of
sequence–function relationships obtained.

Discussion
We have shown that machine learning can be used to quickly
screen a full recombination library in silico by using sequence–
fitness relationships randomly sampled from the library. The
predictions for the most-fit sequences are useful when in-
corporated into directed evolution. By sampling large regions of
sequence space in silico to reduce in vitro screening efforts, we
rapidly evolved a single parent enzyme to generate variants that
selectively form both product enantiomers of a new-to-nature
C–Si bond-forming reaction. Rather than relying on identifying

beneficial single mutations as other methods such as ProSAR do
(13), we modeled epistatic interactions at the mutated positions
by sampling the combinatorial sequence space directly and in-
corporating models with nonlinear interactions.
Machine learning increases effective throughput by pro-

viding an efficient computational method for estimating de-
sired properties of all possible proteins in a large library. Thus,
we can take larger steps through sequence space by identifying
combinations of beneficial mutations, circumventing the need
for indirect paths (16) or alterations of the nature of selec-
tion (31), and potentially avoiding negative epistatic effects
resulting from the accumulation of large numbers of mutations
(33) that require reversion later in the evolution (34). This
gives rise to protein sequences that would not be found just by
recombining the best amino acids at each position. Allowing
simultaneous incorporation of multiple mutations accelerates
directed evolution by navigating different regions of the fitness
landscape concurrently and avoiding scenarios in which the
search for beneficial mutations ends in low-fitness regions of
sequence space.
Importantly, machine learning-assisted directed evolution also

results in solutions that appear quite distinct. For example,
proline is conserved at residue 49 in two of the most (S)-selective
variants. Proline is considered unique for the conformational
rigidity it confers, and at first may seem structurally important, if
not critical, for protein function. However, tyrosine and arginine
are also tolerated at position 49 with less than 1% loss in
enantioselectivity. This suggests that there are diverse solutions
in protein space for specific properties, as has also recently been
shown in protein design (8). Computational models make ab-
stractions to efficiently model physical processes, and the level of
abstraction must be tailored to the task, such as protein structure
prediction (35). Although predictive accuracy could be improved
by more computationally expensive simulations or by collecting
more data for machine learning, improved variants can already
be identified by sampling from a space predicted to be dense in
higher-fitness variants. Nevertheless, full datasets collected with

Table 2. Summary of the most (S)- and (R)-selective variants in
the input and predicted libraries in position set II (P49, R51, I53)

Variant

Residue
Selectivity, % ee
(enantiomer)

Cellular activity
increase over KFLL49 51 53

Input variants
From VCHV P* R* I* 86 (S) —

Y V F 86 (S) —

N D V 75 (S) —

From GSSG P† R† I† 62 (R) —

N S Y 56 (R) —

N I I 55 (R) —

Predicted variants
From VCHV Y V V 93 (S) 2.8-fold

P V I 93 (S) 3.2-fold
P V V 87 (S) 3.1-fold

From GSSG P R L 79 (R) 2.2-fold
P G L 75 (R) 2.1-fold
P F F 70 (R) 2.2-fold

Mutations that improve selectivity for the (S)-enantiomer appear in the
background of [32V, 46C, 56H, 97V (VCHV)] and for the (R)-enantiomer are
in [32G, 46S, 56S, 97G (GSSG)]. Activity increase over the starting variant,
32K, 46F, 56L, 97L (KFLL), is shown for the final variants.
*Parent sequence used for set II for (S)-selectivity.
†Parent sequence used for set II for (R)-selectivity.

Table 1. Summary of the most (S)- and (R)-selective variants in
the input and predicted libraries in set I (K32, F46, L56, L97)

Variant

Residue
Selectivity, % ee
(enantiomer)32 46 56 97

Input variants Y N L L 84 (S)
C S V L 83 (S)
C V H V 82 (S)

C R S G 56 (R)
I S C G 55 (R)
N V R I 47 (R)

Predicted variants V G V L 90 (S)
C F N L 90 (S)
V* C* H* V* 86 (S)

G† S† S† G† 62 (R)
G F L R 24 (R)
H C S R 17 (R)

*Parent sequence used for set II for (S)-selectivity.
†Parent sequence used for set II for (R)-selectivity.
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higher-throughput methods such as deep mutational scanning
(36) serve as valuable test beds for validating the latest machine-
learning algorithms for regression (37, 38) and design (39) that
require more data.
An evolution strategy similar in spirit to that described here

was recently applied to the evolution of GFP fluorescence (40).
However, the implementations are quite different. Saito et al.
(40) used Gaussian processes to rank sequences based on their
probability of improvement, or the probability that a variant
outperforms those in the training set. We take a different ap-
proach of identifying the optimal variants, focusing efforts in
the area of sequence space with highest fitness. Additionally,
because it is difficult to know a priori which models will be most
accurate for describing a particular landscape, we tested mul-
tiple types of models, from linear to ensemble models, to pre-
dict the optimal sequences. Modeling the effects of previously
identified point mutations has also recently been studied for
evolution of enantioselectivity of an enzyme (41). This study
and others focused on increasing the accuracy of protein
modeling by developing other physical descriptors (42, 43)
or embedded representations (44), suggesting that machine
learning will assist directed evolution beyond the baseline
implementation employed here.
By providing an efficient estimate for desired properties,

machine learning models are able to leverage the information
from limited experimental resources to model proteins, without
the need for a detailed understanding of how they function.
Machine learning-assisted directed evolution with combinatorial
libraries provides a tool for understanding the protein sequence–
function relationship and for rapidly engineering useful proteins.
Protein engineers have been sentenced to long treks through
sequence space in the search for improved fitness. Machine
learning can help guide us to the highest peaks.

Materials and Methods
Approach Validation on an Empirical Fitness Landscape. Fitness values were
provided for 149,361 of 160,000 total possible sequences covering four
positions in human protein GB1, where fitness was defined as the en-
richment of folded protein bound to IgG-Fc antibody as measured by
coupling mRNA display with next-generation sequencing (16). We used
only measured sequences and did not incorporate imputed values of
variants that were not measured directly. Three directed evolution ap-
proaches were simulated on this landscape: (i) a single-mutation walk, (ii )

simulated recombination, and (iii ) directed evolution with machine learn-
ing. For (i ), the algorithm proceeds as follows: (1) from a starting se-
quence, every possible single mutation (19N variants for N positions) is
made and evaluated; (2) the best single mutation is fixed in the reference
sequence, and the position it was found in is locked from further editing;
(3) steps (1) and (2) are repeated until every position has been tested, for a
total of four rounds to cover four positions. (ii) Simulated recombination
proceeds by selecting 527 random variants and recombining the mutations
found in the top three variants, for an average of 570 variants tested over
10,000 simulations. (iii) Directed evolution with machine learning pro-
ceeds as follows: (1) 470 randomly selected sequences in the combinatorial
space are used to train shallow neural networks with randomized hyper-
parameter search from fourfold cross-validation based on Pearson’s r.
Errors are then calculated based on 1,000 randomly selected variants that
were not present in the training set. (2) The optimal model is used to
predict the top 100 sequences, or the approximate screening capacity of a
plate. (3) The highest true fitness value in this predicted set of 100 se-
quences and the training set of 470 is the maximum fitness value found.
This process was repeated with different numbers of random sequences in
(i ) to simulate lower model accuracies, the results of which are shown in SI
Appendix, Fig. S1A. In Fig. 2, 100 variants was used as the size of the
predicted library test for its similarity to the screening capacity of a 96-
well plate. With 570 total variants (SI Appendix, Library Coverage), this
leaves 470 variants for the input library in (1) for an equal screening burden,
assuming 95% coverage of 19 mutations from WT at each position.

Library Cloning, Expression, and Characterization of Rma NOD. The gene
encoding Rma NOD was obtained as a gBlock and cloned into pET22b(+)
(cat. no. 69744; Novagen). Standard PCR amplification and Gibson as-
sembly were used for libraries with degenerate codons specified by
SwiftLib (17). Encoded vs. sequenced codon distributions are shown in SI
Appendix, Fig. S2. Expression was performed in 96 deep-well plates in
1 mL HyperBroth (AthenaES) using Escherichia coli BL21 E. cloni
EXPRESS (Lucigen) with 100 μg/mL ampicillin from a 20-fold dilution of
overnight culture. Expression cultures were induced after 2.5 h of out-
growth with 0.5 mM isopropyl β-D-1-thiogalactopyranoside, and heme
production was enhanced with supplementation of 1 mM5-aminolevulinic acid.

The relative product activity was measured by using 10 mMMe-EDA and
10 mM PhMe2SiH with whole cells resuspended in 400 μL nitrogen-free M9-
N buffer, pH 7.4 (47.7 mM Na2HPO4, 22.0 mM KH2PO4, 8.6 mM NaCl,
2.0 mM MgSO4, and 0.1 mM CaCl2). Reactions were incubated anaerobi-
cally at room temperature for 6 h before extraction into 600 μL cyclo-
hexane. Enantiomeric excess was measured by running the organic
solution on a Jasco 2000 series supercritical fluid chromatography system
with a CHIRALCEL OD-H (4.6 mm × 25 cm) chiral column (95% CO2, 5%
isopropanol, 3 min).

Rma NOD Model Training and Prediction Testing. Screening information was
paired with protein sequence obtained from rolling circle amplification
followed by sequencing by MCLab. The sequence–function pairs, available
on ProtaBank (45), were used to train a panel of models with default
hyperparameters in the scikit-learn Python package (46), including K-
nearest neighbors, linear (including Automatic Relevance Detection,
Bayesian Ridge, Elastic Net, Lasso LARS, and Ridge), decision trees, random
forests (including AdaBoost, Bagging, and Gradient Boosting), and multi-
layer perceptrons. The top three model types were selected, and grid-
search cross-validation was used to identify the optimal hyperparameters.
The top three hyperparameter sets for the top three model types were
used to identify the top 1,000 sequences in each predicted library. De-
generate codons encoding amino acids occurring with highest frequencies
in every model at each position were identified by SwiftLib (17), and
90 random variants were tested in vitro. This random sampling differs
from that in the empirical fitness landscape, in which all sequences have
been enumerated and can be easily tested. Even though sampling ran-
domly means we may not have tested the optimal sequence as identified
in trained models, we are able to generate fitness distributions as in Fig. 5
to describe this space.
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Fig. 5. A library’s fitness values can be visualized as a 1D distribution, in
this case as kernel density estimates over corresponding rug plots. This
figure shows subplots for each library illustrating the changes between
input (lighter) and predicted (darker) libraries for the (S)-enantiomers
(cyan) and (R)-enantiomers (red). The initial input library for set I is shown
in gray. The predicted (darker) libraries for each round are shifted toward
the right and left of the distributions for the (S)- and (R)-enantiomers,
respectively. For reference, dotted lines are shown for no enantiopreference
(i.e., 0% ee).
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