
b 

0

5

10

15

0

10

20

30

40

Nanog  
mRNA 

Pou5f1  
(Oct4)  
mRNA 

LIF            +           -                    LIF          +           - 

c 

Chr 9:107,453,929 

Rassf1A 

GATTGGAA 

-700 -750 

AAGGATG 

GATA binding Sites 

mRassf1A promoter 

Supplementary Figure 1 Papaspyropoulos et al 

e 

a 

GATA1 

GAPDH 

RASSF1A 

d 
siNT siGata1 Con GATA1 

ESC 
Lysate 

+LIF -LIF 

55 KDa 

40 KDa 

35 KDa 

40 KDa 



Supplementary Figure 1. Epigenetic regulation of RASSF1A and GATA factor binding 

upon ESC differentiation (a) Histone modifications on RASSF1A, SOX2, GATA4 and 

GAPDH promoter CpG islands in H1 embryonic stem cells versus lymphoblastoid line 

GM12878 representing the mesodermal cell lineage. Transcription-activating 

epigenetic marks (H3K4me1;H3K4me2;H3K4me3;H3K9ac;H3K27ac) are found 

together with repressive marks (H3K9me3;H3K27me3) on the RASSF1A promoter in 

H1 cells, indicating its function as a bivalent promoter during pluripotency, switching 

to its fully active state upon differentiation. The SOX2 promoter is only active during 

pluripotency, whereas the GATA4 promoter remains silent and the GAPDH promoter 

is constitutively active. The analysis was performed using data from the ENCODE 

Project database (b) Experimental controls in ESC demonstrating pluripotency marker 

expression in the presence and absence of LIF (c) GATA binding sites located 

upstream of the mouse Rassf1A promoter (d) Western blot demonstrating that 

GATA1 overexpression induces Rassf1A endogenous levels in the presence of LIF, 

whereas Gata1 KD reverses the phenotype even in the absence of LIF (e) Histone 

marks in siNT versus Gata1-depleted ES cells. *P<0.05 of Student’s t-test. Error bars 

indicate s.e.m. Data shown are representative of at least 3 independent experiments.  
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Supplementary Figure 2. RASSF1A regulates the ESC core pluripotency network (a) 

Representative fluorescent images of Nanog and zsRASSF1A (zsR1A)-expressing ESC. 

(b) Representative images and total cell numbers per condition 24 h post-transfection 

with the indicated constructs. Control: zsCtrl, zsR1A: zsRASSF1A (c) Quantification of 

Nanog-positive cells in the indicated conditions (d) RASSF1A reduces core stem cell 

markers at the mRNA and (e) protein level (f) Representative images and total cell 

numbers per condition 24 h post-transfection with control or RASSF1A-targeting 

siRNAs. qPCR demonstrating RASSF1A KD (g) Upregulation of Nanog using an 

alternative siRNA to Rassf1A minimises the possibility of off-target effects. Scale: 10-

50 μm, *P<0.05 , **P<0.01 and ***P<0.001, respectively, of Student’s t-test. Error 

bars indicate s.e.m. Data shown are representative of at least 3 independent 

experiments. 
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Supplementary Figure 3. RASSF1A-driven YAP complexes are transcriptional 

regulators (a) Average profile of ChIP enrichment signal in genes differentially 

expressed upon RASSF1A knockdown. Relative enrichment of YAP binding sites in 

proximal and distal regions of the differentially expressed genes over the background 

(whole genome). TSS:Transcription Start Site, TTS:Transcription Termination Site (b) 

Technical controls for YAP ChIP-seq. Total sheared chromatin inputs from the 

indicated conditions depicting equal occupancy of classical YAP-β-catenin target 

genes (c) Volcano plot of the Flag-YAP interactome in ESC in response to RASSF1A 

loss. All mass-spec intensities were normalized to YAP intensities for each sample to 

ensure equal loading. See also Supplementary Data 3. In the absence of RASSF1A, 

YAP-TEAD and YAP-TCF3 complexes are stabilised (d) elution volumes and absorbance 

traces from gel filration column of ESC lysates. Fractions selected for main figure size 

exclusion figures indicated with red bar and elution fraction of molecular weight 

markers (top) (e) Western blotting of YAP immunoprecipitates using an additional 

siRNA to RASSF1A, identifying a different region of the target sequence (siRassf1A 

#2). qPCR showing the efficiency of siRassf1A #2 (f) Western blotting of Yap 

immunoprecipitates in shGFP and shRassf1A-expressing ESC lines, validating 

increased association of YAP with both TEAD2 and β-catenin upon RASSF1A loss. Bar 

graphs represent quantification of the TEAD2 and β-catenin relative ratio to YAP (g) 

Western blotting of TEAD2 immunoprecipitates and totals from ESC with the 

indicated antibodies. YAP is required for TEAD2-β-catenin complex formation. 

*P<0.05  and **P<0.01, respectively, of Student’s t-test. Error bars indicate s.e.m. 

Data shown are representative of at least 3 independent experiments.  
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Supplementary Figure 4. RASSF1A loss-mediated effects require intact YAP, TEAD2 

and β-catenin (a) Control for the generation of stable shRASSF1A-expressing ESC 

lines (b) Western blotting demonstrating efficient siRNA-mediated silencing of β-

catenin, TCF7L1(TCF3) and TCF7L2 (TCF4) in ESC, corresponding to Fig. 3g and 

Supplementary Fig. 5a and b (c) Control for the generation of stable shTEAD2-

expressing ESC cell lines (d) Impact of RASSF1A/YAP, RASSF1A/β-catenin and 

RASSF1A/TEAD1 depletion on core stem cell marker expression in ESC. Tead1 

depletion is used as a control. Its depletion leads to increased stem cell marker 

expression, verifying its function as a differentiation marker (e) Impact of 

RASSF1A/TEAD2 depletion on stem cell marker expression in ESC and (f) iPSC. 

***P<0.001, of Student’s t-test. Error bars indicate s.e.m. Data shown are 

representative of at least 3 independent experiments. 
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Supplementary Figure 5. RASSF1A regulates the pluripotency network via the 

MST/LATS pathway (a) TEAD2 and (b) β-catenin ChIP on Tead2 and β-catenin binding 

sites (BS) on the ESC Pou5f1/Oct4 promoter in response to the indicated conditions. 

Intact YAP-TEAD2-β-catenin transcriptional complexes are recruited on the Pou5f1 

distal enhancer upon RASSF1A loss  (c) YAP ChIP on TEAD2 and TCF binding sites (BS) 

on the ESC Pou5f1/Oct4 promoter in response to indicated conditions (d) Impact of 

RASSF1A/MST2 and RASSF1A/LATS1 depletion on core stem cell markers in ESC. The 

MST/LATS kinase cascade is required for stem cell marker upregulation in response to 

RASSF1A loss ***P<0.001, of Student’s t-test. Error bars indicate s.e.m. Data shown 

are representative of at least 3 independent experiments. 
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Supplementary Figure 6. LATS-dependent YAP phosphorylation in response to 

RASSF1A (a) Western blots for S127-YAP and Y357-YAP phosphorylation levels. Y357-

Yap phosphorylation was used as a control; although present, it does not change in 

response to RASSF1A. S127-YAP phosphorylation follows RASSF1A levels (b) Negative 

control for PLA experiment in Fig. 4f and FLAG expression in FLAG-YAP transfected 

ESC (c) YAP ChIP on Tead1 gene promoter (d) Western blot controls for Fig 4g (e) 

Western blot controls for Fig 4h (f) YAP ChIP on differentiation-related gene 

promoters in response to indicated conditions in the absence of LIF and (g) RNAseq 

data displaying  mRNA expression levels of the respective genes.   
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Supplementary Figure 7. RASSF1A regulates the core pluripotency network in the 

pre-implantation embryo (a) Oct4 inactivation and knockdown in mESC increases 

RASSF1 and differentiation-promoting, RASSF1-dependent transcripts (GEO datasets 

GDS3599:GSE17439 and GDS1824:GSE4189 respectively). Those phenotypes are 

recapitulated upon differentiation of hESC lines H1 and H9 (GEO dataset 

GDS5408:GSE54186). Similarly, loss of the RASSF1A suppressor Brg1 in the 2-cell pre-

implantation embryo leads to increase of Rassf1A and Rassf1-regulated transcripts. 

Data deriving from GEO dataset GDS2156:GSE5371 (b) Top: Experimental process for 

in vivo experiments. Zygotes (E0.5) were microinjected with various fate 

determinants and controls and allowed to develop until blastocysts were formed 

(app. E4.0). Bottom: Experimental control for siRNA-mediated Rassf1a KD in the 

mouse embryo (c) Top: Representative images of embryos microinjected with either 

non-targeting siRNA (siNT) or siRNAs targeting RASSF5, demonstrating increased core 

stem cell marker expression upon RASSF5 loss. Bottom: qPCR for Oct4 and Nanog 

expression from the transfected embryos (d) Percentage of blastocyst forming 

embryos upon microinjection of the indicated concentration of Rassf1A mRNA versus 

Control (e) Control embryos microinjected with empty vector and non-targeting 

siRNA (siNT) or sip73 develop normally to the blastocyst stage, n=5. BF: Brightfield 

channel. Scale: 50 μm, *P<0.05 and***P<0.001, respectively, of Student’s t-test. 

Error bars indicate s.e.m. Data shown are representative of at least 3 independent 

experiments.  
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Supplementary Figure 8. Characterization of iPS cells (a) Experimental procedure of iPSC and 

embryoid bodies generation (b) Top: Western blot showing induction of HA-RASSF1A in 

Rassf1A-/- MEFs. Bottom: qPCR showing equal expression levels of the SKOM construct in 

iPSC. Untransfected MEFs were used as negative control (c) Representative images of 

indicated staining in iPSC. Rassf1A-/- iPSC express higher levels of core pluripotency markers 

NANOG and SOX2 than Rassf1A+/+ counterparts (d) Western blotting of YAP 

immunoprecipitates in Rassf1A+/+,-/- and -/-+HA-RASSF1A iPSC with the indicated antibodies (e) 

Proteomics analysis for differences in pS127-YAP in RASSF1A-expressing versus non-

expressing iPSC. All cells are transfected with a FLAG-YAP1 (human) construct. All mass-spec 

intensities were normalized to YAP intensities for each sample. See also Supplementary Table 

4 (f) qPCR for differentiation markers Nestin (ectoderm) and Vimentin (mesoderm-

endoderm) from indicated conditions, following LIF withdrawal for 96 h (g) qPCR for the 

differentiation marker Nestin in the indicated conditions, following LIF withdrawal for 96h (h) 

Quantification of round colonies 4 days after LIF withdrawal (i) Embryoid bodies (EB) forced 

to differentiate towards the dendritic cell (DC) lineage upon GM-CSF and rIL-3 treatment. 

From left to right: Rassf1A-/- EBs maintain round iPSC shape; Dendritic cell (DC)-specific cd54 

marker expression upon induction of differentiation, assessed via FACS. The bar graphs 

illustrate cd54-expressing cells in the absence of LPS; LPS used as positive control to activate 

DCs. The bar graphs illustrate cd11c expressing cells in the presence of LPS (j) Example 

images of iPSC staining with the proliferation marker Ki67 to assess cell cycle exit (k) Rassf1A-

/- MEFs are insensitive to TGFβ-mediated disruption of reprogramming, in contrast to 

Rassf1A+/+ MEFs, indicating that Rassf1A-mediated regulation of pluripotency may be 

dominant over induction of mesenchymal-to-epithelial transition (MET). Scale bars: 25-50 

μm. *P<0.05, **P<0.01 and ***P<0.001, respectively, of Student’s t-test. Error bars indicate 

s.e.m. Data shown are representative of at least 3 independent experiments. 
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Supplementary Figure  9. Uncropped scans of blots from indicated figures 
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Supplementary Figure  10. Uncropped scans of blots from indicated figures 



Supplementary Figure 11 Papaspyropoulos et al 
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Supplementary Figure  11. Uncropped scans of blots from indicated figures 
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