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This paper proposes a language for describing reactive synthesis problems that integrates imperative
and declarative elements. The semantics is defined in terms of two-player turn-based infinite games
with full information. Currently, synthesis tools accept linear temporal logic (LTL) as input, but this
description is less structured and does not facilitate the expression of sequential constraints. This
motivates the use of a structured programming language to specify synthesis problems. Transition
systems and guarded commands serve as imperative constructs, expressed in a syntax based on that
of the modeling language PROMELA. The syntax allows defining which player controls data and
control flow, and separating a program into assumptions and guarantees. These notions are necessary
for input to game solvers. The integration of imperative and declarative paradigms allows using the
paradigm that is most appropriate for expressing each requirement. The declarative part is expressed
in the LTL fragment of generalized reactivity(1), which admits efficient synthesis algorithms, ex-
tended with past LTL. The implementation translates PROMELA to input for the SLUGS synthesizer
and is written in PYTHON. The AMBA AHB bus case study is revisited and synthesized efficiently,
identifying the need to reorder binary decision diagrams during strategy construction, in order to
prevent the exponential blowup observed in previous work.

1 Introduction

Over the past three decades, system formal verification has aided design and become practical for in-
dustrial application. In the past decade, synthesis of systems from specifications has seen significant
development [60, 100], partially owing to the discovery of temporal logic fragments that admit efficient
synthesis algorithms [83, 20, 30, 8]. Applications range from protocol synthesis for hardware circuits
[20], to correct-by-construction controllers for hybrid systems [57, 56, 101].

Many languages and tools have been developed for modeling and model checking systems. Unlike
verification using model checking, the tools for synthesis have been developed much more recently. One
reason is that centralized synthesis from linear temporal logic (LTL) [85] has doubly exponential com-
plexity in the length of the specification formula [89], a result that did not encourage further development
initially.

Currently, LTL is the language used for describing specifications as input to synthesis tools. There
are many benefits in using a logic for synthesis tasks, its declarative nature being a major one, because
it allows expressing individual requirements separately, and in a precise way. It also makes explicit the
implicit conventions present in programming languages [61]. Another aspect of synthesis problems that
makes declarative descriptions appropriate is that we want to describe as large a set of possible designs
as possible, in order to avoid overconstraining the search space.

However, not all specifications are best described declaratively. There exist synthesis problems
whose description involves graph-like structures that are cumbersome for humans to write in logic.
Robotics problems typically involve graph constraints that originate from possible physical configura-
tions. For example, considering a wheeled robot, its physical motion is modeled by possible transitions
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that avoid collisions with other objects, whereas an objective to patrol between two locations can more
appropriately be described with a temporal logic formula. Properties that specify sequential behavior
also lead to graph-like structures, and require use of auxiliary variables that serve as memory. Express-
ing sequential composition in logic leads to long, unstructured formulas that deemphasize the specifier’s
intent. The resulting specifications are difficult to maintain, and writing them is error-prone. In addition,
the specifier may need to explicitly write clauses that constrain variables to remain unchanged, in order
to maintain imperative state. This leads to longer formulas in which the intent behind individual clauses
is less readable.

Another motivation relates to the temporal logic hierarchy [71, 92]. Synthesis from LTL has time
complexity polynomial in the state space size, and doubly exponential in the size of the formula. In
contrast, algorithms with linear time complexity in the size of the formula are known for the fragment of
generalized reactivity of rank one, known as GR(1).

In the automata hierarchy, the GR(1) fragment corresponds to an implication of deterministic Büchi
automata (BAs) [83, 92, 78, 93]. The consequent requires some system behavior, provided that the envi-
ronment satisfies the antecedent of the implication, as described in Section 2.3. Deterministic automata
can describe recurrence properties (), but not persistence (). Intuitively, the behavior of vari-
ables uniquely determines the associated behavior of a deterministic BA. This drops the complexity of
synthesis, because the algorithm does not have to keep track of branching in the automata that is not
recorded in the problem’s variable.

A large subset of properties that are of practical interest in industrial applications [28, 69, 20] can
be expressed in GR(1). There do exist properties that cannot be represented by deterministic Büchi
automata, e.g., persistence p. Of these properties, those with Rabin rank equal to one are still
amenable to polynomial time algorithms (by solving parity games) [30]. Higher Rabin ranks are not
expected to admit polynomial time solution, unless P = NP [30]. This motivates formulating the required
properties in GR(1), which corresponds to Streett properties with rank one. The winning set for a Streett
objective of rank one can be computed with the same time complexity as that for a Rabin objective of
rank one. Therefore, properties in the lower Rabin ranks are known to be at least as hard to synthesize as
GR(1). This motivates formulating the required properties in GR(1), which trades off expressive power
for computational efficiency.

Translating properties to deterministic automata can be done automatically, but may lead to more
expensive synthesis problems than manually written properties, as reported in [78]. So the ability to
write deterministic automata directly in a structured and readable language avoids the need for automated
translation, and allows fine tuning them, based on the specifier’s understanding of the problem. The
trade-off is that the translation has to be performed by a human.

Another reason why specifications are not always purely declarative is that in many cases we want to
synthesize a system using existing components. In other words, we already have a partial model, which
describes the possible behavior of components that already exist, e.g., because we purchased them off the
self, to interface them with the part of the system that we are synthesizing. We declare to our synthesis
tool what properties the controller under design should satisfy with respect to this model. This restricts
what the system should achieve using these components, but not how exactly that will be achieved. So
the partial model is best described imperatively, whereas the goal declaratively, using temporal logic.

Educationally, the transition for students from a general purpose programming language like PYTHON

or C, directly to temporal logic constitutes a significant leap. Using a multiparadigm language can make
this transition smoother.

This work proposes a language that can describe synthesis problems for open systems that react to an
adversarial environment. The syntax is derived from that of PROMELA, whereas the semantics interprets
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it as a two-player turn-based game of infinite duration. Both synchronous and asynchronously scheduled
centralized systems with full information can be synthesized. In Section 2, we review temporal logic and
relevant notions about two-player games. The presence of two players requires declaring who controls
each variable (Section 3.1), as well as the data flow, and control flow in transition systems (Section 3.2).
In addition, the specification needs to be partitioned into assumptions about the environment, and guar-
antees that the system must satisfy (Section 2, Section 3.2). The integration of declarative and imperative
semantics is obtained by defining imperative variables (Section 3.1), deconstraining, and executability of
actions (Section 3.3). In order to be synthesized, the program is translated to temporal logic, as described
in Section 4. In Section 5, we discuss the implementation, and in Section 6 significant improvements
in the AMBA case study [20] that were possible by merging fairness requirements into a single Büchi
automaton. Relevant work is collected in Section 7, and conclusions in Section 8.

2 Preliminaries

2.1 Linear temporal logic

Linear temporal logic with past is an extension of Boolean logic used to reason about temporal modalities
over sequences. The temporal operators next, previous, until U , and since S suffice to define the
other operators [85, 10]. Let AP be a set of variable symbols p that can take values over B, {⊥,>}. A
model of an LTL formula is a sequence of variable valuations called a word w : N→BAP. A well-formed
formula is inductively defined by ϕ ::= p|¬ϕ|p∧ p|ϕ|ϕ U ϕ|ϕ|ϕS ϕ . A formula ϕ is evaluated
over a word w at a time i ≥ 0, and w, i |= ϕ denotes that ϕ holds at position i of word w. Formula ϕ

holds at position i if ϕ holds at position i+ 1, ϕ U ψ holds at i if there exists a time j ≥ i such that
w, j |= ψ and for all i ≤ k < j, it is w,k |= ϕ . The operator p , >U p requires that p be eventually
true, and the operator p , ¬¬p requires that p be true over the whole word. The past fragment of
LTL extends it with the previous and since operators,,S respectively [66, 70, 54]. Formulaϕ holds
at i iff i > 0 and w, i−1 |= ϕ , and formula ϕS ψ holds at i iff there exists a time j with 0 ≤ j ≤ i such
that w, j |= ψ , and for all k such that j < k≤ i it is w,k |= ϕ . The weak previous operator is defined as
ϕ , ¬¬ϕ , once asϕ ,>S ϕ , and historically asϕ , ¬¬ϕ . Past LTL is implemented
using temporal testers [54].

2.2 Turn-based games

In many applications, we are interested in designing a system that does not have full control over the
behavior of all variables that are used to model the situation. Some problem variables represent the
behavior of other entities, usually collectively referred to as the environment. The system reads these
input variables and reacts by writing to output variables that it controls, continuing indefinitely. Such
a system is called open [6, 84], to distinguish it from closed systems that have no inputs, and so full
control.

The synthesis of an open system can be formulated as a two-player adversarial game of infinite
duration [96]. The two players in the game are usually called the protagonist (system) and antagonist
(environment). We control the protagonist, but not the antagonist. If the players move in turns, then the
game is called alternating. Each pair of consecutive moves by the two players is called a turn of the
game. In each turn, player 0 moves first, without knowing how player 1 will choose to move in that
turn of the game. Then player 1 moves, knowing how player 0 moved in that turn. Depending on which
player we control, there are two types of game. If the protagonist is player 1, then the game is called
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Mealy, otherwise Moore [75, 76]. Due to the difference in knowledge about the opponent’s next move
between the two flavors of game, more specifications are realizable in a Mealy game, than in a Moore
game. There exist solvers for both Moore and Mealy games. Here we will consider Mealy games only.

2.3 Games in logic

Temporal logic can be used to describe both the possible moves in a game (the arena or game graph),
as well as the winning condition. Let X and Y be two sets of propositional variables, controlled by the
environment and system, respectively. Let X ′ and Y ′ denote primed variables, where x′ represents the
next valuex of variable x. We abuse notation by using primed variables inside temporal formulae.

Synthesis from LTL specifications is in 2EXPTIME [87, 89], motivating the search for fragments that
admit more efficient synthesis algorithms. Generalized reactivity of index one, abbreviated as GR(1), is
a fragment of LTL that admits synthesis algorithms of time complexity polynomial in the size of the state
space [20]. GR(1) [50, 88, 16, 67, 32] is used in the following, but the results can be adapted to larger
fragments of LTL, provided that another synthesizer be used [49, 31, 29, 21, 33].

The possible moves in a Mealy game can be specified by initial and transition conditions that con-
strain the environment and system. Initial conditions are described by propositional formulae over
X ∪Y . Transition conditions are described by safety formulae of the form ϕi where, for the en-
vironment i = e and ϕe is a formula over X ∪X ′ ∪Y , and for the system i = s and ϕs is a formula
over X ∪X ′∪Y ∪Y ′. Note that the system plays second in each turn, so it can see X ′, whereas the
environment cannot see Y ′, because it represents future values. The winning condition in a GR(1) game
is described using progress formulae of the form ψi, i ∈ {e,s}, where ψi is a propositional formula
over X ∪Y .

The overall specification of a GR(1) game is of the form(
θe∧ϕe∧

n−1∧
i=0

ψe,i︸ ︷︷ ︸
assumption

)
sr−.
(

θs∧ϕs∧
m−1∧
j=0

ψs, j︸ ︷︷ ︸
assertion

)
(1)

Note that requirements that constraint the environment are called assumptions and guarantees that the
system must satisfy are called assertions. Assumptions limit the set of admissible environments, because,
in practice, it is impossible to satisfy the design requirements in arbitrarily adversarial environments [6].
The strict realizability implication sr−. above is interpreted by prioritizing between safety and liveness
[20], to prevent the system from violating the safety assertion, in case this would allow it to prevent the
environment from satisfying the liveness assumption. The GR(1) synthesis algorithm has time complex-
ity O

(
nm |Σ|2

)
[20], where n (m) is the number of recurrence assumptions (assertions), and Σ the set of

all possible variable valuations.

3 Language definition

The language we are about to define is syntactically an extension of PROMELA [47], but its semantics is
defined by a translation to turn-based infinite games with full information. PROMELA is a guarded com-
mand language that can represent transition systems, non-deterministic execution, and guard conditions
for determining whether statements are executable [47, 27]. Its syntax can be found in the language ref-
erence manual [47, 46]. Here we will introduce syntactic elements only as needed for the presentation.
Briefly, we mention that a program comprises of transition systems and automata, whose control flow
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can be described with sequential composition, selection and iteration statements, goto, as well as blocks
that group statements for atomic execution.

3.1 Variables

Ownership In a game, variables from X are controlled by the environment and variables from Y by
the system. We call owner of a variable the player that controls it. We use the keywords env and sys to
signify the owner of a variable. Variables can be of Boolean, bit, byte, (bounded) integer, or bitfield type.

Declarative and imperative semantics In imperative languages, variables remain unchanged, unless
explicitly assigned new values. In declarative languages, variables are free to change, unless explicitly
constrained [97]. In verification, both declarative languages like TLA [62] and SMV [24] have been
used, as well as imperative languages like PROMELA and DVE [12].

In a synthesis problem, there are variables that are more succinct to describe declaratively, whereas
others imperatively. For this reason, we combine the two paradigms, by introducing a new keyword
free to distinguish between imperative and declarative variables. Variables whose declaration includes
the keyword free are by default allowed to be assigned any value in their domain, unless explicitly
constrained otherwise. Variables without the keyword free have imperative semantics, so their value re-
mains unchanged, unless otherwise explicitly stated. Let V f ree denote free variables, and V imp imperative
variables, and Vp the variables of player p ∈ {e,s}.

Ranged integer data type Symbolic methods for synthesis use reduced ordered binary decision di-
agrams (BDDs) [23, 10], which represent sets of states, and relations over states. As operations are
performed between BDDs, these can grow quickly, consuming more memory. The growth can be amelio-
rated by reordering the variables over which a BDD is defined. Reordering variables can be prohibitively
expensive, as discussed in Fig. 5, so reducing the number of bits is a primary objective. In addition,
the complexity of GR(1) synthesis is polynomial in the number |Σ| of variable valuations, which grows
exponentially with each additional bit. We can reduce the number of bits by using bitfields whose width
is tailored to the problem at hand. For convenience, the ranged integer type int(MIN, MAX) is intro-
duced to define a variable x ∈ {MIN,MIN+1, . . . ,MAX}, with saturating semantics [42]. An integer
with saturating semantics cannot be incremented when its value reached the maximal in its range, i.e.,
MAX.

A ranged integer is represented by a bitfield. The bitfield is comprised of bits, so it can only range
between powers of two. The ranged integer though may have an arbitrary range. For this reason, safety
constraints are automatically imposed on the bitfield representing the ranged integer. In other words, if
x is the integer value of the bitfield, and it represents an integer that can take values from MIN to MAX,
then the constraint (MIN ≤ x′ ≤MAX) is added to the safety formula, and MIN ≤ x ≤MAX to the
initial condition of the player that owns the ranged integer.

Other numerical data types have mod wrap semantics. The value of an integer with mod wrap
semantics overflows to MIN (underflows to MAX) if incremented when equal to the maximal value MAX
(minimal value MIN). Mod wrap semantics are available only for integers that range over all values of
a (signed) bitfield, because the modulo operation would otherwise be needed. Any BDD describing a
modulo operation is at best of exponential size [23].
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Figure 1: An assumption (assertion) process constrains the environment (system) variables, and env

(sys) declares who chooses the next statement to be executed (when there are multiple).

3.2 Programs representing games

In many synthesis problems, the specification includes graph-like constraints. These may originate from
physical configurations in robotics problems, deterministic automata to express a formula in GR(1), or
describe abstractions of existing components that are to be controlled. These constraints can be described
by processes. A process describes both control and data flow. In order to discuss control and data flow,
we will refer to program graphs. A program graph is an intermediate representation of a process, after
parsing and control flow analysis. For our purposes, a program graph is a rooted directed multi-graph
Pr , (Vr,Er) whose edges Er are labeled with program statements, and nodes Vr abstract states of the
system [53, 10]. Execution starts from the graph’s root. A multi-digraph is needed, because, between
two given nodes, there may exist edges labeled with different program statements.

Control flow is the traversal of edges in a program graph (i.e., execution of statements), whereas data
flow is the behavior of program variables along this traversal. A program counter pcr is a variable used
to store the current node in Vr. A natural question to ask is who controls the program counter. Another
question is whose data flow is constrained by the program graph Pr. In the next section, we define syntax
that allows declaring the player that controls the program counter, and the player that is constrained to
manipulate the variables it owns, according to the statements selected by the program counter. This
allows defining both processes where control and data flow are controlled and constrain the same player,
but also processes with mixed control. If one player controls the program counter, and the opponent
reacts by choosing a compliant data flow, then the process itself describes a game.

As an example, suppose that for a given process, the environment controls the program counter,
and the system the local program variables. By choosing the next value of the program counter, the
environment selects the next program statement that will execute. The system must react by choosing the
next values of the local variables, such that they satisfy the selected program statement. The environment
can select as next program statement any statement that is satisfiable by a system reaction, as discussed
in more detail in Section 3.3. But other constraints, e.g., LTL formulae, can prevent the system from
satisfying this statement.

The consecutive assignments of values to variables by the environment and the system can be rep-
resented by a game graph. Each node in the game graph corresponds to a valuation of variables. From
each node, a single player can assign new values to its variables, depending on the outgoing edges
at that node. The choice of outgoing edge at environment (system) nodes is universal (existential).
The nodes in a game graph correspond to universal and existential nodes in alternating tree automata
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[25, 79, 98, 99, 59]. Nondeterminism with universal quantification is known as demonic, [45, p.85],
[95], otherwise as angelic [73, 37, 22]. In the previous example, the environment’s choice of control
flow occurs at universal nodes in the game graph. The system’s reaction, by assigning to local variables,
occurs at existential nodes in the game graph. The correspondence of control and data flow with a game
graph is shown in Fig. 1.

3.2.1 Syntax

Program graphs are declared with the proctype keyword of Promela followed by statements enclosed
in braces. The keyword assume (assert) declares a process that constrains the environment’s (system’s)
data flow. These keywords are common in theorem proving and program verification languages [64].

0

1
(xt,	yt)

(x,	y)

2

0 1 2 3

3

Figure 2: Adversarial game.

The keyword env (sys) declares that the environment (sys-
tem) controls the program counter pcr of a process, Fig. 1. The
implementation of assume sys is the most interesting, and
is described in Section 4. We will call program graphs pro-
cesses, noting that these processes have full information about
each other, so they correspond to centralized synthesis, not dis-
tributed. The program counter owner is the player that controls
variable pcr. The process player is the player constrained by
the program graph.

Example For example, the specification in Listing 1 defines a
game between two players: the Bunny, and the Fox, that move
in turns, as depicted in Fig. 2. Each logic time step includes a
move by the Fox from (xt ,yt) to (x′t ,y

′
t), followed by a move by the Bunny from (x,y) to (x′,y′). The

Bunny must reach the carrot, without moving through a cell that Fox is in (assert ltl). The Fox can
only move between xt ∈ {1,2}, and has to keep visiting the lower row (assume ltl). The Fox can move
diagonally, but the Bunny only vertically or horizontally. Both players have an option to stay still (skip).
Note that xt is a declarative variable, so it can change unless constrained.

Listing 1: Simple example.
1 #define H 3

2
3 free env int(1, 2) xt;

4 env int(0, H) yt;

5
6 assume env proctype fox(){

7 do

8 :: yt = yt - 1

9 :: yt = yt + 1

10 :: skip

11 od

12 }

13
14 assume ltl { []<>(yt == 0) }

15
16 sys int(0, 3) x;

17 sys int(0, H) y;

18
19 assert sys proctype bunny(){

20 do

21 :: x = x - 1

22 :: x = x + 1

23 :: y = y - 1

24 :: y = y + 1

25 :: skip

26 od

27 }

28
29 assert ltl {

30 [] ! ((x == xt) && (y == yt)

) &&

31 [] ! ((xt’ == x) && (yt ’ ==

y)) &&

32 []<>((x == 3) && (y == 2)) }
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The process fox constrains the environment variables xt ,yt (assume) and the environment controls
its program counter (env). The do loops define alternatives that each player must choose from to continue
playing the game. Note that nondeterminism in process fox is demonic (universally quantified), whereas
in bunny angelic (existentially quantified), i.e., the design freedom given to the synthesis tool. Each
player has full information about all variables in the game, both local, as well as global, and auxiliary.
The solution is a strategy represented as a Mealy transducer [75] that the Bunny can use to win the game.

The conjuct ϕ , ¬((x = x′t)∧ (y = y′t)) prevents the Bunny from moving next to the Fox, from
where the Fox can catch it in the next turn. The  operator requires that, at each time step, the formula
¬ as main operator be true.

3.3 Statements

Control flow can be defined using selection (if) and repetition (do) statements, else, break, goto,
and labeled statements. The statements run, call, return are not supported, because dynamic process
creation would dynamically add BDD variables. In this section, we define expressions, assignments, and
their executability.

Expressions Primed variables (that correspond to using the next operator) can appear in expressions
to refer to the next values of those variables, as in the syntax of synthesis tools and TLA [61]. The
operators weak previous and strong previous are expressed with the tokens -X and --X, respectively.
Following TLA, we will call (state) predicate an expression that contains no primed variables and action
an expression that contains primed variables [61]. Actions can be regarded as generalized assignments, in
a sense that will be made precise later. Primed system variables cannot appear in assumption processes,
because they refer to values not yet known to the environment. Using a GR(1) synthesizer as back-end,
multiple priming within a single statement is not allowed, but can be allowed if a full LTL synthesizer is
used as back-end [49, 36].

Deconstraining By default, imperative variables are constrained to remain invariant. If any assumption
(assertion) process executes a statement that contains a primed environment (system) variable, then that
variable is not constrained to remain unchanged in that time step. For example, in the assertion sys bit

x = 0; (x == 0); (x’ == 1 - y) the variable x is constrained by x′ = x when x == 0 is executed,
but the synthesizer is allowed to pick its next value as needed, in order to satisfy x’ == 1 - y. Note
that statements in assumption (assertion) processes that contain primed imperative system (environment)
variables do not deconstrain those variables, because assumptions (assertions) are relevant only to the
environment’s (system’s) data flow.

Assignments In PROMELA, expressions are evaluated by first converting all values to integers, then
evaluating the expression with precision that depends on the operating system and processor, and updat-
ing the assigned variable’s value, truncating if needed. Let trunc(y,w) denote a function that truncates
the value of expression y to bitwidth w. An assignment x = expr is translated to the logic formula
x′ = trunc(expr,width(x)), if variable x has mod wrap semantics, and to x′ = expr otherwise. If variable
x is imperative, then it is deconstrained.

Statement executability A condition called guard is associated to each statement [27]. The process
can execute a statement only if the guard evaluates to true. If a process currently has no executable
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statement, then it blocks. For each statement, its guard is defined by existential quantification of the
primed variables of the data flow player. The quantification is applied after the statement is translated to
a logic formula. So the guard of a statement is the realizability condition for that statement. It means
that, from the local viewpoint of that statement only, given the current values of variables in the game,
the constrained player can choose a next move. So the scheduler cannot pick as next process to execute
a process that has blocked. Clearly, if all processes block, then that player deadlocks.

Using this definition, the guard of a state predicate is itself, as in PROMELA. The implementation
quantifies variables using the PYTHON binary decision diagram dd [4]. If an unsatisfiable guard is found,
then the implementation raises a warning. For example, if we inserted the statement xt && xt’ && y’

in the process bunny (see example), then its guard would be ∃y′.xt ∧x′t ∧y′ = xt ∧x′t . Similarly, the guard
of an expression xt && xt’ in the process fox is xt .

4 Translation to logic

In this section, we describe how a program is translated to temporal logic, in particular GR(1). For each
process, the starting point is its program graph, which has edges labeled by program statements, and
describes the control flow of a process in the source code. The construction of program graphs from
source code is the same as for PROMELA [47], and described in detail in [35].

Here we give a brief example. Consider the process maintain lock in Listing 2. It has two do loops,
with two outgoing edges each. The corresponding program graph is shown in Fig. 3b. Each statement
labels one edge, and that edge can be traversed if the guard associated to the statement evaluates to
true. The guard can contain primed variables, requiring that the dataflow player manipulates them so
as to make the edge’s guard true. Otherwise, the player cannot traverse an edge with false guard. This
program graph is translated further to logic, as described next. The semantics of the language are defined
by this translation to logic.

There are three groups of elements in a program: processes, ltl blocks, and the scheduler that picks
processes for execution. The scheduler is not present in the source code, but is added during translation,
to represent the products between processes. The translation can be organized into a few thematically
related sets of formulae. Due to lack of space, we are going to discuss the most interesting and represen-
tative of these at a high level. The full translation can be found in [35], and in the implementation. There
are four groups of formulae: (i) control and data flow, (ii) invariance of variables, (iii) process scheduler,
(iv) exclusive execution (atomic).

Control and data flow The translation of processes is reminiscent of symbolic model checking [74],
but differs in that there are two players, and both play in each logic time step. This requires carefully
separating the formulae into assumptions and guarantees (assertions).

Suppose that the scheduler selects process r to execute (how is explained later). At a given time step,
a process is at some node i in its program graph, and will transition to a next node j, by traversing an
edge labeled by a program statement. The player that controls the program counter pcr selects the next
statement, so the edge in the program graph. The player that is constrained by that process has to make
sure that it complies, by picking values for variables that it controls such that the statement is satisfied.
Recall that the scheduler can only pick from processes that have a satisfiable statement, so whenever
a process executes, there will exist a satisfiable next statement. Of course, conflicts can arise between
different synchronous processes that can lead to deadlock, and it is the synthesizer’s task to avoid such
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situations, to avoid losing the game. The transition constraints are encoded by the formula

trans(p,r),
∧

i∈Nr

(
(pcr = i)→

∨
(i, j,k)∈Er

ϕr,i, j,k∧ (p̃cr = j)∧ ( ˜keyr = k)∧ exclusive(p,r, i, j,k)
)

(2)

where Nr denotes the set of nodes, and Er the multi-edges of the program graph of a process, p denotes
the player (e,s). The logic formula equivalent to bitblasting the statement labeling edge (r, i, j,k) is ϕr,i, j,k.
For assume sys processes, the system selects the next edge one time step before the scheduler decides
whether that environment process will execute, so two copies are needed, pcr, p̂cr (system variables). So
in an assume sys process, p̃cr , p̂cr, ˜keyr , key(r), and in other processes p̃cr , pc′r, ˜keyr , key(r)′.
The variable key(r) selects among multi-edges, and is controlled by the same player as the program
counter pcr of the process with pid r. In a system process, if node j is in an atomic block, then
exclusive(p,r, i, j,k) sets the auxiliary variables ex′s and pm′s to request atomic execution from the sched-
uler. The integer variable exs stores the identity of the process that requests atomic execution, and the bit
pms requests that the environment be preempted, if the scheduler grants the request for atomic execution.

dataflow(r), (ps(r)′ = m(r))→ trans(p,r)

selectable(r), blocked(r)→ (ps(r)′ 6= m(r))

control flow(r), ite
(
(ps(r)′ = m(r)), pc trans(p,r), inv(pcr)

)
blocked(r),

∨
i∈Nr

(
(pcr = i)∧

∧
(i, j,k)∈Er

¬guardr,i, j,k
) (3)

The environment variables ps(r) select the process or synchronous product that will execute next inside
an asynchronous product (top context is an asynchronous product). For this purpose, each process and
product have a local integer id m(·) among the elements inside the product that contains them. The
transition relation for the program counter depends on the type of process. For assume sys processes,
pc trans(p,r) , (pc′r = p̂cr), and for other processes it equals guards(r). The condition guards(r) con-
strains the program counter to follow unblocked edges in a process. It is necessary when the control and
data flow are controlled by different players, because whoever moves the program counter, can other-
wise pick an edge with a statement that blocks the other player. In addition, for assume sys processes,
a separate constraint with same form as guards(r), but different priming of sub-expressions is imposed
on the program counter copy p̂cr. The ternary conditional is denoted by ite(a,b,c).

Invariance of variables When a process is not executing, its declarative local variables must be con-
strained to remain invariant (x′ = x). Also, imperative variables must remain invariant whenever no pro-
cess executes a statement (edge) that either is an expression and contains a primed copy of that variable,
or is an assignment. These are ensured by the following equations

local free(p,r), (ps(r)′ 6= m(r))→
∧

x∈V free
p,r

inv(x)

imperative inv(p,r), array inv(p,r)∧
∧

x∈V imp
p,r

(inv(x)∨
∨

(i, j,k)∈Er.x∈deconstrained(r,i, j,k)

edge(r, i, j,k))
(4)

where V free
p,r are free local variables of player p in process r. For assume sys processes, it is edge(r, i, j,k),

(ps(r)′ = m(r))∧ (pcr = i)∧ (p̂cr = j)∧ (key(r) = k), and for other types of processes edge(r, i, j,k) ,
(ps(r)′ = m(r))∧ (pcr = i)∧ (pc′r = j)∧ (key(r)′ = k). Primed references to elements in imperative
arrays deconstrain only the referenced array element, ensured by array inv.
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Scheduler The scheduler (environment) has to select the processes that will execute. Products of pro-
cesses can be defined in the source code by enclosing processes, or other products, in braces preceded
by the keywords async and sync. They can be nested. async defines an asynchronous product, and the
scheduler picks some unblocked process or product inside it to execute next. If all processes/products in
an asynchronous product k have blocked, then the scheduler sets the corresponding variable psk to a re-
served value (nk). The reserved value is also used if the asynchronous product is nested in a synchronous
product that currently is not selected to execute.

If the top product blocks, then the player has deadlocked, losing the game. The only exception is
when the environment is preempted by a request from a system process for atomic execution. At a high
level, this behavior is expressed as follows for scheduling the environment processes.

product selected(k), (ps(k)′ 6= m(k))↔ (ps′k = nk)

selectable element(r), element blocked(r)→ (ps(r)′ 6= m(r))

element blocked(r),


blocked(r), if r is a process
sync blocked(r), if r is a synchronous product
async blocked(r), if r is an asynchronous product.

(5)

sync blocked(k),
∨

r∈Rk

element blocked(r)

async blocked(k),
∧

r∈Rk

element blocked(r)
(6)

pause env if req , (ps′env top = ne)↔ (pms∧ (ps′sys top = exs < ns)). (7)

The expression element blocked(r) depends on the blocked(z) expressions, and ensures that the sched-
uler doesn’t select a synchronous product containing some blocked process, neither an asynchronous
product where all processes are blocked. Recall also selectable from earlier, which applies to indi-
vidual processes. Analogous formulae apply to system processes. For system processes, the top-level
asynchronous product implication in async blocked(r) must be replaced with equivalence, to force the
environment to choose some system process (or product) to execute, when there exist unblocked ones.
Note that the asynchronous products here are in the context of full information, so the system is not
asynchronous in the sense of [55, 86].

Exclusive execution A system process of the top asynchronous product can request to execute atom-
ically by setting the variables pms,exs, Eq. (2). If that process remains unblocked in the next time step,
then the scheduler will grant it uninterrupted execution, until it exits atomic context (either blocked, or
reached statements outside the atomic{...} block).

grants ,
∧

r∈pids(s)

(
((exs = m(r))∧ frozen unblocked(r))→ (ps(r)′ = m(r))

)
(8)

Recall also that the environment is allowed to pause only if preempted by the system, otherwise it loses
the game (pause env if req). The formula frozen unblocked(r) checks whether the system would block,
in case the environment froze, granting it exclusive execution. In case the system will block, then the
request is not granted, and atomicity lost. This requires substituting primed environment variables with
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unprimed ones, as follows

frozen unblocked(r),


∨

i∈Nr

(
(pcr = i)∧

∨
(i, j,k)∈Er

guard test(r, i, j,k)
)
, if player(r) = s

¬blocked(r), otherwise

guard test(r, i, j,k),

{
guard(r, i, j,k)| x/x′ for x ∈X , if i in atomic context
guard(r, i, j,k), otherwise.

(9)

The reason is that this formula corresponds to the case that the environment sets x′ = x for the program
variables it owns. If atomicity is lost in this turn, then the environment does not need to set x′ = x, and
this is ensured by the definition of guard test(r, i, j,k).

As in PROMELA, LTL formulae that express safety are deactivated during atomic execution (in im-
plementation, an option allows making atomic execution visible to LTL properties). They are re-activated
as soon as atomicity is lost.

mask env ltl , ite(pms∧ (ps′sys top = exs < ns), freeze env free, ψenv safety ltl) (10)

For the system, mask sys ltl is defined similarly. The formula freeze env free constrains declarative
environment variables in global context and inside system processes to remain unchanged while the
system is granted exclusive execution.

If an atomic block appears in a process, then the ltl properties in the program must not contain
primed variables, to ensure that the above translation yields the intended interpretation (stutter invari-
ance). If unbounded loops appear inside an atomic context, then there can be no liveness assumptions.
The reason is that the system can hide in atomic execution forever, preventing the environment from
satisfying its liveness assumptions, thus winning trivially. In order to avoid this, the environment live-
ness goals must be disjoined with strong fairness, a persistence property (), which is outside of the
GR(1) fragment. An extension to use a full LTL synthesizer is possible, though not expected to scale
as well. Labels in the code that contain progress result in accepting states (liveness conditions). Those
expressions described but not defined above, the initial conditions, and a listing into assumptions and
assertions can be found in the technical report [35].

5 Implementation

The implementation is written in PYTHON and available [1, 2, 5] under a BSD license. The frontend
comprises of a parser generator that uses PLY (Python lex-yacc) [14]. The parser for the proposed
language subclasses and extends a separate parser for PROMELA [2], to enable use of the latter also by
those interested in verification activities. After parsing and program graph construction, the translation
described in Section 4 is applied [1]. This results in linear temporal logic formulae that contain modular
integer arithmetic. At this point, each ltl block is syntactically checked to be in the GR(1) fragment,
and split into initial condition, action, and recurrence conjuncts [5]. The past fragment is then translated
using temporal testers [54]. In the future, the syntactic check can be removed, and a full LTL synthesis
algorithm used.

The next step encodes signed arithmetic in bitvector logic using two’s complement representation
[58]. The resulting formulae are in the input syntax recognized by the SLUGS synthesizer [32]. This
prefix syntax includes memory buffers, which enable avoiding repetition of formulae. For example,
$ 3 x a b & ?1 ?0 | ?2 ! ?0 describes the ternary conditional ite(x,a,b). Memory buffers
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[]((!pc0 &
!pc1 & !pc2)
-> ...

x = 1;
y == 2;
...

0

1

2

x = 1

y == 2
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program graphsource listing graph of actions
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to logic
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(a) Compiler architecture.
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(b) Program graph that corresponds to
process maintain lock in Listing 2.

Figure 3: Compiling programs to temporal logic.

prevent the bitblasted formulae from blowing up. The SLUGS distribution includes an encoder of un-
signed addition and comparison into bitvector logic using memory buffers. Here, signed arithmetic and
arrays are supported. The bitblaster code is a separate module, which can be reused as a backend to other
frontends. The resulting formula is passed to the SLUGS synthesis tool to check for realizability and
construct a winning strategy as a Mealy transducer.

6 AMBA AHB Case study

Revised specification The ARM processor Advanced Microcontroller Bus Architecture (AMBA) [9]
specifies a number of different bus protocols. Among them, the Advanced High-performance (AHB)
architecture has been studied extensively in the reactive synthesis literature [17, 18, 77, 20, 91, 43, 19].

The AHB bus comprises of masters that need to communicate with slaves, and an arbiter that controls
the bus and decides which master is given access to the bus. The arbiter receives requests from the
masters that desire to access the bus, and must respond in a weakly fair way. In other words, every
master that keeps uninterruptedly requesting the bus must eventually be granted access to it. Note that the
AMBA technical manual [9] does not specify any fairness requirement, but instead leaves that decision to
the designer. For automated synthesis, weak fairness is one possible formalization that ensures servicing
of all the masters.

In addition, a master can request that the access be locked. In the ARM manual, the arbiter makes
no promises as to whether a request for the lock will be granted. If the arbiter does lock the access,
then it guarantees to maintain the lock, until the request for locking is withdrawn by the master that
currently owns the bus. Note that the specification used here requires the arbiter to lock the bus, whenever
requested by the master to be granted next.

A specification for the arbiter appeared in [17], and is presented in detail in [20]. Here, we expressed
the specification of [20] in the proposed language, Listing 2 on p.90. In doing so, some assumptions were
weakened and assumption A1 modified, to improve the correspondence with the ARM technical manual,
and reduce the number of environment variables (thus universal branching). First, we describe the AHB
specification, referring to Listing 2. After that, we summarize the changes, and discuss the experiments.

The specification in Listing 2 has both environment and system variables, as well as assumptions and
guarantees. The arbiter is the system, and the environment comprises of slaves and N + 1 masters. An
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Figure 4: Selection of experimental measurements for the revised AMBA specification.
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array request of bits represents the request of each individual master to be given bus ownership, for
sending and receiving from a slave of interest. Communication proceeds in bursts. The bus owner selects
which type of burst it desires, by setting the integer burst. Three lengths of bursts are modeled: single
time step (SINGLE), four consecutive time steps (BURST4), and undefined duration (INCR). The currently
addressed slave sets the bit ready (to true) to acknowledge that it has successfully received data for a
burst. While ready is false, the bus owner cannot change (G1,6), and a BURST4 time step is not counted
towards completion (G3). For this reason, the slaves (environment) are required to recur setting ready

to true (A2). The master can also request that, when it is granted the bus, it should be locked. Each
master can do so by setting a signal. Only two of these signals are modeled here, using the bit variables
grantee lockreq and master lockreq (described below).

The arbiter works in primarily two phases, as introduced in [20]. These phases are extraneous to the
standard, and used only to aid in describing the specification. Firstly, the arbiter decides to which master
it will next grant the bus to. The arbiter sets the bit decide to true during that period. The decision is
stored in the form of two variables, grant and lockmemo, which don’t change while decide is false
(G8). The integer grant indicates the master that has been decided to receive bus ownership after the
current owner. For performance reasons, the arbiter can only grant the bus to a master that requested it
(G10), with the exception of a default master (with index 0).

The bit lockmemo is set to the value of the environment bit grantee lockreq (G7). The value
grantee lockreq’ represents whether the master grant had requested locked ownership. In the orig-
inal specification, an array lockreq of N environment bits is used (denoted by HLOCK in [20]). This
increases significantly the variables with universal quantification. Here, this array is abstracted by the bit
grantee lockreq. In implementation, the transducer input grantee lockreq’ should be set equal to
the lock request of master grant in the previous time step, i.e., grantee lockreq′ , (lockreq)[grant].
In [20], some assumptions are expressed to constrain the array lockreq, i.e., when masters request locked
ownership. The assumptions can be weakened [34], and by modifying assumption A1 (described below),
the array lockreq can be abstracted by the two bits grantee lockreq and master lockeq.

The arbiter promises to lock the bus, until the bus owner master interrupts requesting it. The
owner indicates its lock request by the value master lockreq’. In implementation, the input value
master lockreq’ should be set equal to the lock request of master, i.e., master lockreq′, lockreq[master].

In the second phase, the master changes the bus owner, by updating the integer master to grant

(G4,5). If the grantee had requested a lock, via grantee lockreq, then that request is propagated to the
bit lock (G4,5). With the bit lock, the arbiter indicates that master has been given locked access to the
bus.

To be weakly fair, each master that keeps uninterruptedly requesting the bus should be granted own-
ership. This requirement is described as a Büchi automaton (G9).

The assumption A1 of [20] requires that for locked undefined-length bursts, the masters eventu-
ally withdraw their request to access the bus. This assumption is not explicit in the ARM standard, so
we modify it, by requiring that masters withdraw only their request for the lock, not for bus access.
This is described as the Büchi automaton withdraw lock that constrains the environment. The arbiter
grants master locked access by setting the bit lock to true. If lock is false, then the master (envi-
ronment) remains in the outer loop, at the else. If lock becomes true, then the automaton enters the
inner loop. In order for the automaton withdraw lock to exit the inner loop, the environment must
set master lockreq’ to false. This obliges the owner master to eventually stop requesting locked
ownership.

For a SINGLE burst, the burst is completed at the next time step that ready is true, so the arbiter
does not need to lock the bus (since the owner remains unchanged while ready is false). For a BURST4
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burst, the arbiter locks the bus for a predefined length of four successful beats (G3). This requirement is
described by the safety automaton count bursts. Note that assumption A1 is not needed for this case.
For a INCR burst, the duration is unspecified a priori. While the owner master continuously requests
locked access (with master lockreq), the arbiter cannot change the bus owner (G2). This is described
by the safety automaton maintain lock. When the arbiter grants locked access to the bus for a burst
of undefined duration, then the guard lock && start && (burst == INCR) is true. The process
maintain lock enters the inner loop, and remains there until master lockreq becomes true. This is
where assumption A1 is required, to ensure that the owner will eventually stop requesting the lock. The
arbiter can then exit the inner loop of maintain lock. Then, the arbiter can wait outside (start is false
throughout the burst), until the addressed slave sets ready to true, signifying the successful completion
of that burst, and allowing the arbiter to set start and change the bus owner, if needed.

Some properties not in GR(1) are translated to deterministic Büchi automata in [20]. The resulting
formulae are much less readable, and not easy to modify and experiment with. Above, we specified these
properties directly as processes, with progress states where needed.

Observations By encoding master and grant as integers, and abstracting the array lockreq by the
two variables master lockreq and grantee lockreq, the synthesis time was reduced significantly
(by a factor of 100 [34]), but are not sufficient to prevent the synthesized strategies from blowing up.
By also merging the N weak fairness guarantees

∧N−1
i=0 (request[i]→ master = i) into the Büchi

automaton (BA) weak fairness with one accepting state, we were able to prevent the strategies from
blowing up, and synthesize up to 33 masters, Fig. 4b. The synthesis time for 16 masters is in the order
of 5 minutes, and peak memory consumption less than 1GB. To our knowledge, in previous works,
the maximal number of masters has been 16, the strategies were blowing up, and the runtimes were
significantly longer (21 hours for 12 masters in [20], and more than an hour in [43] for 16 masters).

Measurements To identify what caused this difference, we conducted experiments for 8 different
combinations: original vs revised spec, conjunction vs BA, reordering during strategy construction en-
abled/disabled, Table 1. We collected detailed measurements with instrumentation that we inserted into
SLUGS, available at [3]. Some of these are shown in Fig. 5, and the complete set can be found in the
technical report [34] (the language is described in [35]). The experiments were run on an Intel(R) Xeon®

X5550 core, with 27 GB RAM, running Ubuntu 14.04.1. The maximal memory limit of CUDD [94] was
set to 16 GB.

We found that lack of dynamic BDD reordering during construction of the strategy was the reason
for poor performance of conjoined liveness goals, as opposed to a single BA. The implementation of the
GR(1) synthesis algorithm in SLUGS has three phases:

1. Computing the winning region, while memoizing the iterates of the fixpoint iteration, as BDDs.

2. Construction of individual strategies, one for each recurrence goal.

3. Combination of the individual strategies into a single transducer, which iterates through them.

In SLUGS, variable reordering [90] is enabled during the first two phases, but disabled in the last one.
If the recurrence goals are conjoined into a formula of the form

∧
, then the memory needed for

synthesis blows up Fig. 4a, for both the original and revised specifications. Using a BA, the revised
specification scales without blowup.

If reordering is enabled during the last phase (combined transducer construction), then the specifi-
cation with conjunction can be synthesized without blowup. With a BA, enabling reordering in the last
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(a) BA, no reordering, N = 16.
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(b) Conjunction, with reordering, N = 16.

Figure 5: Measurements during phases of: (1) realizability, (2) sub-strategy, and (3) combined strategy
construction. The top 4 plots are over all phases, the fixpoints over (1), the individual strategies over (2),
and the bottom plot over (3). The revised specification is used.

phase has a mildly negative effect, because it can trigger unnecessary reordering. We used the group
sifting algorithm [82, 90] for reordering.

Enabling dynamic BDD variable reordering is necessary to prevent the blowup. The conjunction
with reordering enabled in phase 3 outperforms the BA with reordering turned off in phase 3. This is
a consequence mainly of the fact that the BA chains the goals inside the state space, leading to deeper
fixpoint iterations, and has slightly larger state space, due to the nodes of the automaton maintain lock.

Reordering typically accounts for most of the runtime (top plot in Fig. 5a). The second plot shows
the currently pursued goal during realizability, and later the sub-strategy under construction, and the
sub-strategy being combined in the final strategy. Each drop in total BDD nodes (teeth in 4th plot)
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Table 1: Overview of results.

Strategy
reordering

Specification
original revised

Conjunction of fairness
with slow fast
w/o memory blowup memory blowup

Büchi automaton
with very slow ok (slower)
w/o slow ok

corresponds to an outer fixpoint iteration. The first outer iteration takes the most time, due to reordering.
Later iterations construct subsets, for which the obtained order remains suitable. The highlighted period
corresponds to the construction of individual strategies. Plots for the other experiments can be found in
[34].

Conclusions The major effect of reordering in the final phase of strategy construction can be under-
stood as follows. Using a BA reduces the goals to only one, so no disjunction of individual sub-strategies
is needed [83]. Also, this encoding shifts the transducer memory (a counter of liveness goals), from the
strategy construction, to the realizability phase (attractor computations). This slightly increases the state
space. Nonetheless, this symbolic encoding allows the variable ordering more time to gradually adjust
to the represented sets.

In contrast, by conjoining liveness goals, the variable order is oblivious during realizability checking
that the sub-strategies will be disjoined at the end. The disjunction of strategies acts as a shock wave,
disruptive to how far from optimal the obtained variable order is. If, by that phase, reordering has been
disabled, then this effect causes exponential blowup.

Overall, the proposed language made experimentation easier and revisions faster, helping to study
variants of the specification. It can be used to explore the sensitivity of a specification, in the following
way. A formula, e.g., requiring weak fairness, can be temporarily replaced with a process that is one
possible refinement of that formula, potentially simplified. In the AMBA example, one can fix a round
robin schedule for selecting the next grantee (temporarily dropping G10). This is reminiscent of the
manual implementation [20]. By doing so, it can be evaluated whether the synthesizer finds it difficult to
pick requestors only, or whether some other factor is more important, either another part of the specifi-
cation, or some external factor. For the AMBA problem, such a change resulted in replacing recurrence
formulae with a BA, and led to identifying the need for strategy reordering to avoid memory blowup.
Therefore, we believe that it can prove useful in exploring the sensitivity of specifications, to help the
specifier direct their attention to improve those parts of the specification that impact the most synthesis
performance.

Listing 2: AMBA AHB specification in the pro-
posed language.

1 #define N 2 /* N + 1 masters

*/

2 #define SINGLE 0

3 #define BURST4 1

4 #define INCR 2

5 /* variables of masters and

slaves

6 A4: initial condition */

7 free env bool ready = false;

8 free env int(0, 2) burst;

9 free env bool request[N + 1] =

false;

10 free env bool grantee_lockreq=
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false;

11 free env bool master_lockreq =

false;

12 /* arbiter variables */

13 /* G11: sys initial condition

*/

14 free bool start = true;

15 free bool decide = true;

16 free bool lock = false;

17 free bool lockmemo;

18 free int(0, N) master = 0;

19 free int(0, N) grant;

20 /* A2: slaves must progress

with receiving data */

21 assume ltl { []<> ready }

22 /* A3: dropped , weakening the

assumptions */

23 /* A1: */

24 assume env proctype

withdraw_lock (){

25 progress:

26 do

27 :: lock;

28 do

29 :: ! master_lockreq ’;

break

30 :: true /* wait */

31 od

32 :: else

33 od

34 }

35 assert ltl {

36 [](

37 /* G1: new access starts only

when slave is ready */

38 (start ’ -> ready)

39 /* G4 ,5 */

40 && (ready -> ((master ’ ==

grant) && (lock ’ <->

lockmemo ’)))

41 /* G6 */

42 && (! start ’ -> (

43 (master ’ == master) &&

44 (lock ’ <-> lock)))

45 /* G7: remember if lock

requested */

46 && ((--X decide) -> (lockmemo ’

<-> grantee_lockreq ’))

47 /* G8 */

48 && (! decide -> (grant ’ ==

grant))

49 && ((! --X decide) -> (

lockmemo ’ <-> lockmemo))

50 /* G10: grant only to

requestors */

51 && ((grant ’ == grant) || (

grant ’ == 0) || request[

grant ’])

52 )

53 }

54 sync{ /* synchronous product

*/

55 /* G9: weak fairness */

56 assert proctype weak_fairness

(){

57 int(0, N) count;

58 do

59 :: (! request[count] || (

master == count));

60 if

61 :: (count < N) && (

count ’ == count +

1)

62 :: (count == N) && (

count ’ == 0);

63 progress: skip

64 fi

65 :: else

66 od

67 }

68 /* G2: lock until no lock req

*/

69 assert sys proctype

maintain_lock (){

70 do

71 :: (lock && start && (

burst == INCR));

72 do

73 :: (! start && !

master_lockreq ’);

break

74 :: ! start

75 od

76 :: else

77 od

78 }

79 /* G3: for a BURST4 access ,

count the "ready" time

steps. */

80 assert sys proctype

count_burst (){

81 int(0, 3) count;

82 do

83 :: (start && lock &&
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84 (burst == BURST4) &&

85 (!ready || (count ’ ==

1)) &&

86 (ready || (count ’ ==

0)) );

87 do

88 :: (! start && ! ready

)

89 :: (! start && ready

&& (count < 3) &&

90 (count ’ == count +

1))

91 :: (! start && ready

&& (count >= 3));

break

92 od

93 :: else

94 od

95 }

96 }

7 Relevant work

Our approach has common elements with program repair [51], program sketching [65], and syntax-
guided synthesis [7]. Program repair aims at modifying an existing program in a conventional pro-
gramming language. Syntax-guided synthesis uses a grammar to slice the admissible search space of
terminating programs. Here, we are interested in reactive programs. Similarly, program sketching uses
templates to restrict the search space and give hints to the synthesizer for obtaining a complete program.
In [15], the authors propose another constraint-based approach to games, but start directly from logic
formulae.

TLA [61, 62] subsumes our proposed language, since it includes quantification, but is intended as
a theorem proving activity, is declarative, and is aimed at verification. Nonetheless, one can view the
proposed translation as from open-PROMELA to TLA. SMV is a declarative language [24], and JTLV

[88] an SMV-like language for synthesis specifications, but with no imperative constructs. ASPECTLTL
is a further declarative extension for aspect-oriented programming [72].

RPROMELA is an extension of PROMELA that adds synchronous-reactive constructs (not in the sense
of reactive synthesis) that include synchronous products and channels called ports [80, 81]. Its semantics
are defined in terms of stable states, where the synchronous product blocks, waiting for message recep-
tion from its global ports. RPROMELA does not address modeling of the environment, nor declarative
elements. Besides, synchronous-reactive languages like ESTEREL, QUARTZ (imperative textual), STAT-
ECHARTS, ARGOS, SYNCCHARTS (imperative graphical), LUSTRE, and LUCID SYNCHRONE (declar-
ative textual) and SIGNAL (declarative graphical) are by definition deterministic languages intended for
direct design of transducers [41, 44, 52]. In synthesis, non-determinism is an essential feature of the
specification.

Our approach has common elements with constraint imperative programming (CIP), introduced with
the experimental language KALEIDOSCOPE [38, 39, 40, 68], one of the first attempts to integrate the im-
perative and declarative constraint programming paradigms. An observation from [38], which applies
also here, is that specifiers need to express two types of relations: long-lived (best described declara-
tively), and sequencing relations (more naturally expressed in an imperative style). However, CIP does
not ensure correct reactivity, because the constraints are solved online. Constraints are a related approach
that uses constraints for indirect assignment to imperative variables is [63].

The translation from PROMELA to declarative formalisms has been considered in [11, 48, 26] and
decision diagrams in [13]. These translations aim at verification, do not have LTL as target language,
and either have limited support for atomicity [26], no details [11], or programs graphs semantics that do
not match PROMELA [48].
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8 Conclusions

We have presented a language for reactive synthesis that combines declarative and imperative elements
to allow using the most suitable paradigm for each requirement, to write readable specifications. By
expressing the AMBA specification in a multi-paradigm language, it became easier to experiment and
transform it into one that led to efficient synthesis that improved previous results by two orders of mag-
nitude. Besides the AMBA specification, other examples can be found in the code repository [1].
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[32] Rüdiger Ehlers & Vasumathi Raman (2014): Low-effort specification debugging and analysis. EPTCS 157,
pp. 117–133, doi:10.4204/EPTCS.157.12.

[33] Ioannis Filippidis & contributors (2013): List of verification and synthesis tools. Available at https:
//github.com/johnyf/tool_lists/blob/master/verification_synthesis.md.

[34] Ioannis Filippidis & Richard M. Murray (2015): Revisiting the AMBA AHB bus case study. Technical
Report CaltechCDSTR:2015.004, California Institute of Technology, Pasadena, CA. Available at http:
//resolver.caltech.edu/CaltechCDSTR:2015.004.

[35] Ioannis Filippidis, Richard M. Murray & Gerard J. Holzmann (2015): Synthesis from multi-paradigm spec-
ifications. Technical Report CaltechCDSTR:2015.003, California Institute of Technology, Pasadena, CA.
Available at http://resolver.caltech.edu/CaltechCDSTR:2015.003.

[36] Bernd Finkbeiner & Sven Schewe (2013): Bounded synthesis. International Journal on Software Tools for
Technology Transfer (STTT) 15(5-6), pp. 519–539, doi:10.1007/s10009-012-0228-z.

http://dl.acm.org/citation.cfm?id=1266366.1266622
http://dl.acm.org/citation.cfm?id=1266366.1266622
http://dx.doi.org/10.1016/j.entcs.2007.09.004
http://dx.doi.org/10.4204/EPTCS.157.9
http://arxiv.org/abs/1407.6580v1
http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/10.1007/978-3-642-31424-7_45
http://dx.doi.org/10.1016/0304-3975(86)90040-X
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1007/978-3-540-85114-1_7
http://dx.doi.org/10.1145/360933.360975
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.4204/EPTCS.50
http://dx.doi.org/10.1007/978-3-642-20398-5_9
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.4204/EPTCS.157.12
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md
http://resolver.caltech.edu/CaltechCDSTR:2015.004
http://resolver.caltech.edu/CaltechCDSTR:2015.004
http://resolver.caltech.edu/CaltechCDSTR:2015.003
http://dx.doi.org/10.1007/s10009-012-0228-z


I. Filippidis, R.M. Murray, G.J. Holzmann 95

[37] Robert W. Floyd (1967): Nondeterministic algorithms. JACM 14(4), pp. 636–644,
doi:10.1145/321420.321422.

[38] Bjorn N. Freeman-Benson (1990): KALEIDOSCOPE: Mixing objects, constraints, and imperative program-
ming. In: OOPSLA/ECOOP, pp. 77–88, doi:10.1145/97946.97957.

[39] Bjørn N. Freeman-Benson & Alan Borning (1992): Integrating constraints with an object-oriented lan-
guage. In: ECOOP, pp. 268–286, doi:10.1007/BFb0053042.

[40] B.N. Freeman-Benson & A Borning (1992): The design and implementation of KALEIDOSCOPE’90-A
constraint imperative programming language. In: ICCL, pp. 174–180, doi:10.1109/ICCL.1992.185480.
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