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APPENDIX A: SELF-GRAVITATION

Let us consider U(r), V(r) and P(r) the eigenfunctions describing the radial and transverse displace-

ment and the gravitational potential. The exact solutions for spheroidal oscillations of a uniform Earth

are developed e.g. in Pekeris & Jarosch (1958) and Takeuchi & Saito (1972). The eigenfrequencies

and eigenfunctions of a uniform Earth computed in the present study, both in non self-gravitating and

self-gravitating models, are based on their results. We use the Mineos package (Woodhouse 1988) to

compute the free oscillations of the PREM model. The Mineos package does not routinely compute

and output P(r) eigenfunctions when self-gravitation is shut down. Hence, a subroutine performing

the following integration (Pekeris & Jarosch 1958) was added to the Mineos package:
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It can be noted that this expression is the normal mode equivalent formulation of equation (4).

Fig. A1 displays the dispersion diagram of non self-gravitating and self-gravitating PREM models.

The effect of self-gravitation on eigenfrequencies is noticeable up to a few mHz and ` < 10. A similar

effect is seen in Fig. A2 for the fundamental eigenfunctions Ṗ(r) of a homogeneous solid sphere. The

vertical gravity perturbations g1 induced by the Tohoku-oki earthquake at INU and MDJ stations are

displayed in Fig. A3, both in non self-gravitating and self-gravitating PREM models. The long-period

trend differs slightly between the two Earth models.

APPENDIX B: HORIZONTAL COMPONENTS

The horizontal gravity perturbations g1 at P-wave arrival time induced by the M9.1 Tohoku-oki rupture

are displayed in Figs A4 (north component) and A5 (east component), in the self-gravitating PREM

model. Radiation patterns differ significantly from the vertical radiation pattern presented in Fig. 8.

However, the amplitudes of the horizontal perturbations at P-wave arrival time also exceed 1nm/s2,

meaning that their detection is today prevented by the noisier character of the horizonal components

of the broadband seismometers, but not by their weaker amplitude.
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Figure A1. Dispersion diagram of spheroidal oscillations for an isotropic PREM model (no ocean), with (black

dots) and without (orange dots) self-gravitation included. Self-gravitation effects are significant only at low

frequencies and angular number `.
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Figure A2. Eigenfunctions Ṗ(r) within a homogeneous solid sphere, with (black lines) and without (orange

lines) self-gravitation included. These are fundamental modes (n = 0) and the horizontal angular wavenumber

` ranges from 0 to 11. Self-gravitation effects are significant only at low frequencies. The 0S1 spheroidal mode

is not computed, since it implies a displacement of the center of the Earth.
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Figure A3. Vertical gravity perturbation induced by the M9.1 Tohoku earthquake, recorded at INU (top) and

MDJ (bottom) stations, in a non self-gravitating (orange lines) and self-gravitating (black lines) isotropic PREM

model (no ocean).
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Figure A4. Horizontal (north) gravity perturbation g1 induced at the Earth surface by the M9.1 Tohoku-oki

earthquake, at P-wave arrival time. The focal mechanism locates the earthquake epicenter, and the triangles

represent stations from the IRIS database. Yellow triangles are stations with low background seismic noise in

the 30 minutes preceding the event. In the area close to the epicenter the simulations are less reliable due to the

very short P travel times, and the perturbations are not computed.



7

1000 km

g1 at P-wave arrival time

10 9 10 10 0 10 10 10 9

Horizontal (east) gravity perturbation g1 (m / s2)

Figure A5. Horizontal (east) gravity perturbation g1 induced at the Earth surface by the M9.1 Tohoku-oki

earthquake, at P-wave arrival time. The focal mechanism locates the earthquake epicenter, and the triangles

represent stations from the IRIS database. Yellow triangles are stations with low background seismic noise in

the 30 minutes preceding the event. In the area close to the epicenter the simulations are less reliable due to the

very short P travel times, and the perturbations are not computed.


