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Abstract. Binary black hole mergers are of great interest to the astrophysics community, not
least because of their promise to test general relativity in the highly dynamic, strong field regime.
Detections of gravitational waves from these sources by LIGO and Virgo have garnered widespread
media and public attention. Among these sources, precessing systems (with misaligned black-hole
spin/orbital angular momentum) are of particular interest because of the rich dynamics they offer.
However, these systems are, in turn, more complex compared to nonprecessing systems, making them
harder to model or develop intuition about. Visualizations of numerical simulations of precessing
systems provide a means to understand and gain insights about these systems. However, since
these simulations are very expensive, they can only be performed at a small number of points in
parameter space. We present binaryBHexp, a tool that makes use of surrogate models of numerical
simulations to generate on-the-fly interactive visualizations of precessing binary black holes. These
visualizations can be generated in a few seconds, and at any point in the 7-dimensional parameter
space of the underlying surrogate models. With illustrative examples, we demonstrate how this tool
can be used to learn about precessing binary black hole systems.

1. Introduction

The merger of two black holes (BHs) is one of the most violent events in the Universe.
In the span of a few seconds, the incredible amount of energy ∼1060MeV [1] is
liberated in gravitational waves (GWs). These “ripples in spacetime” travel across
the Universe at the speed of light to our detectors, providing us unique insights into
these spectacular astrophysical events.

The first direct detection [1] of GWs from a BH merger was achieved in 2015
by the LIGO [2] twin detectors. This is one of the greatest achievements in modern
science, crowning decades of theoretical and experimental efforts in gravitational
physics. The detection of GWs not only earned the 2017 Nobel Prize in physics [3],
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but also sparked an unprecedented interest in science among the general public. For
a few days, BHs were on the front pages of most newspapers in the world!

Despite the immense technical difficulties in detecting them, astrophysical BHs
are remarkably simple objects, characterized only by their mass and spin. From far
away they can be thought of as the analogs of Newtonian point masses in Einstein’s
general relativity (GR). Near a BH, departures from Newtonian gravity such as the
event horizon, gravitational lensing, gravitational time dilation, frame dragging, etc,
become apparent.

When in a binary system, the departure is even more drastic. First, there are no
stable binary orbits in GR: emission of GWs takes away energy, angular momentum,
and linear momentum from the system, causing the binary’s orbit to shrink. Second,
in Newtonian gravity, a point-mass binary orbit that starts in the equatorial plane
remains in the equatorial plane. In GR, on the other hand, if the BH spins are
misaligned with respect to the orbital angular momentum, relativistic spin-spin and
spin-orbit couplings cause the system to precess [4–7]. Much like a top whose spin
axis is misaligned with the orbital angular momentum, the spins and the orbital
angular momentum oscillate about the direction of the total angular momentum.
This precession is imprinted on the observed gravitational waves as characteristic
modulations of amplitude and frequency.

The evolution of a binary BH system can be divided into three stages: inspiral,
merger, and ringdown. During the inspiral, the BHs gradually approach each other
due to loss of energy and angular momentum to GWs. As they get closer, they
eventually coalesce and merge. After the merger, one is left with a single, but highly
distorted, BH. In the final stage, called ringdown, all these perturbations (“hairs”) are
radiated away and the remnant settles down to its final steady state. The remnant
BH is characterized entirely by it mass, spin, and recoil velocity (or “kick”). These
properties are associated with the asymptotic conservation laws of energy, angular
momentum, and linear momentum, respectively.

Modeling GWs emitted during all three stages is crucial to interpreting
observations from detectors like LIGO [2] and Virgo [8]. The merger phase, in
particular, can only be captured accurately with expensive numerical-relativity (NR)
simulations (see e.g. Ref. [9] for a review). Obtaining a single merger waveform
prediction might take months of computational time on powerful supercomputers.
Visualizations [10] of these simulations have been instrumental in disseminating GW
discoveries for outreach and educational purposes. To some extent, experts in the
field also rely on visual products to develop intuition and illuminate future directions
for research. In particular, visualizations of precessing binary BHs can give valuable
insights into their complex dynamics. Available visualizations directly rely on NR
simulations, and are therefore restricted to the small number of configurations which



The binary black hole explorer: on-the-fly visualizations. . . 3

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 3645.6 M

q = 2.00
A = [0.40, 0.65, 0.10]
B = [0.44, 0.51, 0.11]

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5
Increased time step to 100M

t = 2269.6 M

mf = 0.96 M
f = [0.09, 0.29, 0.62]

vf = [ 1.05, 1.71, 3.27] × 10 3c

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 1996.9 M

q = 2.00
A = [ 0.60, 0.43, 0.20]
B = [ 0.49, 0.33, 0.33]

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 100.0 M

q = 2.00
A = [0.55, 0.53, 0.08]
B = [0.24, 0.62, 0.15]

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 9.7 M

q = 2.00
A = [ 0.17, 0.74, 0.09]
B = [0.44, 0.47, 0.21]

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 0.0 M

mf = 0.96 M
f = [0.09, 0.29, 0.62]

vf = [ 1.05, 1.71, 3.27] × 10 3c

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

t = 45.1 M

mf = 0.96 M
f = [0.09, 0.29, 0.62]

vf = [ 1.05, 1.71, 3.27] × 10 3c

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

x (M)

7.5 5.0 2.5 0.0 2.5 5.0 7.5

y (M)

7.5
5.0

2.5
0.0

2.5
5.0

7.5

z (
M

)

7.5

5.0

2.5

0.0

2.5

5.0

7.5
Increased time step to 100M

t = 69.6 M

mf = 0.96 M
f = [0.09, 0.29, 0.62]

vf = [ 1.05, 1.71, 3.27] × 10 3c

4000 3000 2000 1000 0
t (M)

0.2

0.0

0.2

h
r/M

h + h×

Figure 1. Snapshots during the inspiral (top-left), post-ringdown (top-right), and intermediate
(bottom) stages of a precessing binary BH evolution. Each BH horizon is represented by an oblate
spheroid. The arrows on the BHs indicate the spin vectors; the larger the spin the longer the
arrow. The arrow centered at the origin indicates the orbital angular momentum. On the bottom
plane, we show the plus polarization of GWs, as seen by an observer at each point. Red (blue)
colors indicate positive (negative) values. Notice the quadrupolar nature of the emitted waves. The
subplots at the bottom of each panel show GW plus and cross polarizations, as seen by a far-away
observer viewing from the camera viewing angle. The time to the peak of the waveform amplitude is
indicated in the figure text as well as the slider in the bottom subplots. This animation is available
at vijayvarma392.github.io/binaryBHexp/#prec_bbh.

have been simulated. Generating a new visualization at a generic point in parameter
space would involve a new, expensive NR simulation.

In this paper, we present the “binary Black Hole explorer” (binaryBHexp): a new
tool to generate on-the-fly, yet accurate, interactive visualizations of precessing binary
black hole evolutions with arbitrary parameters. We rely on recent NR surrogate
models. Trained against several hundreds of numerical simulations, these models
have been shown to accurately model both the emitted gravitational waveform [11]
and the BH remnant properties [12] of precessing binary BH systems. With our

https://vijayvarma392.github.io/binaryBHexp/#prec_bbh
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easy-to-install-and-use Python package, one can generate visualizations within a few
seconds on a standard, off-the-shelf, laptop computer. Some examples are available
at vijayvarma392.github.io/binaryBHexp.

Figure 1 shows snapshots from a visualization generated with binaryBHexp.
During the inspiral, both radiation reaction and spin precession are at play. While
the separation shrinks because of GW emission, the orientations of the spins, and the
orbital angular momentum, all vary in time. The GW emission frequency gradually
scales as f ∼ r

−3/2
12 , and amplitude scales as h ∼ r−1

12 , where r12 is the binary separation,
producing a distinctive “chirp” where both frequency and amplitude sweep up over
time. GWs are emitted in two polarizations, h+ and h×, as predicted by Einstein’s GR.
As explored later, the relative amplitude of the two polarizations crucially depends
on orientation of the observer with respect to the binary. Spin precession causes
amplitude modulations during the inspiral phase, which are also dependent on the
observer orientation. After merger, the component BHs are replaced by a remnant
BH, whose properties are determined by conservation laws, as mentioned above. The
merger process emits copious gravitational radiation, and corresponds to the peak
amplitude of the waveform.

The rest of the paper is organized as follows. Sec. 2 describes methods and
approximations employed to generate visualizations such as Fig. 1. In Sec. 3, we
demonstrate the power of this tool with several examples aimed at exploring known
phenomenology in BH dynamics. Sec. 4 describes code implementation and usage.
Finally, we provide concluding remarks in Sec. 5.

2. Methods

2.1. Preliminaries

We start with some definitions, referring the reader to standard GR and GW textbooks
for more details [13–18]. Throughout this paper, we use geometric units with
G = c = 1.

An isolated astrophysical BH is characterized entirely by its mass m and spin
angular momentum S = χm2. χ is the dimensionless spin, with magnitude χ ≤ 1,
and a = χm is the Kerr parameter.

A quasicircular precessing binary BH system is characterized by seven intrinsic
parameters: mass ratio q = m1/m2, and two spin vectors χ1, χ2. Here, subscript 1
(2) corresponds to the heavier (lighter) of the two BHs. The total mass of the system
M = m1 +m2 can be scaled out. Therefore, throughout this paper, all length and
time quantities are in units of M . Similarly, all frequency quantities are in units of
1/M . After the merger takes place, the remnant BH is characterized by its mass mf ,
spin χf and recoil velocity vf .

https://vijayvarma392.github.io/binaryBHexp


The binary black hole explorer: on-the-fly visualizations. . . 5

−0.2

0.0

0.2

<(
h

2
1
)

Inertial frame

−4000 −3000 −2000 −1000 0

t (M)

−0.04

−0.02

0.00

0.02

<(
h

2
1
)

Coprecessing frame

Figure 2. Example of the real part of the (` = 2,m = 1) spin-weighted spherical harmonic mode
(see Sec. 2.7) of the GW for a precessing black hole binary, in the inertial (top) and coprecessing
(bottom) frames. t = 0 corresponds to the peak of the waveform amplitude.

If the BH spins are (anti-)aligned with respect to the orbital angular momentum
L, the emitted GWs have monotonically increasing amplitude and frequency. Instead,
if the component spins are misaligned with respect to L, couplings between the
momenta L, S1, and S2 cause them to precess about the direction of the total angular
momentum J = L + S1 + S2. GW amplitude and frequency are not monotonic,
and their modulations strongly depend on the viewing angle [4]. This complexity
can be in part removed by moving into a non-inertial reference frame which tracks
the direction of L [19–21]. In this coprecessing frame, the waveform looks nearly as
simple as that of a nonprecessing source (cf. bottom panel of Fig. 2), and can be
modeled with methods developed to study nonprecessing systems.

2.2. Surrogate models

NR surrogate models provide a fast-but-accurate method to model GW signals.
We use a model developed by Blackman et al. [11] named NRSur7dq2 to predict
both the waveform and the BH spin dynamics. NRSur7dq2 was trained against 886
NR simulations in the 7-dimensional parameter space of mass ratios q ≤ 2, and
dimensionless spin magnitudes χ1, χ2 ≤ 0.8. NRSur7dq2 predicts both the emitted
GWs and the associated BH spin dynamics. In particular, it models four important
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quantities that we make use of in this work: (i) the waveform modes h`m expanded
in spin-weighted spherical harmonics (cf. Sec. 2.7); (ii) the unit quaternions Q̂(t)
describing the rotation between the coprecessing frame and a specified inertial frame;
(iii) the orbital phase in the coprecessing frame φorb; and (iv) the precession of
component spins χ1, χ2 over time.

Modeling the BH remnant’s properties is performed with the surrogate
surfinBH7dq2 [12], which was also trained on the same set of NR simulations. This
model takes in mass ratio q and component spin vectors χ1, χ2 at a given orbital
frequency, and models the remnant mass mf , spin vector χf , and kick vector vf .

2.3. Black-hole shapes

In our visualizations, we represent BH horizons with ellipsoids of revolution. The
axis of symmetry is along the instantaneous spin of the BH. The polar (along the
axis) and the equatorial (orthogonal to the axis) horizon radii are set to

rpol = r+ , requi =
√
r2

+ + a2 , (1)

where r+ = m +
√
m2 − a2. rpol and requi correspond to the Kerr-Schild [18, 22]

coordinate distances from the BH center to the pole/equator of the horizon. Note
that numerical simulations use a different coordinate system, meaning the BH shapes
would be different even for an isolated BH. However, this captures the azimuthal
symmetry and oblate nature seen in most coordinate systems.

This approximation, however, neglects much of the interesting phenomenology
of event horizons (EHs) of BHs in binaries [15, 23, 24]. Event horizons are defined
globally, so the locations of EHs cannot be determined without knowing the entire
future development of a spacetime. Most NR simulations track the location of
apparent horizons (AHs) [15], which can be defined locally. Both EHs and AHs of
orbiting BHs are deformed by the tidal field of the other BH. This distortion becomes
very strong close to merger, where the shape of the two event horizons do not resemble,
even vaguely, that of ellipsoids (see e.g. [25]). Improving our representation of EH
shapes requires building surrogate models for the morphology of the EH/AH, which
is an interesting avenue for future work.

In addition, we assume the masses of the BHs are constant during the evolution.
While the masses in an NR simulation can change due to in-falling energy through
GWs, this is a very small effect (4PN (Post Newtonian) higher than leading orbital
energy loss [26–28]) that is safely ignored in current waveform models including
NRSur7dq2.
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2.4. Component black-hole spin evolution

The two spins χ1,χ2 are modeled using NRSur7dq2. These are known to agree
well with NR simulations and are crucial for the accuracy of that waveform
model [11]. Note, however, that the spins modeled by NRSur7dq2 have had an
additional smoothing filter applied to remove short-timescale oscillations [11]. This
approximation propagates to our visualizations. Similarly to the masses of the BHs,
we assume the spin magnitudes are constant during the evolution. In-falling angular
momentum in the form of GWs can alter the spin magnitudes, but this is also a
very small effect (4PN higher than leading angular-momentum loss [27, 28]) that is
ignored by current waveform models including NRSur7dq2.

Spins are represented as arrows centered at the BH centers, that are proportional
to the Kerr parameter a of each BH. More specifically, the length is set to 10a, and
the direction is along â. The exaggeration of the magnitude is necessary to make the
spin vectors clearly visible during the evolution; more on this in the next section.

2.5. Orbital angular momentum

NRSur7dq2 only predicts the unit rotation quaternion Q̂(t) and not the magnitude L.
The (time dependent) direction of orbital plane is inferred from Q̂(t) and is orthogonal
to the z-axis of the coprecessing frame. For the magnitude L, we implement the
Newtonian expression

L = M2 q

(1 + q)2 (Mωorb)−1/3, (2)

where ωorb is the orbital frequency, as derived from the orbital phase in the coprecessing
frame modeled by NRSur7dq2,

ωorb = dφorb

dt
. (3)

In our visualizations, the angular momentum is indicated by an arrow at the
origin. Its magnitude is rescaled to 12L. This factor is arbitrary and it is chosen to
make the arrow clearly visible.

Note that it is not appropriate to compare an arrow for orbital angular momentum
L ∝ M2 to those representing the Kerr parameters a1, a2 ∝ M because they have
different dimensions. The choice of representing a, rather than the S ∝M2 was made
to allow all arrows to be clearly visible throughout the inspiral for generic locations
in the parameter space (i.e. different mass ratios). However, we provide an option to
represent S for the spin arrows (cf. Sec. 4), in which case the arrow magnitudes are
set to 12S. This makes the arrow on the smaller BH barely visible in some cases, but
allows direct comparison of the spin arrows to the orbital angular momentum arrow.
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This could be informative for gaining intuition about peculiar spin phenomena like
transitional precession [4, 29], spin orbit resonances [30], large nutations [31, 32] and
precessional instabilities [33]. This phenomenology is currently beyond the scope of
the surrogate we used, but is being actively researched with NR simulations [34, 35]
and lies within the realm of future hybridized surrogate models (see e.g. [36]).

2.6. Component black-hole trajectories

The gauge symmetry of GR is broken in an NR simulation, since one necessarily
has to specify a set of coordinates to represent the solution on a computer. The BH
trajectories extracted from numerical simulations are, therefore, inherently gauge
dependent.

In the construction of NRSur7dq2 [11] quantities like Q̂(t) and φorb are obtained
from the GWs extrapolated to future null infinity, not from numerical simulations’
BH coordinates.

In our visualizations, we reconstruct the trajectories of the BHs using the
dynamics predicted by NRSur7dq2 and some PN arguments. In particular, one needs
the separation between the BHs as a function of the orbital frequency, r12(ωorb), with
the orbital frequency defined as in Eq. (3). The separation r12(ωorb) is modeled using
the 3.5PN expressions reported in Eq. (4.3) of Ref. [37], along with the 2PN spin-spin
term from Eq. (4.13) of Ref. [5].

Let us write the coprecessing frame coordinates as (x′, y′, z′). The trajectories
in the coprecessing frame, where the orbital plane is orthogonal to the z′−axis, are
given by 

x′1 = r1 cosφorb

y′1 = r1 sinφorb

z′1 = 0


x′2 = −r2 cosφorb

y′2 = −r2 sinφorb

z′2 = 0
(4)

where r1 (r2) indicates the coordinate separation from the origin to the primary
(secondary) BH center. We use the Newtonian relations

r1 = m2

M
r12, r2 = m1

M
r12, (5)

to enforce the Newtonian center-of-mass of the binary to be at the origin. This
ignores the fact that true center of mass during inspiral and merger oscillates about
the origin due to linear momentum carried away in GW. However, this correction
would be too small to be noticeable on the scale of our visualizations (see e.g. Fig. 2
of [38]).

Given the trajectories in the coprecessing frame, the trajectories in the inertial
frame are obtained by a quaternion transformation with the time-dependent rotation
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Figure 3. Comparison of the coordinate trajectories of the heavier BH for a precessing binary BH,
between NR, and our approximation using NRSur7dq2 and PN. t = 0 corresponds to the peak of the
waveform amplitude. The mass ratio, and spins at t = −4500M are shown at the top of the plot.

(unit) quaternions Q̂(t) (for a brief introduction to quaternions in this context, see e.g.
App. A of [39]). Treating the Euclidean positions as purely imaginary quaternions,
the transformation is

xi = Q̂(t) x′i Q̂−1(t) . (6)

Figure 3 compares the trajectories predicted by our method to the gauge-
dependent ones extracted from an NR simulation. Our approximate trajectories
turn out to be remarkably close to the NR trajectories. The dominant deviations are
due to the PN formulae being in harmonic gauge, whereas the NR simulations use
the damped harmonic gauge [40].

2.7. Gravitational waves

NR simulations predict the entire spacetime metric of a binary BH evolution.
However, the full metric is usually discarded because most applications (notably GW
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observations) only require the gravitational waves as seen by an observer far away.
Indeed, splitting the metric into GWs and a non-oscillatory part can only be well

defined in the wave zone, which is at distances r much larger than the gravitational
wavelength λ. Let us suppose we are in a spacetime that is approximately Minkowski
space, with a metric perturbation hab, in the transverse-tracefree (TT) gauge [41]. We
define a spherical polar coordinate system (t, r, θ, φ) with the binary center-of-mass
at the origin. The z axis (θ = 0) of this coordinate system is parallel to L at some
reference time/frequency. The x axis lies along the line of separation from the lighter
BH to the heavier BH at this time/frequency, and the y axis completes the triad.

The spherically outgoing gravitational wave is typically converted into a spin-
weight −2 complex scalar by contracting h ≡ habm̄

am̄b, where ma = (êaθ + iêaφ)/
√

2
is an element of a complex null dyad [18] along with its conjugate m̄a; and where
êaθ , ê

a
φ are the standard unit vectors in the θ and φ directions, respectively. The

gravitational-wave strain h is then decomposed as

h(t, r, θ, φ) =
∞∑
`=2

∑̀
m=−`

−2Y`m(θ, φ)h`m(t, r) , (7)

where −2Y`m are the s=−2 spin-weighted spherical harmonics [42]. The functions
h`m are referred to as the modes of the GWs.

From the structure of the flat-space d’Alembertian operator, we can see that at
large distances, h is dominated by a piece decaying as ∼ 1/r along lines of constant
retarded time tret ≡ t − r [43]. This motivates how waves are extracted from NR.
First, (rh`m) is evaluated on spheres of various radii in the computational domain.
This is then extrapolated to future null infinity, defining

(rh`m)∞(t) ≡ lim
r→∞

r h`m(t− r, r). (8)

NRSur7dq2 only models these extrapolated GW modes, (rh`m)∞.
One can evaluate the GWs at any particular orientation in the source frame at

r → ∞ by applying Eq. (7) to (rh`m)∞(t). This is used to generate the waveform
time series in the bottom subplots of our animations (cf. Fig. 1), where we show the
plus h+ = <(h) and cross h× = −=(h) polarizations. We use all the spin-weighted
spherical harmonic modes provided by NRSur7dq2, i.e. 2 ≤ ` ≤ 4 and |m| ≤ `.

Since the full metric is not available in the bulk, we approximate it from (rh)∞.
When showing GWs on the bottom plane of our visualizations (cf. Fig. 1), we
approximate the strain as

h(t, r, θ, φ) ≈ (rh)∞(tret, θ, φ)
r

. (9)

This neglects curved-background effects such as tails, and higher order 1/r corrections,
so this approximation is only valid at large r. More work would be needed to recover
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the higher powers of 1/r, but it is technically possible (see Eq. (2.53a) of [43]). The
default position of the bottom-plane is quite close to the binary; moving it farther
out improves this approximation.

2.8. Post merger phase

In NR simulations, a common apparent horizon typically forms at a retarded time
close to the peak of the waveform A2 = ∑

`,m |h`m|2. This is taken to be the definition
of the time of merger. We therefore shift the time variable t such that t=0 corresponds
to maxtA. At t ≥ 0, the two component BHs are replaced by a single remnant. The
final mass, spin, and kick of the remnant are predicted using surfinBH7dq2 [12].

Mass and spins of the remnant are used to draw a horizon ellipsoid and spin
arrow as specified in Sec. 2.3 and Sec. 2.4. The remnant BH horizon is expected to
be highly distorted at the common horizon formation time. We ignore this effect
and simply represent the remnant BH by an ellipsoid of constant shape from t=0
onwards.

During a BH inspiral and merger, linear momentum emitted in GWs causes
motion of the binary’s center of mass (cf. e.g. Ref. [38] and references therein). In
practice, however, linear momentum flux is negligible at early times and the “kick” is
only accumulated over the last few cycles before merger. Here we make the additional
simplification of neglecting this effect, and assume that the remnant is formed at the
origin and receives all of its kick velocity instantaneously. However, as mentioned
before, this correction would be at a scale that is not noticeable in our visualizations
(cf. Fig. 2 of [38]).

2.9. Time steps and displayed text

To better highlight different phases of the evolution, we use a non-uniform time step.
The time step between frames at t . 75M is chosen to obtain 30 frames for each
orbit. The animation, therefore, is artificially slowed down close to merger, so that
the entire dynamics is easier to observe. After the ringdown stage, the animation is
sped up to better illustrate the final kick. The current time is displayed in the figure
text, as well as indicated by the blue vertical slider in the bottom waveform subplot
(cf. Fig. 1).

The figure text at the top-left of the main visualization panel shows the parameters
of the binary (remnant). At times t < 0, these are the mass ratio and instantaneous
spin components. Mass, spin and kick of the remnant BH are shown after merger.
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Figure 4. Visualization of a precessing binary black hole system where we also vary the camera
viewing angle during the inspiral. Notice how the waveform structure in the bottom subplots changes
based on whether the viewing angle is edge-on (top-left), intermediate (top-right), or face-on (bottom).
This animation is available at vijayvarma392.github.io/binaryBHexp/#prec_bbh_rotating_camera.

https://vijayvarma392.github.io/binaryBHexp/#prec_bbh_rotating_camera
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3. Explorations

We now provide additional examples that demonstrate the power and utility of our
visualizations.

3.1. Waveform projection

Figure 4 shows a visualization of a precessing binary BH, when we also vary the camera
viewing angle during the evolution. The polarization content and the morphology of
the waveform therefore strongly depend on the direction of the line of sight, which
can be understood as follows. From Eq. (7), the observer viewing angles (θ, φ) affect
the relative weights with which the waveform modes h`m are combined into the strain
h. Note that the standard quadrupole formula for GW emission only contains the
dominant `= |m|=2 modes, while here we use all modes with ` ≤ 4.

The GW amplitude is strongest along the direction of L. This is evident from
the bottom panel of Fig. 4, where the direction of L aligns with the observer’s viewing
angle (i.e., the binary is face-on). On the other hand (top-left panel of Fig. 4) the
GW amplitude is at its least when the observer viewing angle is orthogonal to L
(edge-on). The contribution of higher harmonics ` > 2 to Eq. (7) also depends on
observer viewing angle. For face-on binaries, the GWs are strongly dominated by
the quadrupolar modes. Going from face-on to edge-on, the contribution of the
quadrupolar modes decreases and that of the nonquadrupolar modes increases.

One can also infer the polarization content of the GWs from the waveform
panel. If there is a ±90◦ phase shift between h+ = <(h) and h× = −=(h), the
GWs are circularly polarized. The bottom panel of Fig. 4, which is mostly face-on,
shows almost perfect circular polarization, deviating due to precession of the orbital
plane. For comparison, when h+ and h× are proportional with a real constant of
proportionality, the GW has a linear polarization (this includes the simpler case where
one of the two polarizations vanishes). The top-left panel of Fig. 4, where the system
is (almost) edge-on, exhibits (almost) linear polarization at many times throughout
the inspiral. Again the deviations are due to precession of the orbital plane. The
modulation is more noticeable for nearly edge-on precessing systems, since one of
the polarizations can temporarily vanish as the system precesses through perfectly
edge-on configurations.

3.2. Orbital hang-up effect

Apart from precession, the BH spins have other important effects on the evolution of
binaries. One such effect is the so called orbital hang-up effect [44–46] which delays
or prompts the merger of the BHs based on the sign of the BH spin component along
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Figure 5. Visualization of the orbital hang-up effect. We show three nonprecessing systems
with equal masses, and equal spins. In the left (right) column, both spins are aligned (anti-
aligned) with L, with magnitude 0.8. The middle column shows a nonspinning binary. All three
systems start at an orbital frequency of 0.018 rad/M . Due to orbital hang-up effect, the length of
the waveform is longer (shorter) for the aligned case compared to the nonspinning case (see the
bottom subplots showing the waveform). Time flows downwards (labeled at the left), and each
row corresponds to a fixed time since the start of the animation. This animation is available at
vijayvarma392.github.io/binaryBHexp/#hangup.

https://vijayvarma392.github.io/binaryBHexp/#hangup
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the orbital angular momentum, S · L, where S is one of S1 or S2. This spin-orbit
coupling is a 1.5 PN effect that effectively acts as an additional repulsion (attraction)
when the sign of S ·L is positive (negative). This means that binaries that have spins
that are aligned (anti-aligned) with L will merge slower (faster) than nonspinning
binaries, when starting from the same orbital frequency. This is analogous to the
location of the innermost stable circular orbits of Kerr BHs, which is at a smaller
(larger) radius for co-(counter-)rotating particles.

This is demonstrated in Fig. 5, which shows an aligned, nonspinning and an
anti-aligned binary, starting at the same orbital frequency. Unlike the rest of the
animations discussed in this paper, here we use a constant time step between the
frames of the movie (rather than a fixed 30 frames per orbit), and set t = 0 at the
start of the waveform (rather than at the peak). Due to the orbital hang-up effect,
the anti-aligned binary merges first, followed by the nonspinning system, and finally
the aligned system. In addition, the aligned (anti-aligned) binary radiates more (less)
energy due to its prolonged (shortened) evolution, and the final mass is therefore
smaller (larger) than the nonspinning case. The interaction between spin and orbital
angular momentum also determines the remnant spin in a non-trivial way: the aligned
(anti-aligned) case results in the largest (smallest) remnant spin magnitude.

The orbital hang-up effect can also be explained heuristically using the cosmic
censorship conjecture. For the aligned-spin binary in Fig. 5, the initial magnitude of
total angular momentum is given by J = L+m2

1 χ1 +m2
2 χ2. Using L from Eq. (2)

with ωorb = 0.018 rad/M , we get J ∼ 1.35M2. This is larger than the maximum
allowed spin angular momentum for a Kerr BH, M2. On the other hand, for the
anti-aligned case we have J = L −m2

1 χ1 −m2
2 χ2 ∼ 0.55M2, which is well within

the limit. So, the aligned binary must radiate at least 0.35M2 of its total angular
momentum in the form of GWs before it can merge, in order to not violate cosmic
censorship. The anti-aligned case can therefore merge faster.

3.3. Super-kick

Next, we consider a binary BH in the so-called super-kick configuration. Anisotropic
emission of GWs causes a net flux of linear momentum, which imparts a kick to
the remnant BH. Some degree of asymmetry is necessary for a nonzero kick [47].
For instance the kick vanishes by symmetry during the merger of an equal-mass,
nonspinning binary BH system. Strongly precessing binary BHs have been found to
generate the highest kicks [48–50]. Some of these systems have kicks large enough to
escape from even the most massive galaxies in the Universe [51, 52].

In particular, a vary large kick (up to ∼ 3000 km/s) is imparted to BHs merging
with spins lying in the orbital plane and anti-parallel to each other. These are the
so-called super-kicks first discovered in 2007 [48, 49], by means of NR simulations.
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Figure 6. Evolution of a super-kick configuration. Time flows from left to right and from top to
bottom, as shown at the bottom left of each panel. The top-left panel shows a snapshot taken in
the early inspiral. In the top-right panel, the two BHs are about to merge and the spins are are
seen to be in a super-kick configuration. The bottom-left snapshot is taken at the time at which
the peak of the waveform hits the bottom plane where the GW pattern is shown. After merger
(bottom-right panel), the final BH is imparted a kick of ∼ 3000 km/s (note that we speed up the
animation after the ringdown by increasing the time steps to 100M). This animation is available at
vijayvarma392.github.io/binaryBHexp/#super_kick.

https://vijayvarma392.github.io/binaryBHexp/#super_kick
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The largest kicks observed in numerical simulations to date are the so-called hangup-
kicks [50], where the spins have non-zero components perpendicular to the orbital
plane, but the in plane spins are anti-parallel. We will refer to all configurations
where the spins near merger are coplanar, and their orbital plane projections are
anti-parallel, as super-kick configurations. Crucially, large kicks are only found if the
spins are in these fine-tuned configurations “near merger.”

For this reason, generating visualizations of BH super-kicks from simulations can
be challenging. The spins are usually specified at the start of the simulations and
several attempts are necessary to find the specific initial conditions that will result in
co-planar spins near merger. With our tool, on the other hand, one can specify the
spins at any time/frequency, including close to merger. Generating a visualization of
a system in a super-kick configuration is as easy as any other location in parameter
space. This is shown in Fig. 6. The remnant reaches a final velocity of ∼ 10−2c

(∼ 3000km/s), in agreement with [48–50].

α = 0 α = π
4 α = π

2 α = 3π
4 α = π

t
=
−

20
00
M

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [ 0.17, 0.78, 0.00]
B = [0.17, 0.78, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.43, 0.68, 0.00]
B = [ 0.43, 0.68, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.78, 0.17, 0.01]
B = [ 0.78, 0.18, 0.01]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.67, 0.44, 0.01]
B = [ 0.68, 0.42, 0.01]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.16, 0.79, 0.01]
B = [ 0.17, 0.78, 0.01]

t
=
−

10
0M

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [ 0.75, 0.29, 0.00]
B = [0.75, 0.29, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [ 0.32, 0.74, 0.00]
B = [0.32, 0.74, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.31, 0.74, 0.00]
B = [ 0.31, 0.74, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)
6

4

2

0

2

4

6

q = 1.00
A = [0.74, 0.32, 0.00]
B = [ 0.74, 0.32, 0.00]

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

q = 1.00
A = [0.74, 0.31, 0.00]
B = [ 0.74, 0.31, 0.00]

t
=

0M

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

mf = 0.95 M
f = [0.00, 0.00, 0.68]

vf = [ 0.03, 0.07, 0.11] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [0.01, 0.04, 6.25] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

mf = 0.95 M
f = [0.00, 0.00, 0.68]

vf = [0.03, 0.08, 9.35] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [ 0.16, 0.13, 6.76] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [ 0.18, 0.13, 0.16] × 10 3c

t
=

13
65
M

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6
Increased time step to 100M

mf = 0.95 M
f = [0.00, 0.00, 0.68]

vf = [ 0.03, 0.07, 0.11] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6
Increased time step to 100M

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [0.01, 0.04, 6.25] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6
Increased time step to 100M

mf = 0.95 M
f = [0.00, 0.00, 0.68]

vf = [0.03, 0.08, 9.35] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6
Increased time step to 100M

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [ 0.16, 0.13, 6.76] × 10 3c

x (M)

6 4 2 0 2 4 6

y (M)

6
4

2
0

2
4

6

z (
M

)

6

4

2

0

2

4

6
Increased time step to 100M

mf = 0.95 M
f = [ 0.00, 0.00, 0.68]

vf = [ 0.18, 0.13, 0.16] × 10 3c

Figure 7. Sinusoidal dependence of the kick magnitude on the angle between spins close to merger.
Five different cases are shown (left to right), with equal masses and equal spins. Both spins are
confined to the orbital plane, and are anti-parallel to each other, but with a different angle in the
plane α (labeled at top), specified at t=−100M . Time flows downwards (labeled at left). The
bottom panels show the sinusoidal dependence of the final kick magnitude on the initial orbital
phase. This animation is available at vijayvarma392.github.io/binaryBHexp/#sine_kicks.

https://vijayvarma392.github.io/binaryBHexp/#sine_kicks
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3.4. Sinusoidal kick dependence

As suggested above, the remnant kick is quite sensitive to the angle between the spins
close to merger. In particular, the component of the kick parallel to the orbital angular
momentum has been found to depend sinusoidally on the orbital phase [38, 53]. Fig. 7
demonstrates this effect. All five different cases have equal-mass BHs, with anti-
parallel spins lying in the orbital plane at t = −100M . Each evolution is initialized
with a different orbital phase or, equivalently, performing an overall rotation of the
spins about the z-axis.

As expected, the final BH kick changes dramatically with the initial orbital
phase. Even visually, the kick dependence appears to be sinusoidal. This example
demonstrates the potential of binaryBHexp as a tool to perform detailed, but at the
same time accessible, exploration of the phenomenology of precessing BH mergers.

4. Public Python implementation

Our package is made publicly available through the easy-to-install-and-use Python
package, binaryBHexp [54]. Our code is compatible with both Python 2 and Python 3.
The latest release can be installed from the Python Package Index using

pip install binaryBHexp

This adds a shell command called binaryBHexp, which can be used to generate
visualizations with invocation as simple as

binaryBHexp --q 2 --chiA 0.2 0.7 -0.1 --chiB 0.2 0.6 0.1

Such an invocation yields a running movie that the user can interact with. By clicking
and dragging on the movie as it plays, the user can change the viewing angle and the
waveform time-series will update in real time as the viewing angle is manipulated.
The full documentation for command-line arguments is available with the --help
flag.

As mentioned in Sec. 2.5, the default setting for the spin arrows is to be
proportional to the Kerr parameter of the BH, a. By passing the optional argument
--use_spin_angular_momentum_for_arrows to the above command, the spin arrows
can be made proportional to the spin angular momentum of the BH instead.

Python packages NRSur7dq2 [55] and surfinBH [56] are specified as dependencies
and are automatically installed by pip if missing. binaryBHexp is hosted on GitHub
at github.com/vijayvarma392/binaryBHexp, from which development versions can
be installed. Continuous integration is provided by Travis [57]. More details about
the Python implementation, as well as animations corresponding to the examples
discussed in this paper are available at vijayvarma392.github.io/binaryBHexp.

https://github.com/vijayvarma392/binaryBHexp
https://vijayvarma392.github.io/binaryBHexp/
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5. Conclusion

We present a tool for visualizing mergers of precessing binary black holes. Rather
than rely on expensive numerical simulations, we base our animations on surrogate
models of numerical simulations. These are inexpensive but very accurately reproduce
numerical simulations. Therefore, we can generate visualizations anywhere in the
parameter space of the underlying surrogate models, within a few seconds.

We make our code available through an easy-to-install-and-use python package
binaryBHexp [54]. We demonstrate the power of this tool by generating visualizations
of several well known phenomena such as: spin and waveform modulations due to
precession, orbital-hangup effect, super kicks, sinusoidal behavior of the remnant kick,
etc. This tool can be used by researchers and students alike, to gain valuable insights
into the highly complex dynamics of precessing binary black holes.
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