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Abstract— Density function describes the density of states
in the state space with some initial state distribution. Its
evolution follows the Liouville Partial Differential Equation
(PDE). We show that the density function is the dual of the value
function in the optimal control problems and strong duality
holds. By utilizing the duality, constraints that are hard to
enforce in the primal value function optimization such as safety
constraints in robot navigation, traffic capacity constraints in
traffic flow control can be posed on the density function, and
the constrained optimal control problem can be solved with
a primal-dual algorithm that alternates between the primal
and dual optimization. The primal optimization follows the
standard optimal control algorithm with a perturbation term
generated by the density constraint, and the dual problem solves
the Liouville PDE to get the density function under a fixed
control strategy and updates the perturbation term. We show
examples in robot navigation and traffic control to demonstrate
the capability of the proposed formulation.

I. INTRODUCTION

The problem of optimal control is one of the most well-
studied problems in control. Due to Bellman’s principle of
optimality [3], dynamic programming has been the standard
tool for solving optimal control problems, both in continuous
state space and discrete state space, like in the case of
a Markov Decision Process (MDP). The key tool used in
dynamic programming is called a value function, which is the
optimal cost-to-go at a given state and time, and the optimal
control strategy is derived from the value function. However,
some constrained optimal control problems are hard to cast
as a constrained value function optimization problem, such
as problems with safety constraint or convergence rate con-
straint. We show that the density function, first proposed by
Rantzer [12], [14], is the dual of the value function in many
different optimal control formulations, and some constrained
optimal control problems can be conveniently written as an
optimization over the density function. The idea of duality
is not a new one, such as the concept of co-state in classic
optimal control [11], the occupation measure approach in
[9], [10], [15], [16]. However, the setup for occupation
measure is typically finite-horizon and the computation is
done with moment programming formulated as Semidefinite
programming; while the approach in this paper uses a primal-
dual algorithm and turn the computation to the HJB PDE of
the primal problem.

The original use of the density function in [14] was
as a dual to the Lyapunov function to prove stability of
nonlinear systems. Since the density function follows the
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Liouville equation, which is a PDE and hard to enforce, the
computation method for the density function has been limited
to analytical method (propose one and validate by hand)
and Sum of Squares programming [12]. Liouville equation
is also directly used to formulate optimal control problem
and analytical solution can be found for linear systems, as
shown in [4]. We show in this paper that instead of viewing
the density function as a certificate of stability, it actually
has physical meaning as the distribution of states, and is the
dual of the value function in optimal control. Besides, we
propose an ODE approach to compute the density function,
and on top of that a primal-dual algorithm that solves optimal
control problems with density constraint.

Nomenclature For the remainder of the paper, N denotes
the set of natural numbers, N+ denotes the positive natural
number, R denotes the set of real numbers. Given a dynamic
equation ẋ = F (x), ΦF (x0, T ) denotes the flow map of
the dynamics with initial state x0 and horizon T . 〈a, b〉X =∫
X a(x) · b(x)dx denotes the inner product of two functions
a and b. 0 denotes a vector of all zeros or a function that
is always zero, depending on the context. 1S denotes the
indicator function of a set S.

II. BACKGROUND REVIEW AND PROBLEM SETUP

In this section, we review the concept of density function
and optimal control, and formally define the problem to
solve. We will review the optimal control formulation with
continuous state and input space and also Markov decision
process, where the state space and input space are discrete.

A. Optimal control and value function
There are numerous results in optimal control, we review

the setting with continuous state and input space and contin-
uous time. The standard formulation is the following:

min
u

∫ T

0

C (x (t) , u (t)) dt+D (x (T )) s.t. ẋ = F (x, u) ,

(1)
where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the
control input, ẋ = F (x, u) is the dynamics described as
an ODE, T ∈ R+ ∪ {+∞} is the horizon of the problem,
C : X×U → R is the running cost function and D : X → R
is the terminal cost function. We further assume that

U := {u | g(u) ≤ 0} (2)

for some function g.

Remark 1. For simplicity, we only consider time-invariant
dynamics. It should be straightforward to extend the results
to the case with time-varying dynamics.
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The Pontryagin Maximum Principle (PMP) [11] gives
necessary conditions for the optimality of the solution, and
perhaps the most classic tool for solving the optimal control
problem is dynamic programming [3], which utilize the
principle of optimality, and formulate the problem as a
Hamilton-Jacobi-Bellman PDE:{

∂V
∂t + min

u∈U
{∇V (x, t) · F (x, u) + C (x, u)} = 0

V (x, T ) = D (x)
, (3)

where

V (x0, t) = min
u∈U

{∫ T

t

C (x (t) , u (t)) dt+D (x (T ))

}
,

s.t.x(t) = x0, ẋ = F (x, u)
(4)

is the optimal cost-to-go of the optimal control problem for
an initial condition x0 at time t. Once the value function is
known, the optimal policy is then

u? (x) = arg min
u∈U

{∇V (x, t) · F (x, u) + C (x, u)} . (5)

B. Markov decision process

Another relevant problem is the Markov decision process
(MDP), which is a 4-tuple (S,A, Pa, Ra) with

• S is a finite set of states,
• A is a finite set of actions (sometimes the action at state
s is limited to As ⊆ A),

• Pa(s, s′) = P(st+1 = s′ | st = s, at = a) is the
transition probability from s to s′ under action a,

• Ra(s, s′) is the reward associated with the transition
from s to s′ under action a.

An MDP solves for the optimal policy that maximizes the
discounted cumulative reward∑∞

t=0
γtRat (st, st+1), (6)

where γ is the discount factor. One can also formulate an
MDP that minimizes the cumulative cost, as is shown in
Section IV-B.

A policy π is a mapping from state to the action space.
A policy is deterministic if it maps a state to a deterministic
action, it is stochastic if it maps a state to a distribution
over multiple actions. A policy is stationary if it does not
change with time. It can be proved that for a finite MDP
with the reward function defined in (6), there always exists
a stationary deterministic policy [13].

MDP can also be solved by dynamic programming, where
it appears as the value iteration method:

π (s) = arg max
a

{∑
s′

Pa (s′, s) (Ra (s, s′) + γV (s′))

}
V (s) =

∑
s′

Pπ(s) (s, s′)
(
Rπ(s) (s, s′) + γV (s′)

)
,

(7)

C. Density function for dynamic systems
On the other hand, density function was proposed by

Anders Rantzer in [14] as a dual to Lyapunov function. The
density function ρ : X × [0, T ] → R can be understood as
the measure of state concentration in the state space. Given
the dynamics ẋ = F (x), the evolution of density function
follows the Liouville PDE:

∂ρ

∂t
+∇ · (ρ · F ) = φ(t, x, ρ)

ρ (x, 0) = ρ0 (x) ,
(8)

where φ : [0,∞) × X × R → R is the supply func-
tion, φ(t, x0, ρ(x0, t)) > 0 means a source, i.e., states
with initial condition x(t) = x0 appears at x0 with in-
tensity φ(t, x0, ρ(x0, t)) > 0, and φ(t, x0, ρ(x0, t)) < 0
denotes a sink, i.e. states exit the system with intensity
φ(t, x0, ρ(t, x0)) at x0, time t. We allow φ to depend on
ρ to allow more flexible characterization of the supply.

The Liouville PDE can be transformed and solved as an
ODE since

∂ρ

∂t
+∇ · (ρ · F ) =

dρ

dt

∣∣∣∣
ẋ=F (x)

+ (∇ · F )ρ = φ. (9)

This implies that we can integrate the following ODE to
get the density function alone the trajectory of the dynamic
system ẋ = F (x) as[

ẋ
ρ̇

]
=

[
F (x)

φ (t, x, ρ)−∇ · F (t, x) ρ

]
. (10)

With this, we can evaluate the density function at any state
xT , any time T with the following two step procedure:
• First, solve the reverse ODE of ẋ = −F (x) with initial

condition xT to get Φ−F (x, T ) = ΦF (x,−T ).
• Then, solve the extended ODE in (10) with initial

condition [ΦF (x,−T ), ρ0(ΦF (x,−T ))]ᵀ to time T .

Assumption 1. X is forward invariant under all possible
dynamics considered in the optimal control problem.

Remark 2. Assumption 1 could be achieved if some barrier
function intervention is implemented on ∂X , see [2], [5] for
example.

For a stationary supply function, i.e. φ only depending on x
and ρ, one would hope that there exists a stationary density
function that any initial condition converges to, this is not
always the case, but we provide sufficient condition for the
convergence.

Define the extended dynamics in (10) as F . Given a
stationary supply function φ and an initial density function
ρ0, from the two step procedure shown above, we have

ρ (x, t) = ΦF ([ΦF (x,−t) , ρ0 (ΦF (x,−t))]ᵀ, t)↓ρ, (11)

where ↓ ρ means the projection of [x, ρ]ᵀ to ρ.

Theorem 1. Given a stationary supply function φ and an
initial density function ρ0, assume that there exists a ρs such
that

∀x ∈ X , ∂ρs
∂t

= φ (x, ρs)−∇ · (ρs · F ) = 0.



For any x ∈ X , if there exists T ≥ 0 such that ∀t ≥
T, ρ0(ΦF (x,−t)) = ρs(ΦF (x,−t)), then ∀t ≥ T, ρ(x, t) =
ρs(x) .

Proof. The proof follows from the fact that

∀t ≥ T, ρ (x, t) = ΦF̄ ([ΦF (x,−t) , ρ0 (ΦF (x,−t))]ᵀ, t)↓ρ
= ΦF̄ ([ΦF (x,−t) , ρs (ΦF (x,−t))]ᵀ, t)↓ρ
= ρs (x)

(12)

With Theorem 1 and Assumption 1, if there exists a T > 0
such that ΦT (x,−T ) /∈ X , then clearly

ρ0(ΦT (x,−T )) = 0 = ρs(ΦT (x,−T )),

therefore the density at x converges to the stationary density
ρs in finite time T .

Lemma 1. Under Assumption 1, if the system reaches a
stationary density distribution,∫

X
φdx = 0.

Proof. Under Assumption 1, we have∫
X
∇ · (ρ · F ) dx =

∫
∂X

ρF · −→n ds = 0. (13)

Then∫
X

∂ρ

∂t
dx =

∫
X
φ−∇ · (ρ · F ) dx =

∫
X
φdx = 0.

D. Density function for MDP

Similarly, one can define the density over states in an MDP
ρ : S → RN , where N = |S| is the cardinality of S. For
a given policy π, let Pπ denote the transition probability
matrix:

Pπij = P (st+1 = sj | st = si, a ∼ π (si)) . (14)

Given an initial density ρ0 over states, the evolution of the
density under π follows

ρt+1 = γ(Pπ)ᵀρt + φ (ρt) , (15)

where φ : RN → RN is the supply function.

Remark 3. Here we do not restrict 1ᵀρt = 1 as in the case
of probability distribution. The probability distribution can
be viewed as a special case of density with 1ᵀρt = 1 and
φ = 0.

Remark 4. The idea of the dual variable in MDP has been
studied, for example, in [1], and recently in [6], but they
differ from the density function discussed in this paper in
that the density function has a physical meaning rather than
simply being the dual variable. The evolution of density
function is governed by not only the Liouville equation, but
also the supply function and the initial condition. Therefore,
we can pose constraints on the density function with physical
meaning.

III. DUALITY IN OPTIMAL CONTROL

In this section, we show the duality relationship between
the value function and the density function for the optimal
control problem with continuous state space and input space.

Depending on the setup of the optimal control problem,
the supply function φ will take different forms. We present
several setups, but only present the detail of one setup, that
is, the optimal control problem with terminal condition.

For clarity, for the remainder of the paper, we call the value
function optimization the primal problem, and the density
function optimization the dual problem.

A. Duality in optimal control with terminal condition

Consider the optimal control problem with terminal con-
dition x ∈ Xf , where Xf is the destination.

Assumption 2. For simplicity, we assume that Xf is a
compact set and all state in the state space X can reach
Xf in finite time.

We consider a supply function φ = φ++φ−, where φ+ is a
stationary nonnegative supply function that only depends on
x, encoding the information of the distribution of new states
coming into the state space, and φ− takes the following form:

φ− (x, t, ρ) =


0, x /∈ Xf
− δ (t) ρ, x ∈ ∂Xf
− φ+(x), x ∈ int(Xf ),

(16)

where δ(t) is a Dirac delta function at t. This means that the
density function immediately becomes zero once the state
enters Xf .

An example of this setup is the robot navigation problem
where the initial position of the robot follows the distribution
φ+ and the goal is to reach the destination. Another example
is the mail collection problem where the destination is the
post office and the distribution of mail collection pops up
following the distribution of φ+.

Remark 5. Note the difference between φ+ and ρ0. φ+

specifies how new states enter the system over time, while
ρ0 specifies the initial distribution of the states at t = 0.

One can clearly formulate an optimal control problem
for individual initial conditions, but instead we look at the
overall cost of the whole system, similar to [14]. Given
a control strategy u = u(x), let V u be the cost-to-go
associated to u for a given state, then the overall cost rate
over time is

J = 〈φ+, V
u〉X . (17)

By Bellman’s principle of optimality, we know that the
optimal value function of each state is independent of the
state trajectory before the it reaches that state, which implies
that there exists a pure state feedback law u? that minimizes
the overall cost J , and is determined by the following



equation:

J? =
〈
φ+, V

u?
〉
X

s.t.u?(x) = arg min
u∈U

∇V · F (x, u)

C +∇V · F = 0

V |Xf
= D.

(18)

Note that this is simply a inner product of the optimal
value function and the positive supply function. Since V u?

is
completely determined by the equality constraint, we leave
out the optimization sign.

Alternatively, if the density function reaches a stationary
distribution ρs, the overall cost rate can also be represented
as

J = 〈C, ρs〉X + 〈D,−φ−〉X , (19)

where the first part represents the overall running cost and
the second part represents the terminal cost.

This means that instead of thinking of the value function
for each x, we can think about the stationary density distri-
bution ρs. The following optimization solves for the optimal
overall cost:

min
ρs,u
〈ρs, C〉X − 〈φ−, D〉X

s.t.∇ · (ρs · F (x,u(x))) = φ,

∀x ∈ X ,u(x) ∈ U , ρs(x) ≥ 0,

(20)

Theorem 2. The optimization in (20) and (18) are dual
to each other and if there exists optimal solutions to both
problems, there is no duality gap.

Proof. We show one direction, from (20) to (18), and the
other direction is similar. The Lagrangian is formulated as

L = 〈ρs, C〉X − 〈φ−, D〉X + 〈µ, φ−∇ · (ρs · F )〉X
−〈λ0,−ρs〉X − 〈λ1, g ◦ u〉X ,

(21)
where µ : X → R, λ0 : X → R+ and λ1 : U → R+ are the
Lagrange multipliers. First notice that

−〈φ−, D〉X = 〈δρs, D〉∂Xf
+ 〈φ+, D〉int(Xf )

Then by Assumption 1, we use the adjoint condition:

〈µ,∇ · (ρs · F )〉X = −〈∇µ, ρs · F 〉X = −〈ρs,∇µ · F 〉X .
(22)

The Lagrangian then becomes

L =
〈
ρs, C + 1∂Xf

δD +∇µF + λ0

〉
X

+ 〈φ+, D〉int(Xf ) + 〈µ, φ〉X − 〈λ1, g ◦ u〉X
(23)

The Kuhn-Karush-Tucker (KKT) condition reads
Stationarity condition:

∂L
∂ρs

= C + 1∂Xf
δD +∇µF + λ0 = 0

∂L
∂u

= ρs

(
∂C

∂u
+∇µ∂F

∂u
+ λ1

∂g

∂u

)
= 0

(24)

Complementary slackness:

µ · (φ−∇ · (ρs · F )) = λ0 · ρs = λ1 · g(u) = 0 (25)

This implies that when ρs > 0, i.e. for area in X with
nonzero density,

u?(x) = arg min
g(u)≤0

C +∇µ · F,

C + δD1∂Xf
+∇µF = 0,

(26)

which directly come from the stationarity condition and
utilized the fact that ρs > 0 → λ0 = 0. Furthermore, since
ρs = 0 inside Xf , the optimal input then can be picked
arbitrarily from U , therefore µ has to be constant within
int(Xf ). let µ0 = µ(x) |int(Xf ). Note that by Lemma 1, at
stationary density,

∫
X φdx = 0, which implies

〈µ− µ0, φ〉X = 〈µ, φ〉X − 〈µ0, φ〉X = 〈µ, φ〉X .

Therefore, we can replace µ with µ−µ0 and both the KKT
condition and the value of the Lagrangian remain unchanged.
Without loss of generality, we can assign µ0 = 0. Then µ
satisfies

µ =

{
0, x ∈ int(Xf )

D(x), x ∈ ∂Xf
,

∀x /∈ Xf ,∇µ · F = −C
(27)

Define
V = µ+ 1int(Xf )D, (28)

then we have

V |Xf
= D,

∀x /∈ Xf ,∇µ · V = −C,
u?(x) = arg min

u∈U
C +∇V · F,

(29)

which is exactly the solution of the optimal control problem
in (18).

Besides, from (23), if such an solution to the optimal
problem exists, the dual objective becomes

d? = max
λ0,λ1,µ

min
ρs,u
L = 〈φ+, D〉int(Xf ) + 〈φ, µ〉X . (30)

Since φ− |X\Xf
= 0,

d? = 〈φ+, V 〉X , (31)

which shows that there is no duality gap.

B. Density function in several other forms of optimal control

Consider an infinite horizon optimal control problem with
the following cost function:

V (x) =

∫ ∞
0

e−κτC (x (τ) , u (τ)) dτ, (32)

where κ is the discount factor. In this case, the negative
supply function takes the following form:

∀x ∈ X , φ−(x) = −κρ. (33)

The primal optimal control problem is the following:

J? = 〈V, φ+〉
s.t.C +∇V · F − κV = 0

u?(x) = arg min
u∈U

C +∇V · F.
(34)



The corresponding density optimization takes the form

min
ρs,u
〈ρs, C〉X

s.t.∇ · (ρs · F (x,u(x))) = φ+ − κρs,
∀x ∈ X , g(u(x)) ≤ 0, ρs(x) ≥ 0,

(35)

Another setup is a fixed horizon optimal control problem.
In this case, there is no supply function or stationary density,
but instead a initial distribution of the states ρ0, and the cost
function is defined as

V (x) =

∫ T

0

C (x (τ) , u (τ)) dτ +D(x(T )). (36)

The primal optimal control problem is the following:

J? =〈V (0, ·) , ρ0〉X

s.t.
∂V

∂t
+ C +∇V · F = 0

u?(t, x) = arg min
u∈U

C +∇V · F

V (T, ·) = D,

(37)

and we can show that the dual problem to this is

min
ρ,u
〈ρ, C〉X×[0,T ] + 〈ρ(T, ·), D〉X

s.t.
∂ρ

∂t
+∇ · (ρ · F ) = 0,

ρ (0, ·) = ρ0, ρ ≥ 0

(38)

C. Density function for MDP

Similar to the optimal control problem in continuous state
and input space, there is duality relationship between the
density function and the value function in MDP.

The overall reward for a MDP is the following:

J = 〈φ, V 〉S , V (s) =
∑∞

t=0
γtRa(t) (s (t) , s (t+ 1)).

(39)
The Liouville equation for stationary density is derived from
(15) as

ρ = γ(Pπ)ᵀρ+ φ. (40)

The dual optimization is then

max
ρ,π

N∑
i

ρi
N∑
j

P ijπ(si)R
ij
π(si)

s.t.γ

N∑
j

P jiπ(sj)ρj − ρ
i + φi = 0.

(41)

Theorem 3. The primal problem in (39) and dual problem
in (41) are dual to each other with no duality gap.

Proof. Starting with the dual problem in (41). The La-
grangian is then formulated as

L =

N∑
i

ρi
N∑
j

P ijπ(si)R
ij
π(si) +

N∑
i

µj

γ N∑
j

P jiπ(sj)ρ
j − ρi + φi


=

N∑
i

ρi

 N∑
j

P ijπ(si)

(
γµj +Rijπ(si)

)
− µi

+

N∑
i

µiφi

(42)

Replacing µi with V i, the KKT condition implies

V i =

N∑
j

P ijπ(si)

(
γV j +Rijπ(si)

)
π
(
si
)

= arg max
a∈A

N∑
j

P ija
(
γV j +Rija

)
,

(43)

which is the optimality condition for the value function, and
it’s easy to check that when an optimal solution for the primal
problem exists, there is no duality gap, i.e.,

min
ρ
L =

N∑
i

φiVi. (44)

IV. CONSTRAINED OPTIMAL CONTROL ENFORCED WITH
DENSITY FUNCTION

With density function, it is convenient to pose some
constrained optimal control problems that are hard to pose
with value function. Here we list a few
• In an optimal control problem, preventing the state to

enter the dangerous area Xd,
• In a robot navigation problem solved as a finite-horizon

optimal control problem, enforcing a lower bound on
the proportion of states that reaches the destination at
the end of the horizon,

• In an traffic assignment problem solved as an MDP,
enforcing upper bounds on road sections to prevent
congestion.

All of the above mentioned problems can be posed as
constrained optimization of the density function, and we
present a primal-dual algorithm to solve it.

We will show two examples, the first one is the optimal
control problem with a destination, and the constraint is
that the state never enter a dangerous area Xd. The second
example is an MDP with upper bounds on the density of
some states.

A. Optimal control with safety constraint

For the optimal control problem with a terminal condi-
tion, the unconstrained version is studied in Section III-A.
Although the safety constraint is hard to impose on the
value function, it is very convenient to impose it on the
density formulation. The constrained optimization of density
function is

min
ρs,u
〈ρs, C〉X − 〈φ−, D〉X

s.t.∇ · (ρs · F (x,u(x))) = φ,

g(u(x)) ≤ 0, ρs(x) ≥ 0

ρs |Xd
≤ ρmax,

(45)

where ρmax is the tolerance, and it takes the value 0 if the
constraint is absolute.

This optimization on density function may be hard to
solve, but one can use a primal-dual algorithm and solve



the primal value function problem instead. With this extra
safety constraint, the Lagrangian becomes

L = 〈ρs, C〉X − 〈φ−, D〉X + 〈µ, φ−∇ · (ρs · F )〉X
−〈λ0,−ρs〉X − 〈λ1, g ◦ u〉X + 〈ρs − ρmax, σ1Xd

〉X ,
(46)

where σ : X → R+ is the Lagrange multiplier associated
with the safety constraint. The primal problem then becomes

J? =
〈
φ+, V

u?
〉
X

s.t.u?(x) = arg min
u∈U

∇V · F

C + σ1Xd
+∇V · F = 0

V |Xf
= D.

(47)

The only difference from the unconstrained case is the
perturbation term σ on the running cost within Xd. The
primal-dual algorithm for the constrained optimal control is
then the following:

Algorithm 1 Primal-dual algorithm for optimal control with
safety constraint

1: σ(0)← 0, k = 0
2: do
3: Solve (47) with σ(k), get u?.
4: Estimate stationary density ρs under u?.
5: σ(k + 1)← max {0, σ(k) + α ((ρs − ρmax)1Xd

)}.
6: k ← k + 1
7: while ‖max(0, ρs − ρmax)1Xd

‖∞ > ε
8: return u?, ρs, V

α > 0 is the step size and ε > 0 is the tolerance on the
complementary slackness condition. The algorithm iterates
between the optimal value function problem, which solves
the optimal value function and control strategy, and the dual
problem, which computes the stationary density function and
updates the running cost perturbation σ. It terminates if a fea-
sible solution that is close enough to the optimum (assessed
by the complementary slackness condition) is found.

We use a robot navigation problem as example, where the
robot follows a simple 2D kinetic model:

ẋ = u1

ẏ = u2.
(48)

The destination is a small ball around the origin, and X =
[−2, 2]× [−2, 2]. The input bound U = {u | ‖u‖ ≤ 0.5}, the
positive supply φ+ is plotted in Fig. 1 and the red circled
area is Xd.
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Fig. 1: positive supply function φ+

The primal-dual algorithm terminates after 4 iterations,
and a comparison of the result with and without the safety
constraint is shown in Fig. 2.

Fig. 2: Comparison of the optimal control problem solutions

The left side shows the value function, the phase portrait
and the stationary density ρs for the unconstrained case, and
the right side shows the constrained case. From the density
plot, we see zero density within the danger area Xd.

The value function of the constrained case has a small
“bump” around Xd, which is sufficient to steer all state
around Xd and satisfy the safety constraint.

B. MDP with state density constraint

In this section, we present an application of the density
function on constrained MDP. We propose a primal-dual al-
gorithm that can not only solve MDP with density constraint,
but also multiple MDPs with aggregate density constraint.
We illustrate the method with a traffic control example from



[8], where the task is to control the macroscopic traffic flow
for the area shown in Fig. 3. The area is divided into N = 7
regions, and for each region, the traffic capacity is governed
by the Macroscopic Fundamental Diagram (MFD) of traffic
flow [7]. The idea is that when the vehicle density is low,
the traffic flow rate increases with vehicle density; when the
vehicle density is larger than a threshold, congestion starts
to form and the flow rate decreases with vehicle density. We
call the turning point the critical density.

Fig. 3: The map of the traffic control area

It is assumed that each region in Fig. 3 has a critical
density ρmax

i , and the task of traffic control is to minimize
the cost while keeping the density of each region below the
critical density.

We assume that for each vehicle, the transition cost only
depends on the state. For example, a vehicle wants to get to
region 1 from region 5, if it takes the path 5-4-7-1, then the
total cost is C5 + C4 + C7 + C1.

Remark 6. In this example, γ is chosen to be 1. However,
we keep the γ in the derivation to allow for cases with γ < 1.

In fact, this problem cannot be solved as a single MDP
since the vehicles have different destinations. It is solved as
7 MDPs with 7 different destinations. Let φj+,i denote the
traffic demand from si to sj , and we assume that all φj+,i
are given. The action is simply to choose which neighboring
region to visit next. A stochastic policy would determine the
transition probability matrices of the MDPs.

The density optimization problem is formulated as fol-
lows:

min
π,ρ

∑N

i=1
Ci
∑N

j=1
ρ
πj

i

s.t.∀j ∈ {1, ..., N} , ρπj = γ(Pπj )ᵀρπj + φj

∀i ∈ {1, ..., N} ,
∑N

j=1
ρ
πj

i ≤ ρ
max
i ,

(49)
where πj is the strategy for the traffic demand with desti-
nation sj , which determines the transition probability matrix
Pπj . Pπj

i,k denotes the transition probability from si to sk
under πj . ρπj ∈ RN is the traffic density vector with
destination sj under πj . Similarly, we denote V πj as the
value function vector under policy πj with destination sj .

The negative supply φj− is defined as

φj−,i =

{
0, i 6= j

− ρπj

i , i = j
. (50)

Claim 1. The Liouville equation for this negative supply
vector is equivalent to the following modified equation:

ρπj = γ(P
πj

)ᵀρπj + φj+, (51)

where P
πj is obtained by modifying the j-th row of Pπj to

be all zero.

Proof. For sj , since it’s the destination, Pπj

jj = 1 and the rest
of the j-th row are zero. Subtract both sides of the Liouville
equation in (49) by ρπj

j , we get (51).

With (51), ρπj can be conveniently calculated as

ρπj =
(
I − γ(P

πj
)ᵀ
)−1

φj+. (52)

The equivalent primal value function formulation of the
same problem is the following:

J =
∑N

i=1

∑N

j=1
φj+,iV

π?
j

i

s.t.π?j = arg min
πj

PπjV πj

V π
?
j = γPπ

?
j V π

?
j + C + σ,

(53)

where σ ∈ RN is the perturbation term generated by the
density constraint, V π

?
j ∈ RN is the value function for traffic

with destination sj under the optimal policy π?j .
We develop a primal-dual algorithm based on the La-

grangian of the MDP problem shown in (42):

Algorithm 2 Primal-dual algorithm for constrained MDP

1: σ(0)← 0, k ← 0, ∀j ∈ {1, ..., N} , Pπj (0)← I
2: do
3: for j ∈ {1, ..., N} do
4: for i ∈ {1, ..., N} do
5: if i = j then
6: V

πj

i = Ci, P
πj

i = 0
7: else
8: P

πj

i (k + 1)← Proj∆j

(
P
πj

i (k)− αρπj

i γV
πj
)

9: end if
10: end for
11: ρπj = (I − (γP

πj
(k + 1))ᵀ)−1φj+

12: V πj = (I − γPπj (k + 1))−1(C + σ(k))
13: end for
14: ρc ←

∑N
j=1 ρ

πj

15: σ(k + 1)← {0, σ(k) + β (ρc − ρmax)}
16: k ← k + 1.
17: while ¬(ρc ≤ ρmax) or max

j
‖Pπj (k + 1)− Pπj (k)‖ ≥ ε

18: return Pπj ,ρπj , V πj

α > 0 and β > 0 are step sizes for the policy update
and σ update. Proj is the projection operator, and ∆i is the



probability simplex for si, defined as

∆i =
{
P ∈ R1×N

+ |
∑

j
Pj = 1, (j /∈ Ni)→ (Pj = 0)

}
,

(54)
where Ni is the neighbor set of si. The projection is done
by solving the following quadratic programming:

Proj∆i
Pdes = arg min

P∈∆i

‖P − Pdes‖22 . (55)

As an example, we pose density constraint only on region
7, since it’s in the center of the map and likely the most pop-
ular route to take. The comparison of the density distribution
with and without the density constraint is shown in Fig. 4
in color difference. The left plot is the cumulative density
in the unconstrained case where a very high density appears
in region 7; the right plot is the cumulative density in the
constrained case where the density in region 7 is diverted
into other regions.

Fig. 4: Comparison of the cumulative density in constrained
and unconstrained MDP

Fig. 5: Bar plot of the density in constrained and uncon-
strained cases

Fig. 5 shows the bar plot in the two cases, where the
red line on the 7-th column shows the upper bound of the
cumulative density of region 7.

The state cost is set as C = [1.2, 1.2, 1.4, 1.1, 1, 1.6, 0.8]T .
Under such C, the overall cost for the unconstrained case is
71.05, and 79.21 for the constrained case.

In the unconstrained case, the optimal strategy is usu-
ally deterministic (except special cases where V has equal
entries) since it can be proved that there always exists a
deterministic policy [13] that is optimal for a stationary

MDP; however, in the constrained case, this is not the case.
A simple example is a MDP with only two states, one has
larger reward, but with a constraint on the density of it.
Then the optimal policy is obviously a stochastic policy that
barely satisfies the density constraint. Similarly, in the traffic
example, the optimal policy for the constrained case renders
the density at s7 exactly at ρmax

7 .

V. CONCLUSION

In this paper, we present the density function as the dual
of the value function in both optimal control and Markov
decision process. Some constraint such as safety constraint
and density constraint can then be formulated as an optimiza-
tion on the density function. Then a primal-dual algorithm is
proposed to solve the optimal control problem with constraint
on density function. We demonstrate the capability of the
formulation with two examples, one on robot navigation and
one on macroscopic traffic control. We plan to extend this
work to the model-free reinforcement learning setting, where
the density function cannot be computed directly from the
model, and has to be estimated. Moreover, we plan to analyze
the convergence of the primal-dual algorithm and improve
the convergence rate.
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