
Meta Inverse Reinforcement Learning via Maximum

Reward Sharing

Kun Li ∗ Joel W. Burdick

Abstract

This work handles the inverse reinforcement learning (IRL) problem where only a
small number of demonstrations are available from a demonstrator for each high-
dimensional task, insufficient to estimate an accurate reward function. Observing
that each demonstrator has an inherent reward for each state and the task-specific
behaviors mainly depend on a small number of key states, we propose a meta IRL
algorithm that first models the reward function for each task as a distribution con-
ditioned on a baseline reward function shared by all tasks and dependent only on
the demonstrator, and then finds the most likely reward function in the distribu-
tion that explains the task-specific behaviors. We test the method in a simulated
environment on path planning tasks with limited demonstrations, and show that
the accuracy of the learned reward function is significantly improved.

1 Introduction

Inverse reinforcement learning (IRL) [1] algorithms estimate a reward function that explains the
motions demonstrated by an operator or other agents on a task described by a Markov Decision
Process (MDP) [2]. The accuracy of the recovered function depends heavily on the ratio of visited
states in the demonstrations to the whole state space, because the demonstrator’s motion policy
can be estimated more accurately if every state is repeatedly visited. However, the ratio is low for
many useful applications, since they usually have huge or high-dimensional state spaces, while the
demonstrations are relatively rare for each task. In practice, usually multiple tasks can be observed
from the same demonstrator, and the problem of rare demonstrations can be handled by combining
data from all tasks, hence the meta-learning problem.

In many IRL applications, we observe that a demonstrator usually has an inherent reward for each
state, materialized as the innate state preferences of a human, the hardware-dependent cost function
of a robot, the default structure of an environment, etc. For a given task, the demonstrators are
usually reluctant to drastically change the inherent reward function to complete the task; instead,
they alter the innate reward function minimally to generate a task-specific reward function and plan
the motion. For example, in path planning, the C-space of a mobile robot at home rarely changes,
and the robot’s motion depends on the goal state; in human motion analysis, the costs of different
poses are mostly invariant, while the actual motion depends on the desired directions.

Based on this observation, we propose a meta inverse reinforcement learning algorithm by maximiz-
ing the shared rewards among all tasks. We model the reward function for each task as a probabilistic
distribution conditioned on an inherent baseline function, and estimate the most likely reward func-
tion in the distribution that explains the observed task-specific demonstrations.

∗Department of Mechanical and Civil Engineering, California Institute of Technology,
kunli@caltech.edu

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216303033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Meta Inverse Reinforcement Learning

2.1 Meta Inverse Reinforcement Learning

We assume that an agent needs to handle multiple tasks in an environment, denoted by {Ti|i =
1, NT}, where Ti denotes the ith task and NT denotes the number of tasks.

We describe a task Ti as a Markov Decision Process Si, Ai, Ri, P
a
i,ss′ , γi. For a task Ti, the agent

performs a set of demonstrations ζi = {ζi,j |j = 1, · · · , Nζi}, represented by Nζi sequences of
state-action pairs:

ζi,j = {(sti,j , a
t
i,j)|t = 0, · · · , Nζi,j},

where Nζi,j denotes the length of the jth sequence ζi,j . Given the observed sequences ζ = {ζi|i =
1, · · · , NT} for the NT tasks, inverse reinforcement learning algorithms try to recover a reward
function ri(s) for each task.

Our key observation in multi-task IRL is that the demonstrator has an inherent reward function
rb(s), generating a baseline reward for each state in all tasks. To complete the ith task, the agent
generates a reward function ri(s) from a distribution P (ri|rb) conditioned on rb(s) to plan the
motion. Therefore, the motion ζi is generated as:

P (ζi|ri)P (ri|rb)

For the ith task, we want to find the most likely ri(s) sampled fromP (ri|rb) that explains the demon-
stration ζi. Assuming all the tasks are independent from each other, the following joint distribution
is formulated:

NT∏

i=1

P (ζi|ri)P (ri|rb)

The reward functions can be found via maximum-likelihood estimation:

min
rb(s),r1(s),··· ,rT(s)∈F

NT∑

i=1

Li(ζi, ri(s))
︸ ︷︷ ︸

IRL loss

+L(ri(s), rb(s))
︸ ︷︷ ︸

reward sharing loss

(1)

where F denotes a function space, Li(ζi, ri(s)) is the negative loglikelihood of P (ζi|ri), and
L(ri(s), rb(s)) is the negative loglikelihood P (ri|rb).

2.2 Loss for Inverse Reinforcement Learning

While many solutions exist for the inverse reinforcement learning problem, we adopt the solution
based on function approximation developed in [3] to handle the practical high-dimensional state
spaces.

The core idea of the method is to approximate the Bellman Optimality Equation [2] with a function
approximation framework. But with a parameterized VR function, we describe the summation of the
reward function and the discounted optimal value function as:

fi(s, θi) = ri(s) + γ ∗ V ∗
i (s), (2)

Thus the Bellman Optimality Equation is reformulated as:

Q∗
i (s, a) =

∑

s′|s,a

P a
i,ss′fi(s

′, θi), (3)

V ∗
i (s) = max

a∈A

∑

s′|s,a

P a
i,ss′fi(s

′, θi), (4)

ri(s) = fi(s, θi)− γ ∗max
a∈A

∑

s′|s,a

P a
i,ss′fi(s

′, θi). (5)

2

This framework avoids solving the Bellman Optimality Equation. Besides, this formulation can be
generalized to other extensions of Bellman Optimality Equation by replacing the max operator with
other types of Bellman backup operators. For example, V ∗(s) = log

∑

a∈A expQ∗(s, a) is used

in the maximum-entropy method[4]; V ∗(s) = 1
k
log

∑

a∈A exp k ∗ Q∗(s, a) is used in Bellman
Gradient Iteration [5].

To apply this framework to IRL problems, this work chooses a motion model p(a|s) based on the
optimal Q function Q∗

i (s, a) [6]:

P (a|s) =
exp b ∗Q∗

i (s, a)
∑

ã∈A exp b ∗Q∗
i (s, ã)

, (6)

where b is a parameter controlling the degree of confidence in the agent’s ability to choose actions
based on Q values. Other models can also be used, like p(a|s) = exp(Q(s, a)− V (s)) in [4].

Assuming the approximation function is a neural network, the parameter θi = {w, b}-weights and
biases, the negative log-likelihood of P (ζi|θi) is given by:

Li(θi) = −
∑

(s,a)∈ζi

(b ∗Q∗
i (s, a)− log

∑

â∈A

exp b ∗Q∗
i (s, â)), (7)

where the optimal Q function is given by Equation (3). After estimating the parameter θi, the value
function and reward function can be computed with Equation (2), (4), and (5).

2.3 Loss for Reward Sharing

Since the demonstrator makes minimal changes to adapt the inherent reward function rb(s) into
task-specific one ri(s), we model the distribution as:

P (ri(s)|rb(s)) ∝ exp (D(ri(s), rb(s))))

where D(ri(s), rb(s))) measures the difference between ri(s) and rb(s). Thus the loss function for
reward sharing is given as:

L(ri(s), rb(s)) = logZ − D(ri(s), rb(s)))

where logZ is the partition function and remains the same for all ri(s).

We test several functions as D(ri(s), rb(s))), including L2 loss, huber loss, standard deviation, and
information entropy. With the loss function for IRL and reward sharing, the reward functions can be
learned via gradient method.

3 Experiments

3.1 Path Planning

We consider a path planning problem on an uneven terrain, where an agent can observe the whole
terrain to find the optimal paths from random starting points to arbitrary goal points, but a mobile
robot can only observe the agent’s demonstrations to learn how to plan paths. Given a starting point
and a goal point, an optimal path depends solely on the costs to move across the terrain. To learn the
costs, we formulate a Markov Decision Process for each goal point, where a state denotes a small
region of the terrain and an action denotes a possible movement. The reward of a state equals to the
negative of the cost to move across the corresponding region, while the goal state has an additional
reward to attract movements, as shown in Figure 1.

In this work, we create a discretized terrain with several hills, where each hill is defined as a peak
of cost distribution and the costs around each hill decay exponentially, and the true cost of a region
is the summation of the costs from all hills. Ten worlds are randomly generated, and in each world,
twelve tasks are generated, each with a different goal state. For each task, the agent demonstrates
ten trajectories, where the length of a trajectory depends on how many steps to reach the goal state.

We evaluate the proposed method with different reward sharing loss functions under different num-
ber of tasks and different number of trajectories. The evaluated loss functions include no reward
sharing, reward sharing with standard deviation, information entropy, L2 loss, and huber loss. The

3

(a) (b) (c) (d)

Figure 1: Different behaviors under different goal states and goal rewards: Figure 1a and Figure 1b
share the same goal state, but the goal reward of Figure 1b is larger than Figure 1a.Figure 1c and
Figure 1d share the same goal state, but the goal reward of Figure 1d is larger than Figure 1c. Five
trajectories are plotted in each figure, where red dots denote the starting point and black dots denote
the ending point.

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 1 tasks

no sharing

stdev

entropy

huber

l2

(a) 1 task

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 2 tasks

no sharing

stdev

entropy

huber

l2

(b) 2 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 3 tasks

no sharing

stdev

entropy

huber

l2

(c) 3 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 4 tasks

no sharing

stdev

entropy

huber

l2

(d) 4 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 5 tasks

no sharing

stdev

entropy

huber

l2

(e) 5 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 6 tasks

no sharing

stdev

entropy

huber

l2

(f) 6 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 7 tasks

no sharing

stdev

entropy

huber

l2

(g) 7 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 8 tasks

no sharing

stdev

entropy

huber

l2

(h) 8 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 9 tasks

no sharing

stdev

entropy

huber

l2

(i) 9 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 10 tasks

no sharing

stdev

entropy

huber

l2

(j) 10 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 11 tasks

no sharing

stdev

entropy

huber

l2

(k) 11 tasks

1 2 3 4 5 6 7 8 9 10

Number of Trajectories

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n

C
o
rr

e
la

ti
o
n

w
it
h

th
e

G
ro

u
n
d

T
ru

th

Experiments with 12 tasks

no sharing

stdev

entropy

huber

l2

(l) 12 tasks

Figure 2: The result with five reward sharing loss functions on 12 tasks with at most 10 demonstra-
tions for each task in 10 environment.

number of tasks ranges from 1 to 12, and for each task, the number of trajectories ranges from 1 to
10. The learning rate is 0.01, with Adam optimizer. The accuracy of a reward is computed as the
correlation coefficient between the learned reward function and the ground truth one. The results are
shown in Figure 2.

The result shows that the meta learning step can significantly improve the accuracy of reward learn-
ing, among which the huber loss function leads to the best performance in average. L2 loss and
standard deviation have similar performance, not surprisingly. However, the information entropy
has a really bad performance.

4

References

[1] Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In in Proc.
17th International Conf. on Machine Learning, 2000.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[3] Kun Li and Joel W Burdick. Large-scale inverse reinforcement learning via function approxi-
mation for clinical motion analysis. arXiv preprint arXiv:1707.09394, 2017.

[4] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proc. AAAI, pages 1433–1438, 2008.

[5] K. Li and J. W. Burdick. Bellman Gradient Iteration for Inverse Reinforcement Learning. ArXiv
e-prints, July 2017.

[6] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Proceedings
of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07, pages 2586–2591,
San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

5

	Introduction
	Meta Inverse Reinforcement Learning
	Meta Inverse Reinforcement Learning
	Loss for Inverse Reinforcement Learning
	Loss for Reward Sharing

	Experiments
	Path Planning

