
ar
X

iv
:1

21
0.

20
35

v1
 [

cs
.S

Y
]

7
O

ct
 2

01
2

Synthesis of Reactive Protocols for Vehicle-to-Vehicle
Communication – Technical Report ∗

Clemens Wiltsche
University of Oxford, UK

cw395@cantab.net

Ufuk Topcu
University of Pennsylvania,

USA
utopcu@seas.upenn.edu

Richard M. Murray
California Institute of

Technology, USA

murray@cds.caltech.edu

ABSTRACT
We present a synthesis method for communication protocols
for active safety applications that satisfy certain formal spec-
ifications on quality of service requirements. The protocols
are developed to provide reliable communication services for
automobile active safety applications. The synthesis method
transforms a specification into a distributed implementation
of senders and receivers that together satisfy the quality of
service requirements by transmitting messages over an unre-
liable medium. We develop a specification language and an
execution model for the implementations, and demonstrate
the viability of our method by developing a protocol for a
traffic scenario in which a car runs a red light at a busy
intersection.

Categories and Subject Descriptors
C.2.2 [Protocol Verification]; B.1.2 [Automatic Syn-
thesis]

Keywords
Vehicle-to-vehicle communication; Discrete controller syn-
thesis; Active safety

1. INTRODUCTION
Active safety systems have the potential to transform au-

tomobile traffic by complementing a human operator’s capa-
bilities to prevent accidents and increase efficiency [4]. Com-
munication between cars enables cooperative safety applica-
tions by further augmenting information gained from local
sensors. Examples for active safety applications are traffic
signal violation warning, cooperative collision warning and
electronic emergency brake light [4, 11].

By transmitting information between each other, cars can
gain a view of the traffic situation more refined than it would

∗This work is supported partly by the Studienstiftung des
deutschen Volkes, the Boeing Corporation and the AFOSR
award number FA9550-12-1-0302.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Technical report for the paper with the same title prepared for submission
to ICCPS’13,April 8–11, 2013, Philadelphia, PA, USA.
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

be possible merely with sensors [8], because global informa-
tion about traffic is being made available locally to the cars.
Such information can be used in active safety systems to
avoid accidents and even improve traffic efficiency by en-
abling both communication with the infrastructure and be-
tween cars [3, 4, 6, 21, 22].

Depending on the active safety application, different types
of vehicle-to-vehicle (V2V) communication paradigms have
been investigated. Safety applications often require to main-
tain continuous tracking of other cars in the vicinity, which
is typically done by having cars broadcast information about
their position, velocity and other parameters of their state in
regular intervals [11]. Vehicle Ad-Hoc Networks (VANETs)
using routing protocols such as Geocasting or Ad-Hoc Dis-
tance Vector (AODV) handle applications involving several
cars in a peer-to-peer (P2P) connection [9, 13, 15]. The
main challenge is to maintain reliable communication in the
presence of possible channel congestion if several cars use
the transmission medium simultaneously [9, 14].

Traditionally, in the development of communication pro-
tocols, the programs are implemented manually, and veri-
fication of the protocol is only done after prototyping, ei-
ther through testing or model checking [7, 2, 20]. A slight
improvement over this bottom-up approach is to develop a
framework for distributed protocol specification and auto-
matically generate inputs to model checkers and theorem
provers [19].

In contrast, synthesis finds the programs to be executed
on each car directly from a global protocol specification. In
this approach, the synthesis method is guaranteed to gen-
erate distributed implementations that satisfy their speci-
fication by construction. However, so far only small prob-
lems have been considered in synthesis without particular
applications in mind [17, 16, 10]. Also, protocol implemen-
tations are only valuable in practice if it is clear under which
assumptions they are correct and if the communication re-
quirements are clearly specified [9]. Only if a precise model
of the environment is provided, i.e. the worst-case behavior
of the transmission medium, is an argument of correctness
convincing.

Synthesis is made difficult on the one hand by distributing
a single global specification in a way that the distributed im-
plementation operates correctly in an adverse environment,
and on the other hand by having to ensure correctness of
the results, which has to be ensured for any valid protocol
specification given as input to the synthesis.

Our main contribution is the development of a method
that automatically translates global specifications of the pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216303023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1210.2035v1

PSfrag replacements

B

A

Figure 1: Intersection scenario: Car A runs the red
traffic light. Hence car B (and potentially other
cars) must stop. Other cars at the intersection may
be transmitting over the wireless medium at the
same time, which has a deteriorating effect on the
communication between A and B.

tocol into implementations that formally guarantee the de-
sired quality of service requirements under the environment
assumptions. Specifically, we develop a synthesis method for
reliable asynchronous communication protocols with clearly
defined interfaces that can be used in a layered design. We
focus on providing communication services to enable active
safety applications for cars and therefore lump any active
safety activities into an abstract higher level that interacts
via strictly defined interfaces with the lower level communi-
cation services that we develop.

Our work addresses several shortfalls in previous work
on protocol synthesis [5, 12, 17, 23]. We introduce a for-
mal specification language to allow a textual representation
of the protocol specifications, which are typically given in
graphical form. Moreover, we make precise the semantics of
protocol specifications and their implementations that are
usually only informally described.

2. COMMUNICATION
Consider the scenario of two cars wanting to communi-

cate with each other at an intersection, c.f. Fig. 1. One
major complicating factor for reliable V2V communication
is that the cars are constantly moving and have to commu-
nicate over wireless links. Cars that intend to communicate
share restricted bandwidth availability with all other cars
within reach. When constantly tracking cars using broad-
casts, scalability is limited by the susceptibility for flooding
and frequent message collisions [14], and by having to keep
track of the state of every car.

It would be desirable to be able to implement communi-
cation protocols that guarantee the correct transmission of
data even in the presence of a large number of other cars.
We therefore consider initiating communication on-demand
when required by an active safety application in an emer-
gency. In this approach we do not track every car but only
exchange information when required. This approach has
the advantage that traffic on the network is lower, more
predictable, and reliability guarantees can be provided, as
demonstrated in this paper. We adopt an approach in which
the sender is responsible for correct delivery by retransmit-
ting data when a package drop is detected [18].

When considering a V2V communication between two cars,
we do not explicitly consider the behavior of all other cars.

Since from the point of view of the transceivers it is only
relevant whether a message is correctly received, we lump
together the behavior of all other cars that are not directly
involved in the communication and consider them as a single
environment. Our method allows us to explicitly state the
assumptions on this environment under which the protocol
has to perform correctly.

Communication between cars is governed by a set of rules
summarized as a protocol. After a data transfer is initiated,
messages are transmitted and received in order to guarantee
a reliable delivery. A protocol is implemented by equipping
each car with a communication service automaton (CSA),
which can be seen as a building block or “controller” han-
dling all communication activities. Hence, the protocol can
be seen as a building block with clearly defined behavior
and interfaces to its environment consisting of higher level
active safety components (ASCs) and to the lower level that
handles the transmission of the messages over the physical
medium.

Each CSA operates locally, i.e. it can only interact with
the sensors and actuators of the car it is located on. How-
ever, since a communication protocol defines events poten-
tially involving several cars, CSAs need to interact with each
other. This interaction is done by transmitting messages be-
tween the cars e.g. using wireless transceivers.

Defining a clear hierarchy of layers is inspired from the ISO
OSI architecture prevalent in most modern communication
networks [24]: A network layer is dedicated to establishing
host-to-host connections with basic quality of service (QoS)
guarantees. A data-link layer is layered below the network
layer and provides error-corrected single hop connections.
Above the network layer is the transport layer, that among
other services provides the destination address of a message
and QoS requirements. We consider an abstraction in which
a car’s ASC contains the transport layer and all above layers.
The ASC specifies parameters such as the data to be sent,
the destination address, and limits on transmission delay.

3. SETUP
Developing a synthesis method requires a formal speci-

fication language for protocols and a modelling framework
to formally describe executable CSAs. Moreover, the CSAs
should include interfaces to their corresponding ASCs at the
higher level, and hence our synthesis method is designed
to introduce this inter-level interaction. To illustrate our
method we will use the following example motivated by
Caveney [4], and Farkas et al. [8]:

Example 1 Consider the scenario of cars at a road in-
tersection shown in Fig. 1. Car A runs a red traffic light,
and car B approaches the intersection on a trajectory that
would lead to a collision. The two cars have to communi-
cate in order to avoid an accident. At the intersection there
might be other cars that share the same broadcast medium
and hence might interfere with the communication between
A and B.

3.1 Operation of a Protocol
The primary objective of a communication protocol is to

transfer information between cars. Information transfer be-
tween two cars can be interpreted as synchronizing two local
events between the cars. Events are indexed by elements ǫ
from a set E . An event ǫ may be associated with data d
from a set D, written ǫ(d). D contains an auxiliary element

Transport

Layer and

higher

ASCA

sndA→B(d)

��

ASCB

ackB→A

��
Network

Layer
MA

!!aA→B(d)��

ackA←B

OO

MB

!!bB→A��

sndB←A(d)

OO

Data-link

Layer and

below

?bA←B

OO

Medium❴ ❴ ❴❴ ❴ ❴ ❴❴❴ ❴❴❴

?aB←A(d)

OO

Figure 2: Two cars A and B communicating with
each other: A sends a message (by calling sndA→B(d))
and B responds with an acknowledgement on recep-
tion (by calling ackB→A). The transmission medium
and the ASCs are the environment of the CSAs.

⊥, indicating the absence of data. We simply write ǫ for
notational convencience if δ =⊥ in ǫ(d).

A local event is an event that is triggered either by the
ASC of a car (an environment-triggered event from the point
of view of the CSA), or by the CSA of a car itself (a system-

triggered event). An environment-triggered event that is
initiated by the ASC at car A and is to be synchronized
with car B is written as ǫA→B(d). It is synchronized with the
corresponding system-triggered event ǫB←A(d) by the CSA
of car B. The sets of environment-triggered and system-
triggered events are written as EE and ES respectively.

If ǫA→B(d) on car A is synchronized with ǫB←A(d) on car
B, then the data d is transferred from A to B. This is sum-
marized as a single global event ǫA→B(d) (note the absence
of the line under ǫ). The set of global events is denoted by
EG. A protocol specification defines a desired temporal or-
der on such global events. Since global events involve several
cars, a protocol specification is centralized, i.e., it is assumed
that the actions of all cars can be influenced independently
by a single controller.

Synchronization is achieved by sending messages across
a shared transmission medium. A CSA interacts with the
medium by transmitting messages and waiting for reception
of messages. A message transmission is indicated by “!!”,
while a reception is indicated by “?” prefixed to a message.

The interaction with the higher-level ASC is managed by
calls and upcalls. A call is initiated by the ASC and causes
an environment-triggered event in the CSA. An upcall is
initiated by a system-triggered event in the CSA.

Example 1 (Continued) Consider again the intersec-
tion problem in Fig. 1. As car A is approaching the inter-
section, it needs to establish whether it is safe to enter the
intersection. It therefore wants to establish a communica-
tion with any car that might pose a safety hazard.

Car A needs to communicate with car B to find out if B
is willing and able to stop or whether A should attempt an
emergency brake. Each car is assigned a unique address for
labelling messages, so that when a car receives a message,
it knows whether it is the intended destination. We assume
that the ASC at A provides its CSA with the address of B,
so that a P2P communication with B can be established.

This communication scenario is shown in Fig. 2, where the
CSA associated with each car is shown as a box. Data d is
transferred from A to B, and B should send an acknowledge-
ment back to A. Sending d from A to B is done by synchro-

ASCA

��

ASCB

��
OO OO

Protocol

(a) Centralized.

ASCA

��

ASCB

��
CSAA

��

OO

CSAB

��

OO

OO OO

Medium ❴❴❴ ❴❴❴❴ ❴ ❴❴ ❴ ❴

(b) Distributed.

Figure 3: The protocol on two levels of detail.

nizing the local events sndA→B(d) and sndB←A(d), while the
acknowledging synchronizes ackA→B with ackB←A. A call
by an ASC triggers the corresponding environment-triggered
event in the CSA on the same car, while an upcall is initi-
ated by the CSA when some system-triggered event requires
the attention of the higher level.

3.2 Quality of Service
Depending on the application, it is be necessary to guar-

antee that a transmission is completed with certain require-
ments on particular aspects such as end-to-end delay, mes-
sage drop probability or bandwidth. These aspects are called
Quality of Service (QoS). We are concerned with automat-
ically implementing protocols that guarantee that certain
requirements on QoS are met.

Whether QoS requirements can be satisfied depends on
the properties of the medium used to transmit messages
over. In our work we assume minimal capabilities for a
transceiver, so the only way to satisfy QoS requirements is
to select the appropriate frequency and number of retrans-
missions for messages.

Also, when finding the CSAs that satisfy the protocol,
we have to take into account that the performance of the
transmission medium typically degrades as consequence of
messages being transmitted. Moreover, a car cannot predict
the behavior of the transmission medium merely on the basis
of its own actions, since there might be other cars sharing the
same medium that exhibit unpredictable behavior from the
point of view of the car. In Example 1, while cars A and B
are communicating, other cars might be trying to transmit
messages itself, leading to a degradation in performance for
A and B that neither car can predict.

We restrict the package drop probability ∆ of the trans-
mission medium by assuming that it is below a given thresh-
old probability δ at all times. We write this as �(∆ ≤ δ),
where “�” is the always operator “�” of linear temporal
logic (LTL) Hence, a full specification in the framework
can be stated as an assumption/guarantee specification [1]

�(∆ ≤ δ) → ϕ, where a protocol specification ϕ only has
to hold as long as the assumption that at all times ∆ ≤ δ is
satisfied.

A straightforward extension to take time into account
would be to consider each (re)transmission to take up some
amount of time T . We can then include another assump-
tions of the form �(T ≤ τmax), where τmax is an upper
bound on the transmission time.

4. TECHNICAL APPROACH
In this section the concepts described above are formal-

ized.

4.1 Protocol Specification Language
In a protocol specification, the protocol is viewed as a

single component interacting with the ASCs, cf. Fig. 3(a).
Only the interaction across the interface between ASCs and
CSAs is specified. The CSAs, representing an implementa-
tion of a protocol, then interface with the lower level trans-
mission medium in order to provide the required services to
the higher level. In this way, the ASCs never come in di-
rect contact with the transmission medium. As introduced
above, a specification of the protocol is given as a temporal
(partial) order of global events. A global event is any event
involving the interaction of several cars, such as a message
transmission (involving both the sender and the receiver).

Hence, a protocol specification can be seen as an allowed
set of sequences of global events. Moreover, each sequence
is tagged with a QoS requirement, which, in our case simply
is the required probability of the sequence to be synchro-
nized correctly. In order to avoid having to write a list of
sequences with potentially many global events repeating, we
use the following temporal logic-like language to define pro-

tocol specifications:

ϕ ::= ep|e→©ϕ|ϕ ∨ ϕ,

where ep is a global event e ∈ EG together with a probabil-
ity p indicating the required QoS. Extensions of this speci-
fication language can also include time, bandwidth or other
QoS requirements in the same way in the specification. A
specification is a protocol specification together with an en-
vironment assumption, in our case an upper bound δ on the
drop probability ∆.

Example 1 (Continued) The protocol described in the
intersection example of Fig. 1 can be specified as

ϕ = sndA→B(d)→©(ackp1
B→A ∨ nackp2

B→A), (1)

which can be illustrated as a tree as in Fig. 4. In the nu-
merical results presented later for this example we will use
different values for p1 and p2.

The results of the synthesis also depend on the drop prob-
ability bound δ. A complete specification that includes the
assumptions on the transmission medium dynamics would
be

�(∆ ≤ δ)→ ϕ. (2)

Since we are interested in QoS requirements over the drop
probability of the transmission medium, a probability p on
ep labels each leaf of the tree representing a protocol spec-
ification, specifying the desired probability of the (unique)
sequence of global events σ occurring that leads to the leaf.
We call a sequence σ with a probability p attached to it a
p-sequence and write (σ)p. The semantics of the protocol
specification language is defined by a satisfaction relation:
If a p-sequence σ of global events satisfies the protocol spec-
ification ϕ, this is written as (σ)p |= ϕ.

We first develop an intuitive understanding of a sequence
σ = e1e2 . . . satisfying a specification ϕ. Recall that a proto-
col specification only takes the interfaces between CSAs and
ASCs into account, and hence views the protocol implemen-
tation as a monolithic entity as in Fig. 3(a). Each global
event ei = ǫx→y(d) in the sequence σ is interpreted as the
synchronization of an environment-triggered event ǫx→y(d)
and a system-triggered event ǫy←x(d). The ASC on car x
triggers ǫx→y(d) by a call to its CSA. The intention is that
the corresponding system-triggered event ǫy←x(d) is syn-
chronized with that event in the CSA on car y (and an upcall

/.-,()*+
sndx→y(d)

��/.-,()*+
acky→x

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

nacky→x

 ❅
❅❅

❅❅
❅❅

❅

/.-,()*+p1 /.-,()*+p2

Figure 4: Visualization of protocol specification ϕ
in (1), which establishes a partial order between the
global events sndx→y(d), acky→x and nacky→x, repre-
sented by the order of the edge labels.

is made to its ASC). The synchronization is correct if after
an environment-triggered event ǫx→y(d), the first system-
triggered event is ǫy←x(d), i.e. no other system-triggered
event is interleaved between them. Note that environment-
triggered events that do not correspond to global events in
the specification may be interleaved, as the protocol has no
control over the higher level. Then, the statement (σ)p |= ϕ
expresses that σ satisfies the partial order defined in ϕ and
has a high enough probability p attached to it.

We now formally define |= recursively on the structure of
a protocol specification ϕ (cf. (1)):

(e)p |= eq ⇔ p ≥ q
(e, σ)p |= e→©ϕ ⇔ (σ)p |= ϕ
(σ)p |= ϕ1 ∨ ϕ2 ⇔ (σ)p |= ϕ1 or (σ)p |= ϕ2,

(3)

where adding a global event e to the head of a sequence σ is
written as e, σ. Under these semantics a protocol specifica-
tion is satisfied exactly by those sequences of global events
that both obey the partial order induced by ϕ and that have
a sufficiently high probability attached to them.

4.2 Communication Service Automata
We are interested in finding a way to implement a pro-

tocol in a distributed manner by finding CSAs for the cars
so that their joint execution satisfies the protocol specifi-
cation. That is, the implementation of the protocol must
use the transmission medium in order to guarantee the re-
quired services to the higher level, see Fig. 3(b). A set M
of CSAs satisfies a protocol specification if it produces only
the allowed sequences of global events, and these with a suf-
ficiently high probability. In this section we make precise
the concept of a CSA and define its semantics in the next
section.

A CSA is a finite state machine with labelled transitions,
which is similar to a protocol entity specification used by
Ishida et al. [12]. Transition labels either indicate which
actions should be executed when the transition is taken, or
impose conditions on a transition. A transition for which
all conditions are satisfied is called enabled. The labels that
are available to the synthesis method are explained below,
and transitions are typically labelled with combinations of
labels.

Firstly, interaction with the higher-level ASCs is encoded
by edges labelled with environment-triggered and system-
triggered events. We also introduce two special system-
triggered events “fail” and “success” to ES that have no cor-
responding environment-triggered events to be synchronized
with. The purpose of these events is merely to inform the
ASC of the outcome of a transmission. A fail event indi-
cates that allowable retransmission count is exceeded, while

?>=<89:;76540123s1

sndA→B(d)

��
?>=<89:;s4 ?>=<89:;s2

fail
1

ν1 > n1oo

!!aA→B(d)

ν1≤n1

?>=<89:;s3

?bA←B

ackA←B

����
��
��
��
�

?cA←B

nackA←B

��❃
❃❃

❃❃
❃❃

❃❃

T.O.1

ν1++

JJ

s5 s6

(a) Sender: MA

?>=<89:;76540123s1

?aB←A(d) sndB←A(d)

��
?>=<89:;s2

ackB→A

����
��
��
��
�

nackB→A

��❄
❄❄

❄❄
❄❄

❄❄
❄

?>=<89:;s4 ?>=<89:;s3

!!bB→A

ν2≤n2

fail
2

ν2 > n2oo ?>=<89:;s7

!!cB→A

ν3≤n3

��

fail
3

ν3 > n3// ?>=<89:;s8

?>=<89:;s5

?aB←A(d)

ν2++

JJ

T.O.2

success
2

��

?>=<89:;s9

?aB←A(d)

ν3++

TT

T.O.3

success
3

��
s6 s10

(b) Receiver: MB

Figure 5: Two CSAs that realize the protocol spec-
ification in (1). The transitions are labelled with
broadcast messages (e.g. !!aA→B(d)), receptions (e.g.
?aB←A(d)), and local events (e.g. sndA←B(d) and
sndB→A(d)). Initial states and final states are shown
as doubled and dotted circles respectively. In each
retransmission loop, a retransmission counter νi is
increased by one on each timeout or reception. The
transmissions are conditioned on the retransmission
counters νi. If the counter is exceeded, indicated by
νi > ni, a faili occurs.

the success event indicates a successful transmission to the
ASC triggering the last global event.1

Secondly, to interact with the transmission medium, tran-
sitions can be labelled with message transmissions and re-
ceptions. Each message has a unique identifier m. A broad-
cast message is written as !!mx→y(d), where x and y are the
source and destination respectively, and d ∈ D is the data
transmitted. It is read as “send m with data d to y from
source x.” Similarly, a reception is written as ?my←x(d),
where x, y and d have the same interpretation as for a broad-
cast message. It is read as “receive m with data d from x
destined for y.” Again, if d =⊥, the parameter is not written.

1This is necessary since no response from another ASC can
indicate completion of the transmission.

Define B and R to be the set of broadcasts and receptions
respectively.

Lastly, we introduce labels for internal actions of a CSA.
In order to satisfy the QoS requirements of the protocol
specification, it may be necessary to allow the retransmis-
sion of messages. To this end, we define a set of variables
V over N0 = {0, 1, 2, . . .} that act as retransmission coun-

ters. We will construct the CSAs in such a way that for
each message m that might be retransmitted, after a trans-
mission !!mx→y(d), either a reception of some other message
is expected or a timeout “T.O.” may occur. On the time-
out, the retransmission counter ν of the message is increased
by one. If ν exceeds its retransmission bound n ∈ N0, the
transmission fails, causing a fail event and a corresponding
upcall informing the ASC. We write an update of a vari-
able ν ∈ V as ν ++, and denote the set of updates by
U = {ν++|ν ∈ V}. Further, a transition may be labelled by
a condition on a retransmission counter, which can be either
of the form ν ≤ n or ν > n. The set of conditions is defined
as C = {ν ⊲⊳ n|ν ∈ V, ⊲⊳∈ {≤, >}, n ∈ N0}

When synthesizing a CSA from a protocol specification,
each transition can be of one of seven kinds, depending on
the labels: A environment-triggered event, a conditional
system-triggered event, a timeout with a system-triggered
event, a timeout with update, a conditional broadcast, a re-
ception with a system-triggered event or a reception with
update. Hence, the set of labels is Σ = EE ∪ (ES × C) ∪
({T.O.}×ES)∪ ({T.O.}×U)∪ (B×C)∪ (R×ES)∪ (R×U)
for the respective cases. The set of such transition labels is
denoted by Σ. A CSA M is a quintuple

M , 〈S,V, sinit, Sf , T 〉,

where S is a set of states labelled by valuations of variables
V, sinit ∈ S is the initial state, Sf ⊆ S is the set of final
states, and T : S×Σ→ S is the (partial) transition function.

Example 1 (Continued) The pair of CSAs shown in
Fig. 5 represents one potential implementation of the proto-
col specification in (1). The transmissions and receptions are
introduced in order to ensure that the QoS requirements as
defined in the specification is preserved by the CSAs that can
only communicate over the transmission medium. For exam-
ple, the sender MA may retransmit the message !!aA→B(d)
up to n1 times in case of repeated timeouts to increase the
likelihood of a successful transmission, in order to meet the
specification.

4.3 Semantics of CSAs
In the semantics of a CSA, we want to reflect that a car

should be able to execute it as a controller for its wireless
transceiver.

Decisions when to make transitions should be based only
on information available locally. For example, a transition
labelled by a reception ?mx←y is taken only when a message
m arrives that has x as its destination and y as its source.
Since a CSA is executed locally on a car, we first define the
local semantics of a single CSA. This describes how a CSA
operates in isolation when receiving calls from the ASC on
the same car, and messages from the transmission medium,
cf. Fig. 3(b). We then define the global semantics of sev-
eral CSAs that operate together, which requires to take the
transmission medium dynamics into account, cf. Sec. 3.2.
Hence, the global semantics can be interpreted as defining

[env]
T (s, ǫy→z(d))

V
≈ s′

〈ρ, s〉
e

−−−−→My 〈ρ+ ǫy→z(d), s
′〉

[sys-c]
T (s, (ǫy←z(d), γ))

V
≈ s′ γ(s)

〈ρ, s〉
e

−−−−→My 〈ρ+ ǫy←z(d), s
′〉

[to-sys]
T (s, (T.O., ǫy←z(d)))

V
≈ s′

〈ρ, s〉
t

−−−−→My 〈ρ+T.O.+ ǫy←z(d), s
′〉

[to-upd]
T (s, (T.O., ν++))

V\{ν}
≈ s′ s′(ν) = s(ν) + 1

〈ρ, s〉
t

−−−−→My 〈ρ+ T.O., s′〉

[b-c]
T (s, (!!my→z(d), γ))

V
≈ s′ γ(s)

〈ρ, s〉
e

−−−−→My 〈ρ+!!my→z(d), s
′〉

[r-sys]
T (s, (ς, ǫy←z(d)))

V
≈ s′ ς =?my←z(d)

〈ρ+ ς, s〉
r

−−−−→My 〈ρ+ ς + ǫy←z(d), s
′〉

[r-upd]
T (s, (?my←z(d), ν++))

V\{ν}
≈ s′ s′(ν) = s(ν) + 1

〈ρ+?my←z(d), s〉
r

−−−−→My 〈ρ+?my←z(d), s
′〉

Table 1: Local semantic rules for deducing behavior
of a single CSA My.

the behavior of the protocol in Fig. 3(a). An example of how
the semantics are used is presented in Sec. 5.2.3.

4.3.1 Deduction Rules
For ease of presentation, the semantics are defined as a

set of deduction rules. A deduction rule is of the form

H1 H2 . . . Hn

C
,

which is the same as
∧n

i=1 Hi ⇒ C, i.e. the conclusion C
follows from the hypotheses H1,H2, . . . ,Hn. A deduction
rule can be applied if all its hypotheses hold. Rules can ei-
ther be applied forward, starting from one or several axioms,
or backwards, starting from a conclusion. Forward applica-
tion corresponds to simulation, while backwards application
corresponds to verification.

4.3.2 Notation
We first introduce some notation to make the statement

of the rules more compact. Retransmission uses conditional
transitions and updating of variables. The value v of a vari-
able ν ∈ V in a state s is written s(ν) = v. In the initial state
sinit all variables valuate to zero. A condition γ = ν ⊲⊳ n is
satisfied in state s, written γ(s), if and only if s(ν) ⊲⊳ n. Two
states s and s′ are equivalent on their values of the variables

in V ⊆ V, written s
V
≈ s′, if and only if ∀ν ∈ V.s(ν) = s′(ν).

We write T (s, ς)
V
≈ s′ if and only if T (s, ς) = s′ and s

V
≈ s′,

where ς ∈ Σ may stand for any transition label. Further-
more, we use the + operator to append an element to the
end of a sequence.

4.3.3 Local Semantic Rules
The local semantics is defined by a relation −−−→M⊆

(Σ∗ × S) × (Σ∗ × S) between sequences of transition labels
and CSA states. The statement 〈ρ, s〉 −−−→M 〈ρ

′, s′〉 means

that M at state s transforms ρ into ρ′ by making a single
transition to state s′. It holds if and only if it is deducible
via the rules given in Table 1. To make the statement of
the global semantics simpler, we may label the relation by
a superscript to distinguish which rules are applied. For ex-
ample,

e
−−−−→M indicates that either the rule [env], [sys-c]

or [b-c] are applied. If the superscript is omitted, any rule
may be applied.

We explain the [env] rule for CSA My in detail, the other

rules are similar. The hypothesis T (s, ǫy→z(d))
V
≈ s′ ex-

presses that My must allow a transition from s that is la-
belled with the environment-triggered event ǫy→z(d) and

leads to a state s′ in which the values of all variables in
V are the same as in s (i.e. there is no update). If this hy-
pothesis is satisfied, My at state s transforms ρ into ρ′ by
making a transition to state s′.

The [env] rule can be applied at any point if a transition
labelled by an environment-triggered event is enabled. It
is not dependent on an input from the higher level ASC.
Stating the rule this way is sufficient for our presentation,
but it can be substituted by

[env′]
T (s, ǫy→z(d))

V
≈ s′

〈ρ+ ǫy→z(d), s〉
e

−−−−→My 〈ρ+ ǫy→z(d), s
′〉

to explicitly require an input to be able to apply the rule.
The input is the last element in the sequence, which is
an environment-triggered event ǫy→z(d), indicating that the
ASC must have made the corresponding call. This input
may be placed in the sequence (i.e. added as last element)
by the global semantics, similar to the inputs for the [r-sys]
and [r-upd] rules.

The [sys-c] rule places no restriction on the input and con-
tains as an additional hypothesis that the condition γ must
be satisfied in state s. The system-triggered event ǫy←z(d)
gives rise to an upcall. Such outputs can be read off the last
element of the deduced sequence and hence are not modelled
explicitly in these rules. The [to-sys] rule can be applied
for a transition labelled with a timeout T.O. and a system-
triggered event ǫy←z(d). In the [to-upd] rule the value of
the variable ν ∈ V is incremented by one as the transition

is taken. Hence we use the operator
V\{ν}
≈ , since

V
≈ would

indicate that all variables in V retain their values as the
transition is taken. The [b-c] rule can be applied for a con-
ditional broadcast message. The outgoing message again can
be obtained from the last element of the deduced sequence.
Rules [r-sys] and [r-upd] require the reception ?my←z(d) to
occur, hence the rules require the corresponding input.

Each CSA may deduce a set of sequences of events by tran-
sitioning between its states. Decisions between environment-
triggered events, receptions and timeouts are made by inputs
(or the absence thereof) received either from the higher level
ASC or the lower level transmission medium. These inputs
can only be generated by the global semantics.

4.3.4 Transmission Medium Modelling
We define the global semantics by modelling how the trans-

mission medium operates. That is, we define the behavior
of the protocol in Fig. 3(a) by composing the behavior of
the CSAs in Fig. 3(b) and abstracting away all lower level
detail. The global semantics defines when inputs to a CSA
are received from the transmission medium, and restricts
the valid interleavings of locally generated sequences. The

[trans]

〈ρ+?mz←y(d), sz〉
r

−−−−→Mz 〈ρ
′, s′z〉

ς =!!my→z(d)

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ
′)(1−δ)p, s[z ← s′z], z〉

[drop]

〈ρ+?mz←y(d), sz〉
r

−−−−→Mz 〈ρ
′, s′z〉

ς =!!my→z(d)

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ)
δp, s, z〉

[nacc]

¬(〈ρ+?mz←y(d), sz〉
r

−−−−→Mz 〈ρ
′, s′z〉)

ς =!!my→z(d) 〈ρ, sx〉 −−−→Mx 〈ρ
′, s′x〉

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ)
p, s, z〉

[pr-e]
ς 6=!!my→z(d) 〈ρ+ ς, sy〉

e
−−−−→My 〈ρ

′, s′y〉

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ
′)p, s[y ← s′y], y〉

[pr-t]

ς 6=!!my→z(d) ¬(〈ρ+ ς, sy〉
e

−−−−→My 〈ρ
′′, s′′y〉)

〈ρ+ ς, sy〉
t

−−−−→My 〈ρ
′, s′y〉

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ
′)p, s[y ← s′y], y〉

[npr]

ς 6=!!my→z(d) ¬(〈ρ+ ς, sy〉
e,t

−−−−−→My 〈ρ
′′, s′y〉)

〈ρ+ ς, sx〉 −−−→Mx 〈ρ
′, s′x〉

〈(ρ+ ς)p, s, y〉 ===⇒M(δ) 〈(ρ
′)p, s[x← s′x], x〉

Table 2: Global semantics for deducing behavior of
several CSAs M. In particular, the rules [trans],
[drop] and [nacc] model the transmission medium.

medium therefore also acts as an arbiter or scheduler of tran-
sitions.

In the global semantics, we are interested in ensuring that
several CSAs together satisfy the global protocol specifica-
tion by interacting with each other. We therefore define the
semantics of a list of CSAsM = 〈MA,MB . . .〉 that is exe-
cuted together on the respective set of cars C = {A,B, . . .}.
Each execution starts with all CSAs in M being in their
initial state sinit = 〈sinit

A , sinit
B , . . .〉 and making only tran-

sitions allowed by the semantics. Only a single sequence
ρ ∈ Σ∗ is deduced, which is an interleaving of the sequences
deduced locally. The deduction rules also express that the
medium transmits messages only with a given probability.
Hence, the deduced sequence ρ is tagged with a probability
p, indicating how likely it occurs.

Not only do the global semantics define how messages are
transmitted, also the valid interleavings of locally deduced
sequences are restricted. To motivate this, consider in Fig.
5 the execution of the environment-triggered event ackB→A.
Since time is abstracted away, the transition may be delayed
by an arbitrary amount of time. However, then the retrans-
mission loop in the sender A cannot reliably increase the
likelihood of a successful execution, since the timeout tran-
sition can also be taken at any time. In order to prevent this
from happening, the global semantics ensure that transitions
that are not timeouts or receptions are taken immediately
if enabled. Hence, only one CSA is allowed to make tran-
sitions until a timeout or reception is encountered. Then
any CSA may make a transition. This is incorporated in
the global semantics by always prioritizing one CSA is to
make a transition. If this CSA has no transition enabled,
any other CSA may make a transition.

4.3.5 Global Semantic Rules
In the global semantics, we are interested in ensuring that

several CSAs together satisfy the global protocol specifi-
cation by interacting with each other. The transmission
medium therefore acts as an arbiter or scheduler of transi-
tions. Hence, we can think of the global behavior of several
CSAs M1,M2, . . . as an interleaving ρ of the locally gener-
ated sequences ρ1, ρ2, . . . of the respective CSAs. Messages
are only transmitted with a certain probability. Hence, the
sequence ρ is tagged with a probability p, indicating how
likely it occurs.

The relation 〈(ρ)p, s, x〉 ===⇒M(δ) 〈(ρ
′)p
′

, s′, x′〉 defines
the global semantics according to the rules in Table 2. It
means thatM with drop probability δ at state s transforms
ρ into ρ′ by making a transition to state s′ while the priority
changes from Mx to Mx′ . In the statement of the rules,
updating the zth element sz in state s = 〈sA, sB , . . . , sz, . . .〉
with s′z is written as s[z ← s′z].

The [trans], [drop] and [nacc] rules define the transmis-
sion medium dynamics. If the last deduced element in the
sequence is a broadcast message, i.e. ς =!!my→z(d), the
medium tries to transmit. An application of the [trans] rule
models a successful message transmission. This only occurs
if the CSA for which the message was destined, Mz makes a
transition labelled with the corresponding reception. That
is, 〈ρ+?mz←y(d), sz〉

r
−−−−→Mz 〈ρ

′, s′〉 is only satisfied if Mz

can execute [r-sys] or [r-upd]. Since a message transmission
occurs with probability 1−δ, the probability with which the
sequence ρ′ is tagged in the conclusion of [trans] is (1− δ)p.

An application of the [drop] rule models a dropped mes-
sage. It has exactly the same hypotheses as [trans], but its
conclusion reflects that no progress has been made. The
sequence ρ is tagged with δp due to the message drop prob-
ability δ. Note that the priority is at the source CSA My,
which may now execute a timeout transition (if enabled).

The [nacc] rule is applied when a message should be trans-
mitted, but the destination CSA has no transition enabled
that is labelled by the corresponding reception. Similar to
the [drop] rule, no progress is made. Also, the probability
of the deduced sequence is not affected.

The [pr-e], [pr-t] and [npr] rules may be applied if the last
element of the sequence is not a message transmission. Then
the transmission medium is inactive, and and the CSA that
is currently prioritized may execute: If a transition that is
not a timeout or reception is enabled, then [pr-e] is applied.
If a timeout transition is enabled, then [pr-t] is applied. The
[npr] rule may only applied if the currently prioritized CSA
has no such transitions enabled. In this case, any CSA Mx

may execute.

The transitive closure 〈(ρ)p, s, x〉 ===⇒∗M(δ) 〈(ρ
′)p
′

, s′, x′〉

denotes that 〈ρ, s〉 is transformed into 〈ρ′, s′〉 in an arbi-
trary number of deduction steps. The CSAsM execute by
starting in state sinit with an empty 1-sequence (•)1 and
any CSA Mx prioritized. Valid deductions are the tuples
〈(ρ)p, s, y〉 for which 〈(•)1, sinit, x〉 ===⇒∗M(δ) 〈(ρ)

p, s, y〉.
Note that an example of how the local and global semantic

rules are used is included in Sec. 5.2.3.

4.3.6 Global Event Sequences
By applying the deduction rules, sequences over both envi-

ronment-triggered and system-triggered events, broadcasts,
receptions and timeouts can be obtained from a set of CSAs.
Since protocol specifications are over global events, we need
to extract the synchronizations of local events in the se-
quences generated by a set of CSAs. We therefore define

the projection function [[·]] : Σ∗ → E∗G to find a sequence
over global events from ρ. It is defined by

[[•]] , •

[[ρ+ r]] ,

[[ρ]] + ǫy→z(d) if r = ǫy→z(d)

[[ρ′]] + ǫy→z(d) if [[ρ]] = [[ρ′]] + ǫy→z(d)

and r = ǫz←y(d)

[[ρ]] otherwise.

We use the projection function [[·]] to express whether a set
of CSAs satisfies a protocol specification ϕ under the envi-
ronment assumptions �(∆ ≤ δ).

4.4 Correctness
In this section we define correctness of a protocol’s im-

plementation in form of a set of CSAsM with respect to a
specification �(∆ ≤ δ)→ ϕ. IfM satisfies this specification
this is written asM ⊢ �(∆ ≤ δ)→ ϕ. Correctness depends
on the probability of sequences σ being synchronized cor-
rectly by the CSAs M if the transmission medium’s drop
probability ∆ is bounded from above by δ, i.e. it satisfies

�(∆ ≤ δ). If this assumption on the transmission medium
is not satisfied, the specification �(∆ ≤ δ) → ϕ is trivially
satisfied by any set of CSAs. However, this case is useless in
practice, as the protocol will not deliver the data with the
required QoS.

4.4.1 Definitions
Given a protocol specification ϕ, correctness of an imple-

mentation depends on whether all CSAs involved in synchro-
nizing a sequence of global events are in a final state. We
therefore define the set of globally final states Sf

M to include
all tuples of states 〈sA, sB , . . .〉 ∈

∏

x∈C Sx so that if there is
some sequence involving CSAs x, y, . . ., the states sx, sy, . . .
are actually final states from Sf

x , S
f
y ,

We say that a p-sequence (ρ)p is generated by a set of
CSAs M and drop probability δ, and write (ρ)p |= M(δ),
if it can be deduced by the rules in Table 1 and Table 2
and the deduction ends in a globally final state sf ∈ Sf

M.
Formally,

(ρ)p |=M(δ)⇔

∃sf ∈ Sf
M.∃x, y ∈ C.〈(•)1, sinit, x〉 ===⇒∗M(δ) 〈(ρ)

p, sf , y〉.

As noted above in Sec. 3.1, a p-sequence (σ)p satisfies a
specification ϕ exactly if the probability p that all (global)
events in σ are correctly synchronized is high enough given
that the corresponding environment-triggered events are all
triggered through calls by the higher level ASCs. For a set of
CSAs therefore to satisfy a specification, it is required that
the synchronization of events in each sequence is performed
with high enough probability.

4.4.2 Correctness Condition
The important criterion for correctness is not whether

a sequence ρ is generated, but whether the QoS require-
ments are satisfied. This is because the decisions between
environment-triggered events (which essentially generate the
sequence) are made by the higher level ASCs, over which a
CSA has no control. For example, in Fig. 5, the receiver
CSA has no control over whether ackB→A or nackB→A is
triggered by its ASC in state s2. In our case the only QoS
requirement is the probability of all global events being cor-
rectly synchronized, so the question for correctness becomes:

Given that the ASCs trigger the events necessary to generate
σ, how likely is it that all synchronizations performed?
M might generate a given sequence σ in many different

ways, since several sequences ρ deducible by the rules in
Table 1 might satisfy [[ρ]] = σ. For a sequence σ, we evaluate
the sum of all probabilities p for distinct sequences ρ that
satisfy

cond(σ, p, δ,M) , ([[ρ]] = σ ∧ (ρ)p |=M(δ)),

and get the probability

r(σ, δ,M) ,
∑

cond(σ,p,δ,M)

p,

expressing the likelihood of the events in the sequence σ
being correctly synchronized when executing all CSAs inM
in parallel (i.e. using the global semantics). Correctness

then is expressed by

M ⊢ �(∆ ≤ δ)→ ϕ⇔ ∀σ.(∃q.(σ)q |= ϕ)⇒ (σ)r(σ,δ,M) |= ϕ,

i.e. if σ is a sequence allowed by the specification ϕ,M syn-
chronizes the events σ at least as likely as it is required.
The algorithmically challenging part in establishing correct-
ness is to evaluate r(σ, δ,M). However, we only need to
compute this for the CSAs that we are synthesizing.

5. SYNTHESIS
The protocol synthesis methodS translates a specification

into a set of CSAs that is guaranteed to satisfy the specifica-
tion. The inputs to the synthesis are a protocol specification
ϕ, a set of cars C and the specification on the transmission
medium dynamics �(∆ ≤ δ). S(ϕ,C, δ) produces a CSA for
each car x ∈ C that interacts with the higher level ASCs as
outlined in Sec. 3.

5.1 Realizability and Well-Posedness
Synthesis is preceded by a realizability check, i.e. checking

whether a specification can be implemented. That is, check-
ing realizability amounts to deciding whether there exists a
set of CSAs that satisfies the specification �(∆ ≤ δ) → ϕ.
If a protocol specification ϕ is realizable for a set of cars C

under a drop probability δ, this is written as R(ϕ,C, δ).
Checking realizability consists of two parts: Firstly, the

specification itself must be well-posed, i.e. ϕ must admit a
“reasonable” implementation in the form of CSAs. Secondly,
it must be possible to find retransmission bounds so that the
QoS requirements are satisfied under the given drop proba-
bility δ.

Well-posedness is a purely syntactic requirement on the
specification. We introduce this concept because it is easy
to check and simplifies the presentation of the synthesis al-
gorithm. A protocol specification ϕ is well posed if on every
p-sequence satisfying ϕ, two ASCs take turns in triggering
the events, and there are at least two events on each path
through the tree induced by the specification.

These rather strict requirements on the specifications for
well-posedness can be relaxed by generalizing the synthe-
sis method presented in the next section appropriately. For
example, a straightforward relaxation would be to allow pro-
tocol specifications in which for any disjunction ϕ1∨ϕ2, the
system-triggered events corresponding to the immediately
following global events are all triggered by the same ASC.

We do not develop a separate test for realizability but
rather show how our method fails for well-posed but nonre-
alizable specifications.

5.2 Synthesis Algorithm
The synthesis method is implemented in two parts: First,

the retransmission bounds are calculated. Then the CSAs
are constructed using the retransmission bounds. The re-
transmission bounds are calculated with the structure of the
resulting CSAs in mind, so we present the CSA construction
first.

For any specification �(∆ ≤ δ)→ ϕ and any set of cars C,
if the specification is realizable, the resulting setM of CSAs
from the synthesis, S(ϕ,C, δ) must satisfy �(∆ ≤ δ) → ϕ.
Formally,

∀ϕ.∀C.∀δ ∈ [0, 1].R(ϕ, C, δ)⇒ (S(ϕ,C, δ) ⊢ �(∆ ≤ δ)→ ϕ).

The synthesis method S is implemented in two parts: First,
the retransmission bounds are calculated. Then the CSAs
are constructed using the retransmission bounds. The re-
transmission bounds are calculated with the structure of the
resulting CSAs in mind, so we present the CSA construction
first.

5.2.1 CSA Construction
Table 3 shows the algorithm Synthesize(ϕ,x, i, E, nϕ).

This algorithm constructs the CSA Mx for car x from the
specification ϕ. The parameter i is used to uniquely in-
dex states in the CSA, and E is a set of global events that
is used to construct appropriate criteria for retransmission
(explained below). nϕ is the list of retransmission bounds
calculated in the first step (cf. Sec. 5.2.2).

Each global event e = ǫx→y(d) that occurs in the pro-
tocol specification ϕ is assigned an environment-triggered
event ǫx→y(d), a system-triggered event ǫy←x(d), a message
mǫ ∈ MSG, a variable (as retransmission counter) νǫ ∈ V,
a retransmission bound nǫ from nϕ, and system-triggered
events T.O.ǫ and failǫ.

The algorithm is invoked by Synthesize(ϕ,x, 0, ∅, nϕ),
for each car x ∈ C:2 It synthesises a CSA for the well-posed
protocol specification ϕ for car x, where states are indexed
starting from 0, no previous events are stored (E = ∅) and
the retransmission bounds nϕ are used.

Synthesize recursively decomposes ϕ into its subparts.
If ϕ = ϕ1 ∨ ϕ2, then two CSAs M1 and M2 are constructed
from ϕ1 and ϕ2 first and joined together by forming the
union of their state spaces, final states and transitions and
substituting the initial state sinit

M2
by the initial state sinit

M1
.

For this purpose we define M [s1/s2] to be the CSA M with
all occurrences of s2 substituted by s1.

If ϕ = ǫy→z(d) → ©ϕ′, the set E of global events that
has last been received on the path through the CSA is up-
dated first. Then again the CSA M for ϕ′ is constructed.
Depending on which car x the CSA is constructed for, differ-
ent transitions are now introduced. If x = y then the ASC
on car x is responsible for triggering the event ǫy→z(d), and
a retransmission loop is introduced:

2Note that x does not need to occur in the protocol specifi-
cation ϕ.

(I)

?>=<89:;76540123si
ǫy→z(d) // ?>=<89:;si+1

failǫ

νǫ>nǫ //

!!aǫ,y→z(d)

νǫ≤nǫ

��

?>=<89:;sinit
M

?>=<89:;si+2

T.O.ǫ

νǫ++

UU

If x = z, then car x synchronizes ǫ by the system-triggered
event ǫz←y(d):

(II) ?>=<89:;si
ǫz←y(d) // ?>=<89:;sinit

M

In any other case, simply the CSA for ϕ′ is returned as then
the car x is not directly involved in the transmission.

Finally, if ϕ = ǫpy→z(d) then no recursive call to Synthe-

size is necessary, but a CSA is directly constructed. If x = y
then a retransmission loop is constructed:

(III)

?>=<89:;si
ǫy→z(d) // ?>=<89:;si+1

failǫ

νǫ>nǫ //

!!mǫ,y→z(d)

νǫ≤nǫ

��

?>=<89:;si+3

?>=<89:;si+2

?µy←z(d)

νǫ++

UU

T.O.3

success
3

// si+4

S
In this case, a retransmission is not triggered by a timeout,
because ǫy→z(d) is the last global event in a sequence of
required synchronizations and no feedback from the car z
can be expected. Therefore, a retransmission is initiated by
receiving the last message µ from car z again, because this
indicates that z has not received the message mǫ correctly.
The message µ is taken from E, the set of global events that
has last been received on the path through the CSA. Only
if no such message is received is a timeout transition made,
which indicates success by an upcall to the ASC. The global
semantics of CSAs were carefully constructed so that this
timeout is only taken if no message µ is received.

If x = z, then car x synchronizes ǫ by the system-triggered
event ǫz←y(d):

(IV) ?>=<89:;si
ǫz←y(d) // si+1

In any other case a trivial CSA with one state is returned.
Example 1 (Continued) The resulting CSAs from syn-

thesizing the specification in (1) are shown in Fig. 5. The
CSAs were generated by calling Synthesize(ϕ,x, 0, ∅, nϕ)
for x ∈ {A,B}. The retransmission bounds nϕ are calcu-
lated as explained in the next section according to the QoS
requirements and to the bound on the drop probability δ.

5.2.2 Retransmission Bounds
Each global event ǫx→y(d) gets assigned a unique message

mǫ ∈ MSG and a unique retransmission bound nǫ ∈ N0. The
retransmission bounds are evaluated according to the QoS
requirements defined in the protocol specification ϕ.

Recall that the protocol specification ϕ induces a tree, cf.
Fig. 4. Each edge of this tree is translated by the synthesis
into a retransmission loop in the CSA of exactly one car,
with a retransmission bound associated with that loop. The
retransmission bounds have to be selected so that correct-
ness as defined in Sec. 4.4 is guaranteed.

We use the semantics to find the conditions on the re-

Synthesize(ϕ,x, i, E, nϕ)
If ϕ = ϕ1 ∨ ϕ2 Then

(M1, i1) = Synthesize(ϕ1, x, i, E, nϕ)
(M2, i2) = Synthesize(ϕ2, x, i1, E, nϕ)

Return (〈SM1
∪ SM2

, sinit
M1

, Sf
M1
∪ Sf

M2
,

TM1
∪ TM2

〉[sinit
M1

/sinit
M2

], i2)
Else If ϕ = ǫy→z(d)→©ϕ′ Then

If ∃µ, d.µy→z(d) ∈ E Then
Replace µy→z(d) By mǫ,y→z(d) In E

Else
Insert mǫ,y→z(d) Into E

If x = y Then
(M, i′) = Synthesize(ϕ′, x, i+ 3, E, nϕ)

(I)

TM (si, ǫy→z(d)) := si+1

TM (si+1, (!!mǫ,y→z(d), νǫ ≤ nǫ)) := sinit
M

TM (si+1, (failǫ, νǫ > nǫ)) := si+2

TM (sinit
M , (T.O.ǫ, νǫ++)) := si+1

Return (〈SM ∪ {si, si+1, si+2}, si, S
f
M , TM 〉, i

′)
Else If x = z Then

(M, i′) = Synthesize(ϕ′, x, i+ 1, E, nϕ)
(II)

{

TM (si, (?mǫ,z←y(d), ǫz←y(d))) := sinit
M

Return (〈SM ∪ {si}, si, S
f
M , TM 〉, i

′)
Else

Return Synthesize(ϕ′, x, i, E, nϕ)
Else If ϕ = ϕ = ǫpy→z(d) Then

If x = y Then
µy←z(d) ∈ E

(III)

T (si, ǫy→z(d)) := si+1

T (si+1, (!!mǫ,y→z(d), νǫ ≤ nǫ)) := si+2

T (si+1, (failǫ, νǫ > nǫ)) := si+3

T (si+2, (?µy←z(d), νǫ++)) := si+1

T (si+2, (T.O.ǫ, successǫ)) := si+4

Return (〈{si, si+1, si+2, si+3, si+4}, si,
{si+4}, T 〉, i+ 5)

Else If x = z Then
(IV)

{

T (si, (?mǫ,z←y(d), ǫz←y(d))) := si+1

Return (〈{si, si+1}, si, {si+1}, T 〉, i+ 2)
Else

Return (〈{si}, si, {si}, ∅〉, i+ 1)

Table 3: Pseudocode of synthesis algorithm. The
CSA is constructed from the diagrams explained in
the text and referred to by Roman numerals.

transmission bounds that are sufficient for correctness. We
can exploit the tree-like structure of the synthesized CSAs:
Apart from the last two retransmission loops in each se-
quence, the message associated with a retransmission loop
is never used at a later point in the same sequence.

Each sequence of global events σ = ǫ1ǫ2 . . . ǫl is associated
with a sequence of retransmission bounds nσ = nǫ1nǫ2 . . . nǫl .
Depending on the values of the retransmission bounds, the
sequence σ is generated correctly with a certain synchroniza-

tion probability P σ(nσ) that depends on all retransmission
bounds associated with any event in σ. Note that this prob-
ability is the likelihood of σ being generated correctly given

that the calls are made by the ASCs that generate σ.

5.2.3 Deduction ofP σ(nσ)

The synchronization probability P σ(nσ) is evaluated as
follows: The case of only one retransmission bound (|nσ| =
1) never occurs. The case of exactly two retransmission
bounds (|nσ| = 2) means that the last retransmission loop

uses the message transmitted in the retransmission loop one
before last, cf. Fig. 5. The example in this figure can be
used to deduce the general expression for P σ(n1, n2). This is
because the synthesis will always generate the same pattern
for the last two global events in a specification.

We use the sequence σ = sndA→B(d)ackB→A to deduce
P σ(n1, n2) by evaluating the probability of correct synchro-
nization by applying the deduction rules in Table 1 and
Table 2. The CSAs 〈A,B〉 = M start in the initial state
〈sA1 , s

B
1 〉. We omit writing the values of the retransmis-

sion counters within the states in our presentation. We let
P σ(n1, n2) = pσ1,1(n1, n2), where p

σ
i,j(n1, n2) are an auxiliary

functions describing the probability of reaching a globally fi-
nal state from 〈sAi , s

B
j 〉 when the calls in σ are made.

Initially only MA can execute by applying the [env] rule
locally. Hence, we start the deduction at 〈(•)1, 〈sA1 , s

B
1 〉, A〉.

We find pσ1,1(n1, n2) by applying the global rules to deduce
all sequences for whichM ends in a globally final state and
the calls in σ are made. First, apply [pr-e] globally and [env]
locally and deduce

〈(•)1, 〈sA1 , s
B
1 〉, A〉 ===⇒M(δ) 〈(sndA→B(d))1, 〈sA2 , s

B
1 〉, A〉

globally from

〈•, sA1 〉
e

−−−−→MA 〈sndA→B(d), s
A
2 〉

locally. This deduction step yields pσ1,1(n1, n2) = pσ2,1(n1, n2),

as the probability is not changed from state 〈sA1 , s
B
1 〉 to

〈sA2 , s
B
1 〉. From now on we omit the left hand side of the

relation ===⇒M(δ), since it is equivalent to the right hand
side of the previous deduction. We further omit writing the
local deductions.

At 〈sA2 , s
B
1 〉, globally only the [pr-e] rule can be applied.

Locally, either [sys-c] or [b-c] can be applied, depending on
the value of the retransmission counter ν1. Applying [sys-c]
corresponds to taking the transition labelled by fail1. Since
then no final state can ever be reached, we only apply the
[b-c] rule locally. So we apply locally the [b-c] rule:

===⇒M(δ) 〈(sndA→B(d)+!!aA→B(d))
1, 〈sA3 , s

B
1 〉, A〉.

This transition leads to pσ2,1(n1, n2) = pσ3,1(n1, n2). At this
point the transmission medium is invoked and globally both
the [trans] and [drop] rules can be applied. If [trans] is ap-
plied, MB receives the message and we apply the [r-sys] rule
locally. If [drop] is applied, merely the probability and pri-
oritization changes. Hence, we can deduce either

===⇒M(δ)〈(ρ+?aB←A(d) + sndB←A(d))
(1−δ), 〈sA3 , s

B
2 〉, B〉, or

===⇒M(δ)〈(ρ)
δ, 〈sA3 , s

B
1 〉, B〉,

where ρ = sndA→B(d). Since two transitions may be taken,
we get pσ3,1(n1, n2) = (1−δ)pσ3,2(n1, n2)+δpσ3,1(n1, n2). After
the application of [drop], MB is prioritized but cannot make
a transition. In state 〈sA3 , s

B
1 〉, globally only [npr] can be

applied, with MA making a timeout transition using [to-
upd] locally:

===⇒M(δ) 〈(sndA→B(d) + T.O.1)
δ, 〈sA2 , s

B
1 〉, A〉.

Since the application of [to-upd] increases the retransmission
counter ν1 by one, we get pσ3,1(n1, n2) = pσ2,1(n1− 1, n2) and
the base case pσ3,1(0, n2) = 0. This indicates that in state

〈sA2 , s
B
1 〉, the deduction may be repeated with the bound

n1 decreased by one, corresponding to a retransmission. If

n1 = 0, i.e. in the base case, no more retransmissions are
possible.

In state 〈sA3 , s
B
2 〉 after the transmission, MB makes a tran-

sition in response to a call from its ASC. By applying [env]
instead of [env′], we model that a is made immediately. Ap-
plying [pr-e] globally and [env] locally yields:

===⇒M(δ) 〈(ρ+ ackB→A)
(1−δ), 〈sA3 , s

B
3 〉, B〉,

where ρ = sndA→B(d)+?aB←A(d) + sndB←A(d). Then only
[pr-e] with [b-c] can be applied (because again, applying [sys-
c] does not conform with wanting to reach a final state).
Therefore we get

===⇒M(δ) 〈(ρ+!!bB→A)
(1−δ), 〈sA3 , s

B
5 〉, B〉, (4)

where ρ = sndA→B(d)+?aB←A(d) + sndB←A(d) + ackB→A.
This generates the equalities pσ3,2(n1, n2) = pσ3,3(n1, n2) and
pσ3,3(n1, n2) = pσ3,5(n1, n2).

In 〈sA3 , s
B
5 〉 we can apply either [trans] globally with [r-sys]

locally on MA, modelling a successful transmission, or we
apply [drop] globally, modelling a dropped message. Hence
we can either deduce

===⇒M(δ)〈(ρ+?bA←B)
(1−δ)(1−δ), 〈sA5 , s

B
5 〉, A〉, or

===⇒M(δ)〈(ρ)
δ(1−δ), 〈sA3 , s

B
5 〉, A〉

where ρ = sndA→B(d)+?aB←A(d) + sndB←A(d) + ackB→A.
We get pσ3,5(n1, n2) = (1− δ)pσ5,5(n1, n2) + δpσ3,5(n1, n2). In

state 〈sA5 , s
B
5 〉, the sequence has been synchronized success-

fully. Here only [npr] with [to-sys] on MB can be applied to
yield

===⇒M(δ) 〈(ρ+ T.O.2 + success2)
(1−δ)(1−δ), 〈sA5 , s

B
5 〉, A〉,

where ρ = sndA→B(d)+?aB←A(d)+sndB←A(d)+ackB→A+
?bA←B . This deduction ends in a globally final state and
hence pσ5,5(n1, n2) = 1, because the sequence σ is correctly

synchronized. In state 〈sA3 , s
B
5 〉 after the message has been

dropped, only [pr-t] with [to-upd] locally on MA can be ap-
plied:

===⇒M(δ) 〈(ρ+ T.O.1)
δ(1−δ), 〈sA2 , s

B
5 〉, A〉

where ρ = sndA→B(d)+?aB←A(d) + sndB←A(d) + ackB→A.
This step yields pσ3,5(n1, n2) = pσ2,5(n1−1, n2) with base case
pσ3,5(0, n2) = 0. Now MA retransmits (if its retransmission
count is not yet exceeded) and we deduce with [pr-e] and
[b-c] locally on MA:

===⇒M(δ) 〈(ρ+!!aA→B(d))
δ(1−δ), 〈sA3 , s

B
5 〉, A〉

where ρ = sndA→B(d)+?aB←A(d)+sndB←A(d)+ackB→A+
T.O.1. This yields pσ2,5(n1, n2) = p

σ

3,5(n1, n2). Now [trans]
can be applied with [r-upd] locally on MB . However, when
applying [drop], no final state can be reached by any se-
quence of applications of deduction rules. Hence we only
apply [trans] and [r-upd] and get

===⇒M(δ) 〈(ρ+?aA→B(d))
δ(1−δ)(1−δ), 〈sA3 , s

B
5 〉, A〉

where ρ = sndA→B(d)+?aB←A(d)+sndB←A(d)+ackB→A+
T.O.1. This yields p

σ

3,5(n1, n2) = (1− δ)pσ3,3(n1, n2−1) with

base case p
σ

3,5(n1, 0) = 0.

5.2.4 Optimization Problem
For notational convenience, we drop the σ superscript if

the context is clear and we are not referring to a particular
sequence. When the sequence of global events σ has exactly
two elements (|σ| = 2), we get

P (n1, n2) , ̺(1− δn1+1) +
̺3

1− δ̺

n1
∑

i=1

δi
[

1− (δ̺)M
]

,

where ̺ = (1 − δ) is the reception probability and M =
min (n1 + 1− i, n2). When σ has more than two elements
(|σ| > 2), the synchronization probability can be similarly
deduced:

P (n1, n2, . . . , nl) , ̺

n1
∑

i=0

δiP (n1 − i, n2 . . . , nl),

P (n1, n2, . . . , nl) ,

{

̺
∑M

i=0 δ
iP (n2 − i, . . . , nl) if l > 2

P (n1, n2) if l = 2,

where M = min (n1, n2). Ideally, we want to find the small-
est retransmission bounds that ensure correctness. Each p-
sequence (σ)p that satisfies the specification ϕ induces a
condition on the retransmission bounds associated with the
elements of σ. For example, a sequence (ǫ1ǫ2 . . . ǫl)

p induces
the condition P ǫ1ǫ2...ǫl (nǫ1 , nǫ2 , . . . , nǫl) ≥ p. This inequal-
ity ensures that the sequence σ is generated by the CSAs
with high enough probability as required by the correctness
criterion set out above.

We can find the retransmission bounds by solving an op-
timization problem:

(OPT) min
nǫ1

,nǫ2
,...,nǫl

l
∑

j=1

nǫj

s.t. P σ(nσ) ≥ p for all (σ)p ∈ Sϕ,

where Sϕ = {(σ)p|(σ)p |= ϕ} is the set of p-sequences σ that
satisfy the protocol specification ϕ.

Example 1 (Continued)Checking realizability of a spec-
ification amounts to checking well-posedness of the specifi-
cation and feasibility of the optimization problem. For our
example specification (1), the optimization problem is

min
nsnd,nack,nnack

nsnd + nack + nnack

s.t. P (nsnd, nack) ≥ p1

P (nsnd, nnack) ≥ p2.

In the case that p1 = 0.7, p2 = 0.8 and δ = 0.35, we get
nsnd = 3, nack = 1, and nnack = 2.

5.3 Correctness of Synthesis
Take any protocol specification ϕ, drop probability bound

δ, and any p-sequence σ for which (σ)p |= ϕ holds. Then,
correctness of the synthesis method is established by showing
that (σ)r(σ,δ,M) |= ϕ, whereM is the result of synthesis.

The definition of the feasible region of the optimization
problem (OPT) contains the inequality P (nσ) ≥ p for each
such sequence σ. By the semantics of protocol specifica-
tions (q ≥ p ∧ (σ)p |= ϕ) ⇒ (σ)q |= ϕ for any sequence

σ. It is therefore sufficient to show that (σ)P (nσ) |= ϕ and

r(σ, δ,M) ≥ P (nσ), because then (σ)r(σ,δ,M) |= ϕ, as re-
quired to establish correctness.

First, if the retransmission bounds nσ are part of a feasible
solution to (OPT), then we necessarily have P (nσ) ≥ p, and

so (σ)P (nσ) |= ϕ follows from (q ≥ p ∧ (σ)p |= ϕ) ⇒ (σ)q |=
ϕ.

Second, we have P (nσ) = r(σ, δ,M) by construction of
P (note that the superscript σ has been dropped from P σ):
r(σ, δ,M) is the sum of all probabilities p for which [[ρ]] =
σ ∧ (ρ)p |=M(δ), i.e. the environment-triggered events and
system-triggered events in ρ synchronize to the sequence of
global events σ and the p-sequence (ρ)p is generated byM
and drop probability δ. By definition, (ρ)p |= M(δ) ⇔

∃sf ∈ Sf
M.∃x, y ∈ C.〈(•)1, sinit, x〉 ===⇒∗M(δ) 〈(ρ)

p, sf , y〉.
It is therefore sufficient to show that in the deduction of
the expression for P (nσ) exactly those p-sequences (ρ)p are

taken into account that end in a globally final state sf ∈ Sf
M

(the prioritization of x and y can safely be ignored) and for
which [[ρ]] = σ.

The deduction of P (nσ) in Sec. 5.2.3 is essentially done by
constructing a product automaton of all CSAs in M using
the global semantics, and adding the probabilities along all
paths that end in a globally final state corresponding to the
sequence σ having been executed.

Note that it would have been enough to show P (nσ) ≤
r(σ, δ,M). A synthesis method that generates CSAs with
P (nσ) = 0 would be perfectly correct, but not very useful:
The larger P (nσ) gets, the greater the feasible region of
(OPT) gets and the more specifications can be synthesized.
So by having P (nσ) = r(σ, δ,M), we have maximized the
capabilities of the synthesis method.

5.4 Computational Considerations
The time required to generate a CSA from a protocol spec-

ification ϕ by the Synthesize algorithm is proportional to
the number of global events and disjunctions (∨) in ϕ (ig-
noring the set operations on E), which can easily be seen
from Table 3, where the implementation of Synthesize is
shown as a simple structural recursion on ϕ. When also the
set operations on E are taken into account, the algorithm is
quadratic in the number of global events in ϕ.

The main computational complexity arises from the opti-
mization problem OPT, which is an integer program and in
general is NP-hard. There are however a few points to be
noted that may simplify finding a solution. First, both the
objective function and the function P σ(nσ) are monotonous
in their arguments along any dimension. Hence, if OPT is
feasible for some n = (nǫ1 , nǫ2 , . . . , nǫl), it is also feasible for
any n′ ≥ n.

Second, since correctness depends on P σ(nσ) ≤ r(σ, δ,M),
it is sufficient to solve an optimization problem with a strictly
smaller feasible set than that of (OPT). This is helpful if a
function Qσ can be found s.t. for all σ, Qσ(nσ) ≤ P σ(nσ)
while still maintaining that there exist retransmission bounds
nσ s.t. Qσ(nσ) ≥ p for all (σ)p ∈ Sϕ. The solution to the
resulting optimization problem might not be optimal, but
the resulting CSAs are still correct.

Lastly, since any suboptimal solution to OPT still gives
rise to correct CSAs, the retransmission bounds may be cho-
sen to be arbitrarily high as long as they are feasible. Note
however that there might not be a solution to OPT at all,
in which case the specification was unrealizable in the first
place.

5.5 Discussion
The implementations of a communication protocol spec-

ification provide the ASCs with sufficient information on

0
0.5

1
1.5

2

10
1

10
2

0

5

10

15

20

PSfrag replacements

d
a
ta

le
n
g
th

d
m

a
x

number
of cars N

minimum delay τmin

Figure 6: Feasible region of OPT for the protocol
specification in (1) with p1 = p2 = 0.9. The drop
probability bound δ is calculated as a function of N ,
dmax and τmin. All points on and under the surface
are feasible.

what messages are received so that accidents can effectively
be prevented. In this section we develop the continuing ex-
ample of the cars at an intersection further by explaining
how our protocol can be embedded in an active safety ap-
plication.

Example 1 (Continued)When transmitting data d from
car A to car B, six cases can occur. We distinguish the cases
by the final system-triggered events that generate upcalls to
the ASCs on either car. The case we call “correct” is when
B receives d, A knows about it and B assumes correctly
that A knows. B then correctly receives a “success” upcall,
which is consistent with A’s last upcall. The ASCs can then
correctly react in a consistent way, e.g. by one car gracefully
decelerating.

In other cases the ASCs can still react in a safe way even if
A and B have inconsistent information about each other: If
B receives d correctly, A never receives an acknowledgement
and B assumes A never did, then both ASCs receive “fail”
upcalls and can react accordingly. If B receives d correctly
and A receives the acknowledgement, but B assumes A did
not receive it, then B receives a “fail” upcall and can react
conservatively. If B does not receive d and A holds that it
did not, then the ASC on A can react conservative on its
“fail” upcall. If B receives d correctly, A misses the acknowl-
edgement but B holds that A received it, then A incorrectly
assumes the worst case but yet reacts conservatively.

The only problematic case is when B does not receive d
but A holds that it did. Then the ASC on neither A nor
B takes conservative action, potentially resulting in an acci-
dent. However, the synthesis method constructs the CSAs so
that this case never occurs under the given assumptions.

We now conclude the example by presenting numerical
results that illustrate in which hypothetical scenarios proto-
cols that we are considering are realizable.

Example 1 (Continued) As introduced above, the drop
probability bound δ on the transmission medium may be cal-
culated from other more readily available parameters. The
realizability of a given protocol specification ϕ depends on
the drop probability bound δ. For demonstrative purposes,
we calculate δ from the number of cars N at the intersec-
tion that may use the transmission medium simultaneously,

the minimum time τmin it may take for a message to be
sent between two cars and the maximum amount of data
dmax that may be carried in a message. Given an empir-
ically obtained function δ(r) that maps a data-rate r to a
drop-probability of the transmission medium, we calculate
δ(r) with r = (N − 2)dmax/τmin (we take N − 2 as we con-
sider the environment to be all cars except the two that are
communicating).

We illustrate the effectiveness of our synthesis method by
asserting the sigmoid δ(r) = (1 + a · exp(−br)) with a = 4
and b = 0.002. Using the protocol specification in (1), we
illustrate how realizability changes with different values for
the number of cars N , minimum time to deliver a message
τmin and maximum amount of data in a message dmax. Fig.
6 shows the feasible region of (OPT) for ϕ with p1 = p2 =
0.9, i.e. for which values of δ calculated as a function of N ,
τmin and dmax the synthesis problem is realizable.

It is clearly visible from Fig. 6 that the more cars are
sharing the transmission medium, the smaller the delay,
and the larger the packets, the higher the worst-case data
rate could be on the network, and the specification becomes
harder to realize. If moreover the requirements p1 and p2
are made more stringent, the feasible region decreases even
further.

6. CONCLUSION
This work demonstrates a framework for reliable commu-

nication protocols for intervehicular communication in ac-
tive safety applications. The framework, consisting of a pre-
cisely defined specification language and execution model
(in the form of CSAs), allows for correct-by-construction
synthesis of protocol implementations that satisfy the spec-
ifications even in the presence of several other cars sharing
the transmission medium.

In our synthesis method we only take into account the
drop probability of the transmission medium and assume
that this is sufficient to synthesise reliable protocols. This
also only enables to guarantee QoS requirements on the re-
ception probability. Furthermore, in the current formula-
tion, only two cars can participate in a dialogue, but some
active safety applications might require to extend this. Also,
note that if a communication is under way, the arrival of
another message cannot directly be handled even if it is re-
quired to satisfy the QoS requirements.

Our approach permits several extensions: (i) Allowing
the higher level to specify the QoS requirements and the
destination address at runtime (i.e. for each transmission),
(ii) Guaranteeing QoS requirements on the end-to-end de-
lay of the communication and more general assumptions on
the transmission medium dynamics in order to widen the
range of applicability, and (iii) including the capability to
relay messages over several cars to create a routed network.
The latter would also require a rigorously developed synthe-
sis method for protocols to discover the network topology,
which we are currently working on.

Acknowledgements
The authors would like to extend thanks to Rohit Pandita
and Vladimeros Vladimerou from Toyota as well as Scott
Livingston, Pavithra Prabhakar and Eric Wolff at the Cali-
fornia Institute of Technology for fruitful discussions.

7. REFERENCES
[1] H. Barringer and R. Kuiper. Hierarchical development of

concurrent systems in a temporal logic framework. In
S. Brookes, A. Roscoe, and G. Winskel, editors, Seminar
on Concurrency, volume 197 of Lecture Notes in Computer
Science, pages 35–61. Springer, 1985.

[2] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal
verification of standards for distance vector routing
protocols. Journal of the ACM, 49(4):538–576, July 2002.

[3] S. Biswas, R. Tatchikou, and F. Dion. Vehicle-to-vehicle
wireless communication protocols for enhancing highway
traffic safety. IEEE Communications Magazine,
44(1):74–82, 2006.

[4] D. Caveney. Cooperative Vehicular Safety Applications.
IEEE Control Systems Magazine, 30(4):38–53, 2010.

[5] P.-Y. Chu and M. Liu. Protocol synthesis in a
state-transition model. In Proc. of the International
Computer Software and Applications Conference, pages
505–512, 1988.

[6] K. Dresner and P. Stone. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research, 31(1):591–656, 2008.

[7] M. Duflot, L. Fribourg, T. Herault, R. Lassaigne,
F. Magniette, S. Messika, S. Peyronnet, and C. Picaronny.
Probabilistic model checking of the CSMA/CD protocol
using PRISM and APMC. Electronic Notes in Theoretical
Computer Science, 128(6):195–214, 2005.

[8] K. Farkas, J. Heidemann, L. Iftode, T. Kosch,
M. Strassberger, K. Laberteaux, L. Caminiti, D. Caveney,
and H. Hada. Vehicular communication. IEEE Pervasive
Computing, 5:55–62, 2006.

[9] H. Hartenstein and K. Laberteaux. A tutorial survey on
vehicular ad hoc networks. IEEE Communications
Magazine, 46(6):164–171, 2008.

[10] Y. Hatanaka, M. Nakamura, Y. Kakuda, and T. Kikuno. A
synthesis method for fault-tolerant and flexible multipath
routing protocols. In Proc. of the IEEE International
Conference on Engineering of Complex Computer Systems,
page 96, 1997.

[11] C. Huang, R. Sengupta, H. Krishnan, and Y. Fallah.
Implementation and evaluation of scalable
vehicle-to-vehicle safety communication control. IEEE
Communications Magazine, 49(11):134–141, 2011.

[12] K. Ishida, Y. Kakuda, M. Nakamura, T. Kikuno, and
K. Amano. A protocol synthesis method for fault-tolerant
multipath routing. Information and Software Technology,
41(11–12):745–754, 1999.

[13] S. Khurana, N. Gupta, and N. Aneja. Reliable ad-hoc
on-demand distance vector routing protocol. In Proc. of the
IEEE Conference on Networking, page 98, 2006.

[14] F. Li and Y. Wang. Routing in vehicular ad hoc networks:
A survey. IEEE Vehicular Technology Magazine,
2(2):12–22, 2007.

[15] C. Maihofer. A survey of geocast routing protocols. IEEE
Communications Surveys & Tutorials, 6(2):32–42, 2004.

[16] J.-C. Park and R. Miller. Synthesizing protocol
specifications from service specifications in timed extended
finite state machines. In Proc. of the International
Conference on Distributed Computing Systems, pages
253–260, 1997.

[17] K. Saleh and R. Probert. Automatic synthesis of protocol
specifications from service specifications. IEEE
Transactions on Computers, 40(4):615–621, 1991.

[18] D. Towsley, J. Kurose, and S. Pingali. A comparison of
sender-initiated and receiver-initiated reliable multicast
protocols. IEEE Journal on Selected Areas in
Communications, 15(3):398–406, 1997.

[19] A. Wang, P. Basu, B. Loo, and O. Sokolsky. Declarative
network verification. In Proc. of the International
Symposium on Practical Aspects of Declarative Languages,
pages 61–75, 2009.

[20] O. Wibling, J. Parrow, and A. Pears. Automatized
verification of ad hoc routing protocols. In Proc. of the
International Conference on Formal Techniques for
Networked and Distributed Systems, pages 343–358, 2004.

[21] X. Yang, L. Liu, N. Vaidya, and F. Zhao. A
vehicle-to-vehicle communication protocol for cooperative
collision warning. In Proc. of the International Conference
on Mobile and Ubiquitous Systems: Networking and
Services, pages 114–123, 2004.

[22] F. Ye, M. Adams, and S. Roy. V2V wireless communication
protocol for rear-end collision avoidance on highways. In
IEEE International Conference on Communications
Workshops, pages 375–379, 2008.

[23] P. Zafiropulo, C. West, H. Rudin, D. Cowan, and D. Brand.
Towards analyzing and synthesizing protocols. IEEE
Transactions on Communications, 28(4):651–661, 1980.

[24] H. Zimmermann. OSI reference model–the ISO model of
architecture for open systems interconnection. IEEE
Transactions on Communications, 28(4):425 – 432, 1980.

