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Abstract
A standing question in the theory of matching markets is how to define stability

under incomplete information. The crucial obstacle is that a notion of stability must
include a theory of how beliefs are updated in a blocking pair. This paper proposes
a novel epistemic approach. Agents negotiate through o�ers. O�ers are interpreted
according to the highest possible degree of rationality that can be ascribed to their
proponents, in line with the principle of forward-induction reasoning.

This approach leads to a new definition of stability. The main result shows an
equivalence between this notion and “incomplete-information stability”, a cooperative
solution concept recently put forward by Liu, Mailath, Postlewaite and Samuelson
(2014), for markets with one-sided incomplete information.

The result implies that forward-induction reasoning leads to e�cient matchings
under standard supermodularity conditions. In addition, it provides an epistemic
foundation for incomplete-information stability. The paper also shows new connections
and distinctions between the cooperative and the epistemic approaches in matching
markets.

1 Introduction

Over the past decades, models of matching markets have been applied to the design of college
admissions, the analysis of housing markets, and the study of labor and marriage markets.
In addition, a vast literature has substantially broadened our conceptual understanding of
matching markets (see Roth (2002,2008) and Roth and Sotomayor (1990) for surveys on
two-sided matching and their applications).

Much of the existing literature assumes complete information, i.e., that the value of a
matching is entirely known to the relevant parties. However, incomplete information is
arguably commonplace in most environments.
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The crucial di�culty in the study of matching markets with incomplete information
lies in the notion of stability. Consider a job market where workers and firms are matched.
Under complete information, a matching is stable if no pair of workers and firms are willing
to reject the existing match to form more profitable partnerships. Consider now a market
where there is uncertainty about the profitability of partnerships. Whether or not to leave
the existing match is now a complex decision. This is true even if there are well specified
ex-ante probabilities over the profitability of each partnership. One reason is that the
actions taken to exit the default allocation (starting a negotiation, proposing an agreement,
etc.) will typically reveal something about the parties involved. Another reason is that if
the matching is to be deemed “stable”, then such actions should be unexpected. Hence,
agents must revise their beliefs based on zero probability events. So, under incomplete
information, a theory of stability must also incorporate a novel theory of beliefs. This
makes stability di�cult to define, and raises fundamental methodological questions: given
that some theory of belief revision is necessary, what type of assumptions on players’
beliefs and thought processes can lead to stable matchings? What assumptions can lead to
e�cient allocations?

This paper considers a novel epistemic approach to two-sided matching markets with
incomplete information. We study a class of markets where each agent on one side of the
market (e.g., workers) has private information about characteristics of its members (for
instance, their skills), that are payo�-relevant for both sides. Each worker is assumed to
know his payo�-type and each firm knows the type of the worker it is matched to. Notably,
agents are not required to share a common prior. Players’ beliefs are assumed to satisfy
a simpler “grain of the truth” assumption, which postulates that agents assign at least
positive probability to the actual profile of payo�-types.

A default allocation is given. It specifies how workers are matched to firms and at
what wages. Utility is transferable. Firms know the characteristics of the workers they
are matched to in the default matching, and have the opportunity to negotiate away
from the default. Negotiation is modelled as a noncooperative game and occurs through
take-it-or-leave-it o�ers. If no o�ers are made, or all o�ers are rejected, then the default
allocation is implemented.

The approach taken in this paper is deliberately in between cooperative and nonco-
operative. As in the classical study of stability and the core, we abstract way from the
process by which a certain allocation is formed. At the same time, in order to formalize
players’ beliefs and thought processes, we model deviations from a given allocation through
a noncooperative game.

Consider an agent, named Ann, who receives an o�er from another agent, named Bob.
Ann cannot know with certainty whether accepting the o�er is profitable. She must reach
this decision by updating her belief about Bob’s characteristics from the fact that he made
her an o�er. Intuitively, Ann faces questions such as: what must be true about Bob for
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him to make this o�er? What can we infer about Bob from the fact he is the only one who
made me an o�er? And so forth.

An additional consideration must also be made. For the matching to be stable, the
default matching should be such that no o�ers are expected to be made. Hence, Bob’s
o�er should be unexpected by everyone except him. Assume that Bob, under the default
allocation, is matched to an agent, named Adam, who knows Bob’s characteristics. This
consideration leads Ann to an additional question: What inference should be made about
Bob considering that Adam expected Bob to make no o�ers? Thus, in choosing her action,
Ann should take into account that Adam did not expect Bob to make an o�er to her.

The approach taken in this paper is to follow the idea that o�ers are interpreted
according to the highest degree of sophistication that can be ascribed to those who make
them. This is formalized by assuming that players behave accordingly to a notion of
extensive-form rationalizability (Pearce, 1984) that builds upon the work of Battigalli and
Siniscalchi (2002, 2007) on forward-induction reasoning. Stability is defined by imposing
three requirements on players’ actions and beliefs. Informally,

1. Agents are rational and abstain from making o�ers;

2. Players expect no o�er to be made by other agents; and

3. In case a player deviates and makes an o�er, the o�er is interpreted according to the
highest degree of strategic sophistication that can be ascribed to its proponent.

If all three requirements are satisfied, then the default allocation is said to be stable
under forward induction. Rationality is defined by requiring players’ actions to be optimal
(given their beliefs) at every history they act. Requirement (2) is formalized by the
assumption that players assign probability 1, at the beginning of the game, to the event
that other players will not make o�ers.

The third requirement is crucial and expresses forward-induction reasoning. It is
formalized through an iterative definition. Each player expects others to be rational and
also expects others to believe, ex-ante, that no o�er will be made. This belief is held at
the beginning of the game and conditional on any o�er, provided that the o�er does not
provide decisive proof against it. As a further step in their thought process, agents expect
other players to believe in their opponents rationality and their surprise upon observing an
o�er. This more sophisticated belief is held at the beginning of the game and conditional
on any history that does not contradict it. This iteration progresses through higher orders.
Each step leads players to rationalize the observed behavior according to a higher degree
of sophistication. Requirement (3) is formalized by taking the limit of this iteration.

The main result of this paper, Theorem 1, characterize the set of matching outcomes
that are stable under forward induction. Perhaps surprisingly, this characterization leads
to a solution concept that can be made operational and tractable. A matching outcome
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is stable under forward-induction if and only if it is incomplete-information stable, a
cooperative notion recently introduced by Liu, Mailath, Postlewaite and Samuelson (2014).
This notion satisfies two fundamental properties: existence and e�ciency under standard
supermodularity conditions.

The results of this paper show that stability under forward induction can be applied
through a simple algorithm. They also provide a new connection between cooperative and
noncooperative approaches in matching markets. In addition, the noncooperative approach
taken in this paper allows for a specific understanding of what thought processes can lead
to stability and e�ciency in matching markets. By formalizing how players negotiate,
it makes possible to provide explicit epistemic foundations for incomplete-information
stability.

At the same time, the paper highlights important di�erences between the cooperative
approach and the current approach based on forward-induction reasoning. One di�erence
lies in the type of informational assumptions. Liu, Mailath, Postlewaite and Samuelson
(2014) assume that the matching and the profile of wages are common knowledge. In this
paper, we make the weaker hypothesis that workers’ beliefs about other agents’ payo�-types,
matches and wages assign positive probability to the actual realization.

A second important di�erence is in the criterion by which firms evaluate the risk
involved in matching with an agent of unknown type. A strict interpretation of incomplete-
informations stability suggests firms choose whether or not to participate to a blocking
pair by considering their worst-case payo� with respect to the uncertain payo�-type of
the worker they are matching to. In this paper, agents are assumed to be expected utility
maximizers.

Finally, while the main result of the paper shows an equivalence between the set of
outcomes that are stable under the two notions of stability, the two solution concepts are
remarkably di�erent. Like stability under stability-under forward induction, incomplete-
information stability is defined through an iterative elimination procedure. However,
Liu, Mailath, Postlewaite and Samuelson (2014) do not provide an explicit epistemic
characterization of incomplete-information stability. In addition, their solution concept is
defined without reference to a noncooperative game.

To study more in detail the relation between the di�erent notions of stability, in
Theorems 2 and 3 we analyze the “finite order” implications of the two solution concepts.
That is, we compare the set of matching outcomes that survive n steps of each elimination
procedure. We show that the two solution concepts are not logically nested. In particular,
the set of matching outcomes that survive n steps of one elimination procedure do not
necessarily include (nor are necessarily included in) the set of outcomes that survive n

steps of the other elimination procedure. This suggests that the two solution concepts,
while leading to the same set of stable allocations, are motivated by di�erent assumptions
on agents’ thought processes.
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1.1 Related Literature

This paper is linked to several strands of the literature. Starting with Wilson (1978),
notions of core under incomplete information have been introduced by Vohra (1999), Dutta
and Vohra (2005), Serrano and Vohra (2007), de Clippel (2007), Myerson (2007), and
Peivandi (2013), among others. The current paper shares some similarities with Serrano
and Vohra (2007), where blocking coalitions are formed noncooperatively, as equilibrium
outcomes of a voting game.

Matching under incomplete information has been studied by Roth (1989), Chade (2006),
Ehlres and Masso (2007), Hoppe, Moldovanu, and Sela (2009), Chakraborty, Citanna, and
Ostrovsky (2010), and Chade, Lewis, and Smith (2011), among others. Bikhchandani
(2014) extends the analysis of Liu, Mailath, Postlewaite, and Samuelson (2014) to markets
without transferable utility and presents a notion of stability for markets with two-sided
incomplete information. Chen and Hu (2017) provide an alternative foundation for
incomplete-information stability. They establish that any dynamic process that allows
randomly chosen blocking pairs to rematch will converge almost surely to an allocation
that is incomplete-information stable. Essential for their analysis is the assumption that
uninformed agents evaluate blocking pairs according to a max-min criterion. In this
paper, agents are assumed to be Bayesian expected utility maximizers. Finally, Liu (2017)
introduces a definition of stability under incomplete information for a class of matching
markets where agents on the uninformed side of the market do not know the types of the
agents they are matched with, but instead share a common belief over types.

This paper builds upon the literature on forward-induction reasoning. Extensive
form rationalizability was first introduced in Pearce (1984), while the best rationalization
principle was first formalized in Battigalli (1996). Common strong belief in rationality
was defined and characterized in Battigalli and Siniscalchi (2002), and in Battigalli and
Siniscalchi (2003,2007) for games with payo� uncertainty. The implications of common
strong belief in rationality are also studied in Battigalli and Friedenberg (2012) and
Battigalli and Prestipino (2013). Battigalli and Siniscalchi (2003) show that in two-players
signaling games common strong belief in rationality and a fixed distribution over messages
and types provides a characterization of the set of self-confirming equilibria satisfying the
iterated intuitive criterion (the result shares some similarities with the analysis in Sobel,
Stole and Zapater, 1990). There are several significant di�erences between this paper and
Battigalli and Siniscalchi (2003). In this paper, players do not share a common belief
over the payo�-types of the informed players. In addition, unlike signaling games, the
information structure of the blocking game we consider in this paper does not have a
product structure. Finally, the main result of the paper, the characterization of Theorem
2, does not share similarities with other results in the literature.

The idea that players may rationalize past behavior has a long history in game theory.
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The idea of forward induction goes back to Kohlberg (1981). Solution concepts expressing
di�erent forms of forward induction were introduced in Pearce, Kohlberg and Mertens
(1986), Cho and Kreps (1987), Van Damme (1989), Reny (1992), Govindan and Wilson
(2009), and Man (2012), among others.

2 Two-Sided Matching Markets

We consider a two-sided matching environment with transferable utility, following Crawford
and Knoer (1981) and Liu, Mailath, Postlewaite and Samuelson (2014). A set of agents is
divided in two groups, denoted by I and J . For concreteness, I is referred to as the set
of workers and J as the set of firms. We assume |I| Ø 2. Each worker is endowed with a
payo�-type belonging to a finite set W . Each firm j œ J is also endowed with a payo�-type
belonging to a finite set F . We denote by w œ W I and f œ F J the corresponding profiles
of attributes.

A matching function is a map µ : I æ J fi {ÿ} that is injective on µ≠1 (J). If µ (i) = j

then worker i is hired by firm j. If µ (i) = ÿ then worker i is unemployed. Similarly, if
µ≠1 (j) = ÿ then no worker is hired by firm j. A worker is assigned to at most one firm
and a firm can hire at most one worker.

A match between a worker of type w and a firm of type f gives rise, in the absence of
monetary transfers, to a payo� of ‹ (w, f) for the worker and „ (w, f) for the firm. Following
Mailath, Postlewaite and Samuelson (2013), we refer to ‹ and „ as premuneration values.
The premuneration values of an unmatched worker or firm is equal to 0. In order to have
a unified notation for both matched and unmatched agents, let ‹ (w, fÿ) = 0 for every
w œ W and „ (wÿ, f) = 0 for every f œ F .

Associated to a matching function is a payment scheme p specifying for each pair
(i, µ (i)) of matched agents a transfer pi,µ(i) œ R from firm µ (i) to worker i. Unmatched
workers receive no payments. We use the notation pi,ÿ = pÿ,j = 0 for every i and j. Under
the matching µ and payment scheme p, the utility of worker i and firm j is given by

‹
1
wi, fµ(i)

2
+ pi,µ(i) and „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j

respectively.
A matching outcome is a tuple (w, f , µ, p) specifying workers’ and firms’ payo�-types

and an allocation (µ, p) consisting of a matching function and a payment scheme. A
matching outcome is individually rational if it provides nonnegative payo� to all workers
and firms.

2.1 Stability under Complete Information

An allocation (µ, p) is given. It will be referred to as the default allocation, or status quo.
Agents have the opportunity to negotiate and abandon the status quo in favor of new
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partnerships, but if no agreement is reached, then the default allocation remains in place.
If the matching outcome (w, f , µ, p) is common knowledge, then this is the setting studied
by Shapley and Shubik (1971) and Crawford and Knoer (1981).

Definition 1 A matching outcome (w, f , µ, p) is complete-information stable if it is indi-
vidually rational and there is no worker i, firm j and payment q such that

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i) and

„ (wi, fj) ≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

Under complete information, an individually rational matching outcome fails to be
stable if it is possible to find a worker i and firm j (i.e. a blocking pair) who can improve
upon the status quo by forming a di�erent and more profitable match at a wage q. As
shown by Shapley and Shubik (1971), for any profiles w and f there always exists an
allocation with the property that the resulting matching outcome is complete-information
stable, and every stable outcome is e�cient.

2.2 Incomplete Information

The standard framework is now altered by relaxing the assumption of complete information.
We consider markets where agents have only partial information regarding other agents’
types as well as the current allocation. We study markets with one-sided, interim, incomplete
information.

We are given a finite set M of possible matching outcomes. We refer to M as the
market. For simplicity, each m œ M is assumed to be individually rational. Players’
information about the matching outcome is modelled as a profile (Pk)kœIfiJ of information
partition on M. For every m œ M and player k we denote by Pk (m) ™ M the information
available to k when the actual outcome is m.

Fix a matching outcome m = (w, f , µ, p) œ M. For every firm j, we assume

Pj (m) =
Ó

(w̃, f , µ, p) œ M : w̃µ≠1(j) = wµ≠1(j)
Ô

.

Hence, each firm knows the current profile f of firms’ types, the allocation (µ, p) and the
type of the worker it is matched to, if any. Workers, on the other hand, are only required
to possess minimal information about the environment. For every worker i define

Pú
i (m) =

Ó
(w̃, f , µ̃, p̃) œ M : w̃i = wi, µ̃ (i) = µ (i) and p̃i,µ(i) = pi,µ(i)

Ô
.

That is, under the information partition Pú
i , each worker i knows the profile f , her payo�-

type wi, her match µ (i), and her wage. We assume that for each worker, her information
partition Pi satisfies Pi (m) ™ Pú

i (m) for every m. That is, Pú
i is a lower bound on the

amount of information available to i. This allows for a fairly general formulation.
In addition to the information specified by the partitions, agents entertain probabilistic

beliefs about what they do not know. Beliefs will be described in Section 4.

7



3 The Blocking Game

This section introduces a simple noncooperative game by which players negotiate over new
partnerships in order to abandon the status quo allocation. Negotiation occurs through
take-it-or-leave-it o�ers.

3.1 Model

In this noncooperative game the set of players is I fi J . We are given a matching outcome
m = (w, f , µ, p) belonging to M. The game is played in two stages. In each stage, actions
are played simultaneously and are observed by all players.

In the first stage, each worker i can abstain (“a”) or make an o�er (j, q), where j is a
firm other than µ (i) and q belongs to Q, a fixed finite subset of R. Informally, an o�er (j, q)
means that worker i is willing to break the status quo and form a new partnership with
firm j at a wage q. The assumption of a discrete currency Q ™ R simplifies the exposition
by avoiding measurability considerations. We assume Q to be a su�ciently fine grid.1

In the second stage, each firm that has received at least one o�er chooses between
rejecting all o�ers (“r”) or accepting one o�er of her choice.

Payo�s are defined as follows. For every o�er (j, q) by worker i that has been accepted,
call the resulting combination (i, j, q) a blocking o�er. For every blocking o�er (i, j, q),
worker i is matched to firm j at a wage q and the two agents receive payo�s ‹ (wi, fj) + q

and „ (wi, fj) ≠ q, respectively. If worker i is not part of a blocking o�er but µ (i) is, then
i receives a payo� of 0 (i.e., i becomes unmatched). Similarly, if firm j is not part of a
blocking o�er but µ≠1 (j) is, then j receives a payo� of 0. All the other agents remain
matched according to the original allocation (µ, p) and obtain the corresponding payo�s.

3.2 Discussion

The game has two features that play an important role in the analysis. The first is that
o�ers are binding: an o�er that is accepted is immediately implemented. The second is
that inaction preserves the status quo. That is, if no o�ers are made then the original
allocation (µ, p) is applied. Both features make the game close in spirit to assumptions
that are implicit in the interpretation of the core under complete information (see, for
instance, the discussion in Myerson, 1991).

It should be emphasized that in this game incomplete information is analyzed at the
interim stage. In particular, there is no ex-ante stage at which workers plan their actions
conditional on every realized matching outcome.

1
See section A.1 for a formal statement of this assumption. The results are not sensitive to the particular

specification of Q.
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We now introduce some auxiliary notation that will be useful in what follows. Let H

denote the set of all non-terminal histories and denote by ? the empty (or initial) history.
Each history h œ H other than ? describes what o�ers, if any, have been made and to
what firms. For each firm, denote by Hj ™ D the set of histories where j has received at
least one o�er. A strategy of worker i is an element si œ {a} fi (J\µ (i)) ◊ Q. A strategy of
firm j is represented by a function sj : Hj æ I fi {r} with the property that if sj (h) ”= r

then sj (h) belongs to the set of workers who made an o�er to j at history h. The set of
strategies of each player k is denoted by Sk. For every history h and player k we denote
by S≠k (h) the set of all strategies in S≠k that lead to history h for some sk œ Sk.

4 Rationalizability

At the core of our analysis is a notion of rationalizability based on the following requirements:
(i) players are rational, (ii) they do not expect others to break away from the status quo,
and (iii) informally, at every history they mantain the highest possible degree of belief in
hypotheses (i) and (ii). We first collect some preliminary definitions:

Conditional Beliefs. A conditional probability system for player k is a collection of
conditional probabilities2

bk = (bk (·|h))hœH œ
Ÿ

hœH

� (M ◊ S≠k (h))

with the property that for every history h such that M ◊ S≠k (h) has strictly positive
probability under the initial belief bk (·|?), the conditional probability bk (·|h) is derived
from bk (·|?) by applying Bayes’ rule (recall that ? denotes the empty history).

Beliefs and Information. Players’ beliefs are required to conform to the infor-
mation agents possess about the current matching outcome. Formally, given m œ M
and a player k, a conditional probability system bk is consistent with k’s information if
bk (Pk (m) ◊ S≠k (h) |h) = 1 for all h œ H. So, under this assumption, players are certain,
at every history, of the information described by their partition.

Given outcome m œ M, a conditional probability system bk satisfies the grain of truth
assumption if bk ({m} ◊ S≠k|?) > 0. The assumption requires player k to assign strictly
positive probability, at the beginning of the game, to the actual matching outcome. It will
be su�cient to require workers’ beliefs to satisfy the grain of truth assumption. Formally,
given m œ M and a conditional probability system bk we say that bk is consistent if it
consistent with k’s information and, in case k œ I, it satisfies the grain of truth assumption.

Stability. Given a player k, a conditional probability system bk believes in no competing
o�ers if the initial probability bk (·|?) assigns probability 1 to each worker i ”= k not making

2
for every finite set S, we denote by � (S) the set of probability measures on S.
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o�ers. The assumption expresses the idea that if a current matching is deemed to be stable
then players will not expect others to initiate a negotiation in order to deviate from the
match.

Optimality. Given a player k, a strategy sk and a pair (m, s≠k) in M ◊ S≠k, let
Uk (sk, s≠k, m) denote the resulting payo� for player k. A strategy sk is sequentially
optimal under bk if at every history h where k is asked to act, the action specified by sk

maximizes the expectation of Uk with respect to bk (·|h).
In addition to sequential rationality we assume that, given a conditional probability

system bi, a worker i makes o�ers only if she is not indi�erent between making o�ers and
abstaining. This tie-breaking assumption rules out cases where a worker makes o�ers that
she believes will be rejected with probability 1.

To simplify the language, we call a strategy sk optimal under bk if it sequentially
optimal under bk and, in the case k is a worker, it satisfies the tie-breaking assumption
described above.

4.1 Rationalizability and Stability

We now define our main solution concept. For the next definition, given a subset � ™ M◊S

we denote by �k and �≠k the projection of � on, respectively, M ◊ Sk and M ◊ S≠k.

Definition 2 Let R0 = M ◊ S. Inductively, for every n Ø 1 define Rn to be set of pairs
(m, s) œ M ◊ S such that for each player k there exists a consistent conditional probability
system bk such that the following hold:

(P1-n) sk is optimal under bk;

(P2-n) bk believes in no competing o�ers;

(P3-n) bk

1
Rn≠1

≠k

---?
2

= 1; and

(P4-n) for all h œ H and m œ {0, ..., n ≠ 1},

if (Pk (m) ◊ S≠k (h)) fl Rm
≠k ”= ÿ then bk

!
Rm

≠k

--h
"

= 1. (1)

A pair (m, s) is n-rationalizable if it belongs to Rn. The set of rationalizable outcome-
strategy pairs is defined as RŒ =

u
nØ0 R

n.

Definition 3 An outcome m œ M is stable under forward induction if (m, a) œ RŒ
i for

every worker i. That is, if it is rationalizable for every worker to abstain from making
o�ers.
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Definition 2 is, essentially, an instance of Battigalli and Siniscalchi (2003)’s notion of
strong �-rationalizability. We now describe the logic underlying the definition.

Consider a pair (m, s) consisting of a matching outcome and a profile of strategies.
The pair is n-rationalizable if for each player k we can find conditional beliefs bk so that bk

and sk satisfy four basic conditions. Properties (P1-n) and (P2-n) establish that players
are rational and expect others not to engage in negotiation. As n goes to infinity, (P3-n)
implies that rationality and belief in no competing o�ers are almost common belief at the
beginning of the game.

Property (P4-n) is crucial and disciplines beliefs conditional upon observing unexpected
o�ers. Consider a history h reached after a worker made an unexpected o�er to firm k.
Notice that R1 ´ . . . ´ Rn≠1 constitute increasingly stringent assumptions on players’
beliefs and behavior. By (1), conditional on the o�er, firm k assigns probability 1 to the
strongest assumption Rm that, by satisfying (Pk (m) ◊ S≠k (h)) fl Rm

≠k ”= ÿ, has not been
refuted by the observed o�er and k’s information Pk (m) about the market. Hence, (P4-n)
captures the idea that players interpret o�ers according to the highest possible degree of
sophistication that can be attached to their proponents and by mantaining, as much as
possible, the assumption that such an o�er was ex-ante unexpected.

Property (P4-n) expresses forward-induction reasoning. Following Battigalli and
Siniscalchi (2003), say that a player “strongly believes” an event if she believes the event
at the beginning of the game and at every history where the event is not contradicted by
the evidence. Upon observing an o�er, when n = 2, property (P4-n) requires players to
strongly believe the event “other players are rational and did not expect the o�er”. When
n = 3, each player strongly believes that “other players are rational, did not expect the
o�er and strongly believe that others are rational and did not expect the o�er.” And so
on. The results in Battigalli and Prestipino (2013) can be adapted to show that at each n,
Definition 2 captures the implications of, informally, (i) rationality, (ii) consistency, (iii)
belief in non-competing o�ers and n orders of strong belief in (i)-(iii).

Finally, a matching outcome m is deemed to be stable under forward induction if,
under m, abstaining is a rationalizable strategy for every worker. It should be remarked
that abstaining from making o�ers is not required to be the only rationalizable strategy.
This makes stability under forward induction a relatively permissive solution concept. It
will also make the results on ex-post e�ciency more striking.

5 Incomplete-Information Stability

A notion of stability under incomplete information was recently introduced by Liu, Mailath,
Postlewaite, and Samuelson (2014). Its definition takes the form of an iterative elimination
procedure defined over the set of matching outcomes.
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Definition 4 Let �0 = M. Inductively, for each ¸ œ N define �¸ as the set of all outcomes
(w, f , µ, p) œ �¸≠1 such that there is no i œ I, j œ J and q œ R such that

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i) (2)

and
„

!
wÕ

i, fj
"

≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j (3)

for all wÕ œ W such that mÕ = (wÕ, f , µ, p) satisfies

mÕ œ �¸≠1, (4)
Pj

!
mÕ" = Pj (m) , and (5)

‹
!
wÕ

i, fj
"

+ q > ‹
1
wÕ

i, fµ(i)
2

+ pi,µ(i). (6)

�¸ is the set of matching outcomes that are level ¸ incomplete-information stable. The set
of incomplete-information stable matching outcomes is �Œ =

uŒ
¸=1 �¸.

In Liu, Mailath, Postlewaite and Samuelson (2014), the set �0 is set equal to the set
of all individually rational outcomes, rather than a finite set M as in Definition 4. The
discretization �0 = M simplifies the statements of our main results and avoids measurability
considerations. A matching is stable in the definition of Liu, Mailath, Postlewaite and
Samuelson (2014) if and only if it is stable (as defined above) for some market M.3

An outcome (w, f , µ, p) is eliminated in the first iteration if it is possible to find a
worker i, a firm j, and a wage q so that the two agents can form a new partnership that is
profitable for the worker and gives the firm a higher payo� than the original allocation (µ, p)
for all types wÕ

i that satisfy restrictions (4)-(6). When ¸ = 1, this amounts to considering
type profiles wÕ that do not contradict the fact that j knows the type of the worker he is
matched to, and such that the the partnership, if agreed upon, would be profitable for the
worker. Successive iterations shrink the set of types that satisfy (4). In the ¸-th step of
the procedure, the same reasoning is applied to the set of matching outcome that have
survived ¸ ≠ 1 steps of the elimination process.

As shown by Liu, Mailath, Postlewaite, and Samuelson (2014), incomplete-information
stability satisfies two surprising properties. First, any complete-information stable matching
is also incomplete-information stable.

Proposition 1 Every complete-information stable matching outcome is incomplete-information
stable.

An outcome (w, f ,µ, p) is (ex-post) e�cient if it achieves a maximal total surplus
across all matching outcomes, keeping w and f fixed. Under standard supermodularity
assumptions, any stable matching is e�cient.

3
This follows immediately from Lemma 1 and Proposition 2 in Liu, Mailath, Postlewaite and Samuelson

(2014).
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Proposition 2 Let W µ R and F µ R. Assume ‹ and „ are strictly increasing and
strictly supermodular. Then, every incomplete information stable matching outcome is
e�cient.4

6 Characterization Theorems

The next theorem characterizes the set of matching outcomes that are stable under forward
induction.

Theorem 1 A matching outcome m œ M is stable under forward induction if and only if
it is incomplete information stable.

Theorem 1 provides epistemic foundations for incomplete-information stability, which
can be interpreted as the outcome of noncooperative negotiation under the assumption
that players revise their beliefs according to forward-induction reasoning. From a di�erent
perspective, the result shows, together with Proposition 2, that forward-induction reasoning
leads to e�ciency under supermodular premuneration values.

6.1 Exact Characterization

Theorem 1 shows that incomplete-information stability and stability under forward-
induction lead to the same set of stable matchings. Based on the result, it might be
tempting to conclude that forward-induction reasoning is the key and only epistemic
principle underlying incomplete-information stability. In this section we show that this is
not the case.

We study more in detail the relation between the two solution concepts by comparing
the two procedures (�¸) and (Rn) not only the final predictions RŒ and �Œ but also at
each step of the two iterations. To this end, for every n we consider the set

Sn = {m œ M : (m, a) œ Rn
i for every i œ I} .

So, Sn is the collection of matching outcomes with the property that mantaining the
status-quo is, for every worker, a n-rationalizable strategy.

In the idealized limit, as n and ¸ go to infinity, Sn and �¸ converge to the same set of
predictions. Does a similar equivalence hold once we restrict the attention to the more
realistic case of a finite order n of rationalizability as well as a finite level ¸ of incomplete
information stability? Addressing this question will allow us to fully characterize the
relation between the two solution concepts.

While there is no reason to presume a simple equivalence such as Sn = �n to be true
for every n and every market, one may expect the two solution concepts to be logically

4
See Liu, Mailath, Postelwaite and Samuelson (2014) for a more general statement.
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nested in the sense that given n and ¸, Sn ™ �¸ or �¸ ™ Sn is guaranteed to hold. As
we show below, this is generally not true. This creates a di�culty for a clear comparison
between the two solution concepts.

Given a level ¸ of incomplete information stability, we define the following bounds:

B (¸) = min
Ó

n : Sn ™ �¸
Ô

and b (¸) = max
Ó

n : �¸ ™ Sn
Ô

The maps b and B relate orders of forward-induction reasoning to levels of incomplete-
information stability, and satisfy SB(¸) ™ �¸ ™ Sb(¸) for every ¸. They admit the following
interpretation:

• Suppose Sn ™ �¸. Then, an outside observer who knows agents play n-rationalizable
strategies will be able to infer that any matching that is not blocked is incomplete-
information stable at level ¸. The map B characterizes the minimum order n for
which this is true.

• Suppose �¸ ™ Sn. In this case, observing a matching outcome belonging to �¸ does
not reject the hypothesis that players play n-rationalizable strategies. The map b

describes, for every ¸, the highest order of rationalizability that is not rejected by
observing matchings that are incomplete-information stable at level ¸.5

If there is a non-trivial gap between the two bounds, then any n that satisfies B (¸) >

n > b (¸) is such that �¸ and Sn cannot be directly compared. That is, neither �¸ ™ Sn

nor Sn ™ �¸ hold.
The maps b and B depend, in general, on the particular market under consideration.

The next result establishes universal bounds that apply to any market.

Theorem 2 For every ¸ œ N, b and B satisfy 3¸ Ø B (¸) and b (¸) Ø 1 + 2¸.

The result establishes the inclusions S3¸ ™ �¸ ™ S1+2¸ for every level ¸. We now show
that these bounds cannot be improved upon. For the next result, we summarize by a tuple
(I, J, ‹, „, W, F ) and a market M an instance of all the primitives of the model introduced
in section 2.

Theorem 3 For every N there exist a tuple (I, J, ‹, „, W, F ) and a market M such that
B (¸) = 3¸ and b (¸) = 1 + 2¸ for every ¸ Æ N .

Theorems 2 and 3 fully characterize the relation between incomplete-information
stability and stability under forward induction. They establish tight bounds relating the

5
That is, observing an outcome m œ �

¸
never rejects the hypothesis that players’s decision to abstain

is b (¸)-rationalizable, but it may reject the hypothesis that players play n-rationalizable strategies for

n > b (¸).
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two solution concepts. In addition, the proof of Theorem 3 provides a simple example of a
market where the gap B (¸) ≠ b (¸) can be made arbitrarly large.

Taken together, Theorems 1 and 3 show that while there is a strong connection in
terms of predictions between incomplete-information stability and stability under forward-
induction, the two solution concepts are quite distinct. In particular, to the extent that
incomplete-information stability is meant to reflect an inference process performed by the
agents in the market, Theorem 3 suggests that such an inference does not necessarily reflect
forward-induction reasoning.

6.2 Illustrative Example

We now provide an example of a market where both stability under forward induction and
incomplete-information stability lead to the conclusion that a certain matching outcome is
not stable, but through di�erent types of inference by the agents on the uninformed side
of the market. The example will also allow us to illustrate some of the ideas underlying
the main results in the paper.

A B
worker payo�s: 4 3

worker types, w: 2 3
payment, p: ≠4 0

firm types, f : 4 1 Á

firm payo�s: 12 3 0
L C E

matching outcome: m

A B
4 3
2 3̂

≠4 0
4 1 Á

12 0 0
L C E

m̂

Figure 1

The market consists of the two matching outcomes m and m̂, as described in Figure 1.
There are two workers, A and B, and three firms, L, C, and E. In both outcomes worker B
is matched to firm C at wage 0 while worker A is matched to firm L at wage ≠4. Firm E
is unmatched. The only uncertainty is about B’s type, which can be either 3 in m, or 3̂
in m̂. Firm E’s type equals a known constant Á œ [0, 1/2]. We refer to 3̂ and Á as “bad”
types and to the remaining types as “regular.”

A match between two regular types w and f lead to standard premuneration values
‹ (w, f) = „ (w, f) = wf . A match between the two bad types produces payo�s ‹(3̂, Á) =
„(3̂, Á) = 3Á. The remaining values are defined as follows: If f ”= Á then ‹(3̂, f) = 3f and
„(3̂, f) = 0. If w ”= 3̂ then ‹ (w, Á) = 0 and „ (w, Á) = wÁ. So, a match with type 3̂ is of no
value to firms L and C. However, the premuneration value ‹(3̂, ·) worker B obtains from a
match is the same as that of the regular type w = 3.
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If worker B’s actual type is 3, then the matching m is not incomplete-information
stable. The first step of Definition 4 eliminates the outcome m̂. This is because worker B
and firm E can form a blocking pair at transfer q = Á/2. Such a blocking pair increases
E’s payo� from 3 to 3 + Á/2. The outcome m is then eliminated in the second step by
considering a blocking pair between worker B and firm L at transfer q = ≠1/2.

Key to the argument is the inference made by firm L about B’s type upon being
involved in a blocking pair. Incomplete-information stability (or, more precisely, a strict
interpretation of it) suggests the following line of reasoning for firm L: “Suppose worker
B were of type 3̂. Then, she could have formed a blocking pair with firm E. This is
because firm E, unlike L, would have accepted to match with B under any possible belief.
However, the existence of such a profitable deviation would contradict the hypothesis that
the matching is stable. Hence, her type must be 3. Therefore I agree to break the current
matching and match with B.”

If blocking pairs are formed by a noncooperative negotation, as in this paper, then we
encounter a key di�culty in formalizing the inference described in the previous paragraph.
It is perhaps not obvious whether worker B, if of type 3̂, would indeed choose to form a
blocking pair with firm E. To illustrate, suppose Á is small. In this case, a worker of type 3̂
faces a nontrivial choice between making an o�er to firm E and increasing her payo� by
at most Á, or making an o�er to firm L in the hope of being mistaken for a regular type
and obtain a (potentially) much higher payo�. The choice between the two o�ers must
ultimately depend on worker B’s belief on how firm L will interpret an o�er. However, if
we admit the possibility for worker 3̂ to try to form a blocking pair with firm L, rather
than E, than why should the same possibility be ruled out by firm L?

We now analyze this example using stability under forward-induction. We will reach
three main conclusions. First, both m and m̂ are not stable under forward induction.
Second, the inference made by firm L upon receiving an o�er from worker B will be
qualitatively di�erent from the inference we described above and will explicitly hinge on
forward induction reasoning. Finally, stability under forward-induction allows us to remain
agnostic about whether worker B, were she of type 3̂, would be more likely to make an
o�er to firm L or firm E.

The conclusion that the matching outcome in Figure 1 is not stable under forward-
induction is reached through a series of simple claims. In what follows, in order to ease
the exposition, we consider a restricted game where worker B can either abstain or make
one of two possible o�ers: an o�er sÕ = (L, ≠1/2) to firm L at transfer q = ≠1/2 and an
o�er sÕÕ = (E, Á/2) to firm E at transfer q = Á/2. In addition, we assume worker A can
only abstain. Such assumptions are without loss of generality.

Claim 1 When the matching outcome is m̂, abstaining is not 2-rationalizable for worker B
and both o�ers sÕ and sÕÕ are 2-rationalizable. I.e. (m̂, a) /œ R2

B and (m̂, sÕ), (m̂, sÕÕ) œ R2
B.

Both accepting and rejecting o�er sÕ are 2-rationalizable strategies for firm E.
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Proof. In the first step we can eliminate the strategy where firm E rejects o�er sÕÕ. This
implies that in step n = 2 we can eliminate the pair (m̂, a) where worker B is of type 3̂
and abstains from making an o�er, since abstaining is now strictly worse than making o�er
sÕÕ. In addition, both o�ers sÕ and sÕÕ are 2-rationalizable. O�er sÕÕ is a best response to a
belief concentrated on the event where firm L rejects o�er sÕ, if made. O�er sÕ is optimal
with respect to any belief under which L accepts sÕ with probability su�ciently high.

Claim 2 There is no strategy s for worker B such that (m̂, sú) is 3-rationalizable. If the
outcome is m, both abstaining and making o�er sÕ are 3-rationalizable strategies for type 3.
I.e. ({m̂} ◊ S) fl R3 = ÿ and (m, a), (m, s) œ R3

B.

Proof. Because (m̂, a) /œ R2
B and firm C knows the type of worker B, there can be no belief

of firm C that, at the beginning of the game, assigns probability 1 to R2 and to the event
where worker B is of type 3̂ and abstains from making o�ers. Hence, ({m̂} ◊ S) fl R3 = ÿ.
The same argument applied in the proof of Claim 1 implies that (m, a), (m, sÕ) œ R3

B.

Claim 3 Any strategy s for firm L such that (m, s) is 4-rationalizable must accept o�er
sÕ. Thus (m, a) /œ R5

B. Hence m is not stable under forward-induction.

Proof. Claim 2 shows ({m̂} ◊ S) fl R3 = ÿ and (m, sÕ) œ R3
B. Hence, conditional on

observing o�er sÕ, property (P4-n) in Definition 4, evaluated at n = 4, implies that firm L
must assign probability 1 to the event that worker B is of type 3. Hence, the firm must
accept the o�er. It follows that sÕ is the only 5-rationalizable strategy for type 3. So, the
matching is not stable under forward-induction.

The conclusion that the match is not stable under forward induction is based on the
following intuition. Consider the o�er sÕ = (L, ≠1/2) made by worker 3 to firm L. Firm L
must interpret the o�er by mantaining the highest possible degree of belief in the event
that other players are rational and that the o�er was unexpected (by everyone other than
worker B). In particular, and this is the key aspect, firm L must take into account that the
o�er was unexpected to firm C even though the same firm knew B’s actual type.

So firm L must ask: What is the “best” possible explanation that, ex-ante, could have
justified firm C’s belief that worker B was going to abstain? Such an explanation depends
on B’s type. Consider the case where B’s type is 3̂. Then firm C must have thought that
B believed that firm E was irrational. If not, then B would have expected E to accept o�er
sÕ, making abstaining a non-optimal strategy. Now consider the case where B’s type is
3. In this case, firm C could have expected B to abstain as a best response to the belief
that firm I would have rejected o�er s under the incorrect belief that B’s type was 3̂. This
explanation assigns a higher degree of belief of rationality to B’s belief.

Under forward-induction reasoning, firm L favors the latter explanation, and so must
rule out the possibility that B’s type is 3. Anticipating this, B cannot rationally abstain
from making o�er sÕ. Thus, the matching is not stable under forward induction.
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7 Extensions and Discussion

7.1 Grain of Truth Assumption

The grain of truth assumption plays two roles in the paper. First, without such assumption,
and under general conditions on premuneration values and the set of payo�-types, a worker
could abstain from making o�ers under the certain belief that his or her payo�-type is the
worst payo�-type in the market (and so that no o�er that is profitable for her would be
accepted by any firm). So, as one may except, the grain of truth assumption shrinks the set
of matchings that can be sustained as stable. The grain of truth assumption plays another,
more subtle, role in the main results because it facilitates forward-induction reasoning. A
firm, upon receiving an o�er, must reason about the fact that this o�er was unexpected
even though other agents attached positive probability to the actual type of the worker
who put forward the o�er. As seen in the example in the previous section, this type of
reasoning is germane to forward-induction reasoning in these markets.

7.2 O�ers and Rejection

Stability under forward-induction requires abstaining from making o�ers to be a rational-
izable strategy for every worker. Alternatively, it may be to natural to deem “stable” a
matching where any profitable o�er, if made would be rejected. The next theorem shows
an equivalence between these two notions. For the next result, we say that a strategy sj

rejects the unilateral o�er si = (j, q) if sj rejects o�er si when the latter is the only o�er
made by any worker.

Theorem 4 A matching outcome m = (w, f , µ, p) is stable under forward induction if
and only if there is a rationalizable pair (m, s) œ RŒ such that for every firm j, the strategy
sj rejects any unilateral o�er si = (j, q) such that ‹ (wi, fj) + q > ‹

1
wi, fµ(i)

2
+ pi,µ(i).

The result shows that a matching is stable if and only if we can find for every firm j a
rationalizable strategy sj that rejects any o�er that, if accepted, would be profitable for
the worker proposing it.

7.3 Strict Stability

The fact that a matching outcome is stable does not imply that abstaining is, for every
worker, the only rationalizable strategy. We call an outcome m = (w, f , µ, p) strictly stable
if RŒ

i = {(m, ai)} for every i. We now show that strict stability is an unsuitably strong
notion of stability. The next result provides a characterization.
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Theorem 5 Consider a market M. A matching outcome m = (w, f , µ, p) in M is strictly
stable if and only if m œ �Œ and there is no worker i, firm j and payment q such that

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i)

and
„

!
wÕ

i, fj
"

≠ q Ø „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j

for some wÕ œ W such that mÕ = (wÕ, f , µ, p) œ �Œ, Pj (mÕ) = Pj (mÕ) and ‹ (wÕ
i, fj)+q >

‹
1
wÕ

i, fµ(i)
2

+ pi,µ(i).

A strict stable matching outcome is incomplete-information stable. In addition, under
strict stability, a worker i and a firm j can block a matching outcome m as long as
there is some payo� profile wÕ that makes the combination (i, j, q) profitable for firm j

and such that the resulting outcome (wÕ, f , µ, p) is incomplete-information stable. An
immediate implication of the result is that a strict stable matching outcome must be
complete-information stable. In addition, it is possible to constructs markets M that
contain multiple complete-information stable outcomes but no strict stable outcomes.

7.4 Conclusions

This paper proposes a new notion of stability for markets with one-sided uncertainty.
Stability is formulated in an epistemic framework. Its definition is based on two main
ideas. First, as in many real life situations, an existing allocation can only be altered if
agents actively engage in negotiation. Second, forward-induction reasoning provides a non-
equilibrium theory of belief revision that is particularly suitable for describing how beliefs
are updated throughout the negotiation phase. To test the usefulness of this approach, the
main theorem of this paper establishes an equivalence result between stability under forward-
induction and incomplete information stability. The latter is a solution concept recently
introduced in the literature and which satisfies surprising properties in terms of existence
and e�ciency. The result shows that stability under forward-induction can be applied
through a simple algorithm and provides epistemic foundations for incomplete-information
stability.
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A Appendix

A.1 Definition of Q

We now make formal the assumption, introduced in Section 3.1, that the set Q is a
su�ciently fine grid. To this end, since W and F are finite, we can find a large enough
open interval (–, —) ™ R such that it is without loss of generality to restrict the attention,
in the definition of incomplete-information stability, to payments q that belong to (–, —).
Given Á > 0, we call a finite set A ™ [–, —] an Á-grid if every open subinterval of (–, —) of
diameter Á intersects A.

We assume that Q is an Á-grid where Á Æ Áú and the bound Áú > 0 is described below.
For every m œ M\�Œ let nm Ø 0 be such that m œ �nm\�nm+1. For every m œ M\�Œ

consider the set Pm of pairs (i, j) such that for some payment q œ (–, —) the combination
(i, j, q) has the property that it nm-blocks the outcome m . For every (i, j) œ Pm select
one payment q (i, j, m) such that (i, j, q (i, j, m)) blocks m.

Because the definition of incomplete-information stability involves only strict inequalities
for each q (i, j, m) there exists a small enough Á (i, j, m) > 0 such that any qÕ œ R that
is at distance at most Á (i, j, m) from q has the properties that qÕ belongs to (–, —) and
(i, j, qÕ) also nm-blocks the outcome m. We define Áú be the minimal Á (i, j, m) across all
payments q (i, j, m).

By construction, the bound Áú has the following property. For every Á Æ Áú and every
Á-grid A, if there exists a combination (i, j, q) that nm-blocks an outcome m œ M then
there exists qÕ œ A such that the combination (i, j, qÕ) also nm-blocks the same outcome.

A.2 Preliminaries

Given any subset � ™ R and player k denote by �k and �≠k the projections of � on M◊Sk

and M ◊ S≠k, respectively. For every k and conditional probability system (henceforth,
CPS) bk we will denote by bk,h the probability measure bk (·|h).

As shown in the next lemma, for a given worker i it is enough to consider an initial
probability fli œ � (M ◊ S≠i) rather than a fully specified conditional probability system.

Lemma 1 Fix n Ø 0 , m œ M, i œ I and a strategy si œ Si. Let fli œ � (M ◊ S≠i) be
a probability measure such that fli ({m} ◊ S≠i) > 0, fli (Pi (m) ◊ S≠i) = 1 and si and fli

satisfy properties (P1-n)-(P3-n). Then there exists a CPS bi such that bi,? = fli and si and
bi satisfy properties (P1-n)-(P4-n).

Proof. The CPS bi is easily defined as follows. Let bi,? = fli. Denote by HA
≠i be the set of

histories following no o�ers from workers other than i. For every h œ HA
≠i let bi,h = bi,?.

Now consider all histories h /œ HA
≠i such that h ”= ? and (1) holds for m = n ≠ 1. For every

such history define bi,h to satisfy bi,h

!
({m} ◊ S≠j (h)) fl Rm

≠i

"
= 1. Proceeding inductively,
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we can decrease m and repeat the argument at every step. Because R0
≠i = R≠i, then for

every history there exists m Æ n ≠ 1 such that (1) holds. So, we obtain a collection of
conditional probabilities bi = (bi,h)hœH . We need to verify that bi is a well defined CPS.
Because bi,? assigns probability 1 to no o�er being made by other workers, only histories in
HA

≠i have initial strictly positive probability. For every such history h we have bi,h = bi,?,
so Bayesian updating is respected. Hence, bi is a well defined CPS. By construction, the
pair (si, bi) satisfies (P1-n)-(P4-n).

As recorded below, for a fixed matching outcome m the set {s œ S : (m, s) œ Rn} has
a product structure. The result follows immediately from Definition 2 and its proof is
omitted.

Lemma 2 Fix s œ S and m œ M. If (m, sk) œ Rn
k for each k then (m, s) œ Rn.

We conclude this subsection with a lemma on the composition of multiple strategies.
Recall that Hj denotes the set of histories at which firm j has received at least one o�er.

Lemma 3 Fix n Ø 0, m œ M, and j œ J . Consider a finite sequence

(m1, s1
j ), ..., (mm, sm

j ) in Rn
j

such that Pj
!
m1"

= . . . = Pj (mm). If a strategy sj is such that

sj (h) œ
Ó

s1
j (h) , ..., sm

j (h)
Ô

for all h œ Hj

then (m, sj) belongs to Rn
j .

Proof. For every r = 1, ..., m, let br
j be a consistent CPS such that sr

j and br
j satisfy

properties (P1-n)-(P4-n). For every h œ Hj , let r (h) œ {1, ..., m} be such that sj (h) =
s

r(h)
j (h). Define the CPS bj as bj,h = b

r(h)
j,h for every h œ Hj and bj,h = b1

j,h for every
h œ H\Hj . The CPS bj is well defined. To see this, notice that the only history di�erent
from ? that is reached with positive probability under bj,? = b1

j,? is the history hú in
which all workers abstain from making o�ers. Because hú /œ Hj then bj,hú = b1

j,hú . Hence,
the requirement of Bayesian updating is respected. Since each br

j is consistent it follows
that bj is consistent as well. In addition, because bj,? = b1

j,? then bj satisfies (P2-n) and
(P3-n). We now verify that (P4-n) holds. For every m œ {0, ..., n ≠ 1} and every history
h, if (M ◊ S≠j (h)) fl Pj (m) fl Rm

≠j ”= ÿ then b
r(h)
j,h assigns probability 1 to Rm

≠j , hence bj,h

assigns probability 1 to Rm
≠j as well. Thus property (P4-n) is satisfied. Finally, the action

sj (h) is optimal with respect to b
r(h)
j,h = bj,h at every history h œ Hj . Hence sj is optimal

with respect to bj . Therefore, we can conclude that (m, sj) œ Rn
j .
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A.3 Proof of Theorems 1 and 2

Let SI =
r

iœI Si and SJ =
r

jœJ Sj . For every n, denote by Rn
I the projection of Rn on

M ◊ SI and by Rn
J the projection on Rn on M ◊ SJ . Also let aI = (ai)iœI and for each i

denote by a≠i the vector (ak)kœI\{i}.

Lemma 4 For every m œ M, i œ I, n Ø 1 and si œ Si,

1. If (m, si) œ Rn
i then (m, aI) œ Rn≠1

I ;

2. If (m, aI) œ Rn≠1
I then ({m} ◊ S) fl Rn ”= ÿ.

Proof. (1) Suppose (m, si) œ Rn
i . Consider a worker k ”= i (recall that |I| Ø 2 by

assumption). Then, since (m, sk) œ Rn
k , there must exist a corresponding CPS bk such that

bk,?
1
Rn≠1

≠k

2
= 1, bk,? ({m} ◊ S≠k) > 0 and bk,? (Ai) = 1, where Ai = {(m, s≠k) : si = ai}.

Therefore
bk,?

1
Rn≠1

≠k fl ({m} ◊ S≠k) fl Ai

2
> 0

So, in particular, (m, ai) œ Rn≠1
i . Because si and i are arbitrary, it follows that (m, ai) œ

Rn≠1
i for every i œ I. Hence, Lemma 2 implies (m, aI) œ Rn≠1

I .
(2) Let (m, aI) œ Rn≠1

I . Then ({m} ◊ {aI} ◊ SJ) flRn≠1 ”= ÿ. Thus, for each player k

we can find a probability flk œ � (R≠k) assigning probability 1 to ({m} ◊ {a≠k} ◊ SJ) fl
Rn≠1

≠k .6

The probability flk can then be extended to a consistent CPS bk such that bk,? = flk.
To this end, define a vector (bk,h)hœH as follows. Let bk,? = flk. As in the proof of
Lemma 1, let HA

≠k be the set of histories following no o�ers from workers I\ {k}. For
every h œ HA

≠k let bk,h = bk,?. Now consider all histories h /œ HA
≠k such that h ”= ? and

(1) holds for m = n ≠ 1. For every such history define bk,h to assign probability 1 to
(Pk (m) ◊ S≠k (h)) fl Rm

≠i. Proceeding inductively, decrease m and repeat the argument
to obtain a vector bk = (bk,h)hœH . We need to verify that bk is a well defined conditional
probability system. Because bk,? assigns probability 1 all workers abstaining from making
o�ers (except possibly for k), only histories in HA

≠k are reached with strictly positive
probability under bk,?. For every such history h we have bk,h = bk,?. Hence, bk is a
well defined conditional probability system. By construction it is consistent. In addition,
by definition bk believes in no competing o�ers, and it is immediate to verify it satisfies
properties (P3-n) and (P4-n). Any strategy sk that is optimal with respect to bk is such
that the pair (sk, bk) satisfies properties (P1-n)-(P4-n). A profile s of such strategies
satisfies (m, s) œ Rn. Hence ({m} ◊ S) fl Rn ”= ÿ.

6
The assumption that flk assigns probability 1 to the actual outcome Ê simplifies the notation but is

inessential to the argument.
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The next two lemmas provide conditions that are su�cient and necessary for a matching
outcome m to satisfy (m, aI) œ Rn

I . To ease notation we denote by [i, j, q] the second-stage
history reached when all workers except for i abstain from making o�ers and i makes o�er
(j, q).

Lemma 5 For every n Ø 1, (m, aI) œ Rn
I if and only (m, aI) œ Rn≠1

I and there exists a
strategy profile (sú

j )jœJ such that:

1. (m, sú
j ) œ Rn≠1

j for every j; and

2. sú
j (h) = r for every j and every history h = [i, j, q] that satisfies

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i).

Proof. Let (m, aI) œ Rn
I . Consider an o�er (j, q) by worker i such that ‹ (wi, fj) + q >

‹
1
wi, fµ(i)

2
+ pi,µ(i) and fix h = [i, j, q]. We claim there must exist a strategy of firm j,

which we denote by si,q
j , with the properties that (m, sj) œ Rn≠1

j and si,q
j (h) = r.

Suppose, as a way of contradiction, that such a strategy does not exists. Then o�er
(j, q) is accepted (i.e. sj (h) = i) by any strategy sj œ Sj such that (m, sj) œ Rn≠1

j . Let bi

be a CPS that satisfies the grain of truth assumption and such that bi,?
1
Rn≠1

≠i

2
= 1. Then,

bi,? must attach strictly positive probability to the event where sj (h) = i. Therefore, if bi

is a consistent CPS that satisfies properties (P2-n) and (P3-n) then ai cannot be optimal
with respect to bi. This contradicts the assumption that (m, ai) œ Rn

i and concludes the
proof of the claim.

Given a firm j, define the set

Dj =
Ó

si,q
j : i œ I, q œ Q and ‹ (wi, fj) + q > ‹

1
wi, fµ(i)

2
+ pi,µ(i)

Ô

We now compose the strategies in Dj into a new strategy sú
j as follows: For every history

h = [i, j, q] such that ‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i), let sú

j (h) = si,q
j (h). For any

other history h œ Hj , let sú
j (h) = sj (h) for some strategy sj such that (m, sj) œ Rn≠1

j .
Because the set Dj is finite Lemma 3 implies (m, sú

j ) œ Rn≠1
j . This concludes the first part

of the proof.
We now prove the converse implication. Because (m, aI) œ Rn≠1

I we know from Lemma
4 that ({m} ◊ S) fl Rn ”= ÿ. We now show that (m, aI) œ Rn

I . Let sú
J = (sú

j )jœJ be a
profile of strategies that satisfies conditions (1) and (2) in the statement. For every worker
i, let fli œ � (R≠i) assign probability 1 to (m, a≠i, sú

J). Because (m, aI) œ Rn≠1
I and

(m, sú
J) œ Rn≠1

J then (m, aI , sú
J) œ Rn≠1 by Lemma 3. So, fli assigns probability 1 to Rn≠1

≠i .
Strategy ai is optimal with respect to fli. Using Lemma 1, we can define a consistent CPS
bi such that bi,? = fli and ai and bi satisfy properties (P1-n)-(P4-n). Hence (m, ai) œ Rn

i .
By repeating the construction for every i œ I we obtain (m, aI) œ Rn

I .
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Lemma 6 Let m = (w, f , µ, p). For every n Ø 2, (m, aI) œ Rn
I if and only if (m, aI) œ

Rn≠1
I and there is no worker i and strategy si = (j, q) such that ‹ (wi, fj)+q > ‹

1
wi, fµ(i)

2
+

pi,µ(i) and
„

!
wÕ

i, fj
"

≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j

for all and at least one profile wÕ œ W such that

wÕ
µ≠1(j) = wµ≠1(j) and

!!
wÕ, f , µ, p

"
, si, a≠i

"
œ Rn≠2

I . (7)

Proof of Lemma 6. We first prove the “only if” part. Suppose (m, aI) œ Rn
I and

si = (j, q) and wÕ are such that ‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i) and

wÕ
µ≠1(j) = wµ≠1(j) and

!!
wÕ, f , µ, p

"
, si, a≠i

"
œ Rn≠2

I .

We now show that „ (wÕÕ
i , fj) ≠ q Æ „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j for some profile wÕÕ that

satisfies (7).
Since (m, aI) œ Rn

I , we can apply Lemma 5. Let (sú
j )jœJ œ SJ be the corresponding

profile of strategies. In particular, (m, sú
j ) œ Rn≠1

j for every j. For each j, let bú
j be a

consistent CPS such that sú
j and bú

j satisfy properties (P1-(n ≠ 1))-(P4-(n ≠ 1)).
Let h = [i, j, q]. Since (wÕ, f , µ, p) œ Pj (m) we have (M ◊ S≠j (h))flPj (m)flRn≠2

≠j ”= ÿ.
So, bú

j,h must assign probability 1 to Rn≠2
≠j . Because sú

j (h) = r then, in order for r to be
optimal with respect to bú

j,h, the latter must attach strictly positive probability to some
profile wÕÕ œ W such that

wÕÕ
µ≠1(j) = wµ≠1(j) and „

!
wÕÕ

i , fj
"

≠ q Æ „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

This concludes the first part of the proof.
We now prove the “if” part. Let (m, aI) œ Rn≠1

I and assume that the other conditions
in the “if” part of the statement are satisfied. We now show that (m, aI) œ Rn

I . For every
firm j, let Hú

j be the set of histories of the form h = [i, j, q] for some o�er si = (j, q) such
that ‹ (wi, fj) + q > ‹

1
wi, fµ(i)

2
+ pi,µ(i) and (M ◊ S≠j (h)) fl Pj (m) fl Rn≠2

≠j ”= ÿ.
For every h œ Hú

j we can define, by assumption, a probability flj,h œ �
1
Rn≠2

≠j

2
whose

marginal on M assigns probability 1 to an outcome
1
wh, f , µ, p

2
œ Pj (m) where

„
1
wh

i , fj

2
≠ q Æ „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

We now extend the vector (flh)hœHú
j

to a CPS. First, the vector is extented to the
collection of all histories h such that (M ◊ S≠j (h)) fl Pj (m) fl Rn≠2

≠j ”= ÿ. To this end,
define the probability flj,? to satisfy margM◊SI flj,? (m, aI) = 1 and flj,?

1
Rn≠2

≠j

2
= 1.

This is possible since (m, aI) belongs to Rn≠1
I ™ Rn≠2

I by assumption. If h is the
history following no o�ers to any firm, let flj,h = flj,?. For any other history h such
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that h /œ Hú
j but (M ◊ S≠j (h)) fl Pj (m) fl Rn≠2

≠j ”= ÿ, let flj,h assign probability 1 to
(M ◊ S≠j (h)) fl Pj (m) fl Rn≠2

≠j .
The resulting vector of conditional probabilities can now be extended to a CPS. Recall

that (m, aI) œ Rn≠1
I . So, we can apply Lemma 5 and obtain a profile sú

J = (sú
j )jœJ

of strategies that satisfy (m, sú
j ) œ Rn≠2

j for every j as well as condition (2) of that
Lemma. For each j, let bú

j be a consistent CPS such that sú
j and bú

j satisfy properties
(P1-(n ≠ 2))-(P4-(n ≠ 2)). Define a CPS bj such that

bj,h = flj,h if h is such that (M ◊ S≠j (h)) fl Pj (m) fl Rn≠2
≠j ”= ÿ and

bj,h = bú
j,h otherwise

(Battigalli (1997) applies a similar argument).7 It is immediate to verify bj is consistent.
Now let sj be a strategy such that:

(i). sj (h) = r for every h œ Hú
j ;

(ii). sj (h) is a best response tobj,h for every h œ Hj\Hú
j such that (M ◊ S≠j (h)) fl

Pj (m) fl Rn≠2
≠j ”= ÿ; and

(iii). sj (h) = sú
j (h) for every other history h œ Hj .

We now verify that (m, sj) œ Rn≠1
j . By definition, sj (h) is a best response to to bj,h at

every h œ Hj . So sj is optimal with respect to bj . By the definition of flj,?, bj also satisfies
(P2-(n ≠ 1)) and (P3-(n ≠ 1)).

To verify (P4-(n ≠ 1)), let m œ {0, ..., n ≠ 2} and h be such that (M ◊ S≠j (h)) fl
Pj (m) fl Rm

≠j ”= ÿ. If m = n ≠ 2 then bj,h

1
Rn≠2

≠j

2
= flj,h

1
Rn≠2

j

2
= 1. If m < n ≠ 2, then

bj,h

1
Rm

≠j

2
= bú

j,h

1
Rm

≠j

2
= 1. So, (P4-(n ≠ 1)) is satisfied. We can therefore conclude that

(m, sj) œ Rn≠1
j .

We can now repeat this construction for every j. Consider the resulting profile (sj)jœJ

œ SJ . Let si = (j, q) be an o�er such that ‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i), and let

h = [i, j, q]. If (m, si, a≠i) œ Rn≠2
I then h œ Hú

j so sj (h) = r as required by (i) above. If
(m, si, a≠i) /œ Rn≠2

I then the intersection (M ◊ S≠j (h)) fl Pj (m) fl Rn≠2
≠j is empty, hence

sj (h) = sú
j (h) = r, as implied by (iii).

To conclude, the strategy profile (sj)jœJ satisfies properties (1) and (2) in the statement
of Lemma 5. Because (m, aI) œ Rn≠1

I , then the same lemma implies (m, aI) œ Rn
I .

7
As before, to verify that the CPS bj is well-defined, we need to verify that Bayes’ rule is applied after

all histories that has positive probability under bj,?. The only such history is the history h following no

o�ers to any firm. But in that case bj,h = bj,?, hence Bayes’ rule is trivially respected.

25



Lemma 7 Let (m, aI) œ Rn
I . If the o�er si = (j, q) is such that

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i) and (8)

„ (wi, fj) ≠ q Ø „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j (9)

then (m, si) œ Rn
i .

Proof. Because (m, aI) œ Rn
I , we can apply Lemma 5. Let (sú

j )jœJ be a profile that
satisfies conditions (1) and (2) in the statement of that Lemma. Fix a worker i and an
o�er si = (j, q) such that (8) and (9) hold. Let h = [i, j, q]. Define sj as sj (h) = i and
sj (hÕ) = sú

j (hÕ) for every hÕ œ Hj di�erent from h. So, the strategy sj accepts the o�er
(j, q) and rejects any other o�er that if accepted would improve i’s payo� strictly above
the status quo.

We now claim that (m, si) œ Rm
i and (m, sj) œ Rm≠1

j for every m œ {1, ..., n}.
The proof proceeds by induction on m. Given (8), the claim is easily seen to hold for
m = 1. Suppose it is true for m œ {1, ..., n ≠ 1}. We now show that (m, si) œ Rm+1

i

and (m, sj) œ Rm
j . Let bú

j be a consistent CPS such that sú
j and bú

j satisfy properties
(P1-(n ≠ 1))-(P4-(n ≠ 1)). Define a new CPS bj as follows: if h = [i, j, q] then bj,h assigns
probability 1 to 3

m, si, a≠i,
1
sú

ä̂

2

ä̂œJ\{j}

4

and if hÕ ”= h then bj,hÕ = bú
j,hÕ . Notice that bj is a well defined and consistent CPS.

Inequality (9) implies that sj (h) is optimal with respect to bj,h. It follows that sj and
bj satisfy (P1-m). Because (m, sú

j ) œ Rn≠1
j then bú

j satisfies (P2-(n ≠ 1)) and (P3-(n ≠ 1)).
Hence, bú

j satisfies (P2-m) and (P3-m). It follows then that bj also satisfies (P2-m) and (P3-
m). To verify (P4-m), consider first the history h = [i, j, q]. Because (m, si) œ Rm

i ™ Rm≠1
i

by the inductive hypothesis and (m, aI) œ Rn
I ™ Rm≠1

I by assumption, then, by Lemma 2,
we have (m, si, a≠i) œ Rm≠1

I . Similarly, because (m, sj) œ Rm≠1
j and

1
m, sú

ä̂

2
œ Rn≠1

ä̂ for
every ä̂ ”= j, we have 3

m, sj ,
1
sú

ä̂

2

ä̂œJ≠{j}

4
œ Rm≠1

J

Hence, using the fact that (m, aI) œ Rm≠1
I , we obtain

3
m, si, a≠i,

1
sú

ä̂

2

ä̂œJ\{j}

4
œ Rm≠1

≠j

so (M ◊ S≠j (h))flPj (m)flRm≠1
≠j ”= ÿ, hence bj,h assigns probability 1 to Rm≠1

≠j . It follows
from the definition of bú

j and the fact that (m, sú
j ) œ Rn≠1

j that property (P4-(m)) is verified
with respect to any other history hÕ ”= h. We can conclude that (m, sj) œ Rm

j .
Let fli œ � (R≠i) assign probability 1 to

3
m, a≠i, sj ,

1
sú

ä̂

2

ä̂œJ\{j}

4
(10)
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By the inductive hypothesis (m, si) œ Rm
I . As shown above (m, sj) œ Rm

j hence
3

m, sj ,
1
sú

ä̂

2

ä̂œJ\{j}

4
œ Rm

J

By assumptioin (m, aI) œ Rm
I . It follows that (10) belongs to Rm

≠i. Hence fli

!
Rm

≠i

"
= 1.

Moreover, si = (j, q) is optimal with respect to the probability fli. By applying Lemma
1, we can define a consistent CPS bi such that bi,? = fli and such that si and bi satisfy
(P1-(m + 1))-(P4-(m + 1)). Therefore (m, si) œ Rm+1

i . This concludes the proof of the
inductive step. We conclude that (m, si) œ Rn

I .

If (i, j, q) is a combination that satisfies (2)-(6) in the definition of �n, then we say the
outcome (w, f , µ, p) is n-blocked by (i, j, q). The next two lemmas are the main steps in
the proof of Theorem 2.

Lemma 8 For every n Ø 0 and m œ M, if (m, aI) œ R3n
I then m œ �n.

Proof. The proof proceeds by induction. The result is vacuously true when n = 0. Now
assume the result is true for n Ø 0. Let m = (w, f , µ, p) œ M\�n+1. We now show that
(m, aI) /œ R3n+3. Assume that m œ �n\�n+1. This assumption is without loss of generality
since, if m /œ �n then (m, aI) /œ R3n

I by the inductive hypothesis. By the definition of Q

(see section A.1) it follows that we can find a tuple (i, j, q) where q œ Q is a payment that
leads to no ties and such that (i, j, q) (n + 1)-blocks m.

So, (i, j, q) satisfies ‹ (wi, fj)+q > ‹
1
wi, fµ(i)

2
+pi,µ(i) and „ (wÕ

i, fj)≠q > „
1
wµ≠1(j), fj

2
≠

pµ≠1(j),j for all wÕ œ W such that:
!
wÕ, f , µ, p

"
œ �n,

wÕ
µ≠1(j) = wµ≠1(j), and

‹
!
wÕ

i, fj
"

+ q > ‹
1
wÕ

i, fµ(i)
2

+ pi,µ(i).

Because (w, f , µ, p) œ �n, it follows that „ (wi, fj) ≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

We now show that Lemma 6 implies (m, aI) /œ R3n+3
I . Assume, by way of contradic-

tion, that (m, aI) œ R3n+3
I and consider the o�er si = (j, q). Because ‹ (wi, fj) + q >

‹
1
wi, fµ(i)

2
+ pi,µ(i) and „ (wi, fj) ≠ q > „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j , Lemma 7 implies

(m, si, a≠i) œ R3n+3
I . Hence, (m, si, a≠i) œ R3n+1

I . Consider now any profile wÕ that, as
w, satisfies

wÕ
µ≠1(j) = wµ≠1(j), and

!!
wÕ, f , µ, p

"
, si, a≠i

"
œ R3n+1

I .

We now show that wÕ must satisfy „ (wÕ
i, fj) ≠ q > „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j . By Lemma

6 this will imply (m, aI) /œ R3n+3
I .
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Let mÕ = (wÕ, f , µ, p). Because (mÕ, si, a≠i) œ R3n+1
I , Lemma 4 implies (mÕ, aI) œ R3n

I .
By the inductive hypothesis we conclude that mÕ œ �n. By assumption, wÕ

µ≠1(j) = wµ≠1(j).
In addition, because si is optimal with then ‹ (wÕ

i, fj)+q > ‹
1
wÕ

i, fµ(i)
2

+pi,µ(i).8 Therefore,
since (i, j, q) (n + 1)-blocks m, we conclude that „ (wÕ

i, fj) ≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

This concludes the proof of the result.

Lemma 9 For every n Ø 1 and every m œ M, if m œ �n then (m, aI) œ R1+2n
I .

Proof. Any outcome m œ M satisfies (m, aI) œ R1
I . This follows from the fact that ai is

optimal under the belief that all o�ers are rejected. Therefore �0 = M = R1.
Proceeding inductively, assume the result is true for n Ø 0. Let m = (w, f , µ, p) be

such that (m, aI) /œ R1+2n+2
I . We show that m /œ �n+1. It is without loss of generality to

assume m œ �n and (m, aI) œ R1+2n
I (if (m, aI) /œ R1+2n

I then m /œ �n by the inductive
hypothesis). So, (m, aI) œ Rm

I \Rm+1
I , where m œ {1 + 2n, 1 + 2n + 1}.

By Lemma 6 there exists an o�er si = (j, q) such that

‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i)

and
„

!
wÕ

i, fj
"

≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j

for every and at least one profile wÕ such that

wÕ
µ≠1(j) = wµ≠1(j) and

!
mÕ, si, a≠i

"
œ Rm≠1

I (11)

where mÕ = (wÕ, f , µ, p).
We now show that (i, j, q) (n + 1)-blocks m. In order to reach this conclusion we need

to show that every profile wÕÕ that, as w, satisfies

mÕÕ =
!
wÕÕ, f , µ, p

"
œ �n, wÕÕ

µ≠1(j) = wµ≠1(j) and ‹
!
wÕÕ

i , fj
"

+ q > ‹
1
wÕÕ

i , fµ(i)
2

+ pi,µ(i)
(12)

has the property that „ (wÕÕ
i , fj) ≠ q > „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j .

The next step in the proof is to show that any mÕÕ that satisfies (12) must also satisfy
(mÕÕ, si, a≠i) œ Rm≠1

I . By (11) this will imply „ (wÕÕ
i , fj) ≠ q > „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j ,

establishing that (i, j, q) (n + 1)-blocks m.
To this end fix an outcome mÕÕ that satisfies (12). By the inductive hypothesis, we know

that (mÕÕ, aI) œ R1+2n
I . Because m Æ 1 + 2n + 1, then R1+2n+1

I ™ Rm
I so R1+2n

I ™ Rm≠1
I .

Thus, (mÕÕ, aI) œ Rm≠1
I . We now show that (mÕÕ, si, a≠i) œ Rm≠1

I . This conclusion is
reached in three steps.

8
Furthermore, since q leads to no ties then ‹ (wÕ

i, fj) + q > ‹
!
wÕ

i, fµ(i)
"

+ pi,µ(i).
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First, fix a matching outcome mÕ that satisfies (11). Because (mÕ, si) œ Rm≠1
i there

must exist a pair (m, s̃J) œ Rm≠2
J such that m œ Pi (mÕ) and s̃j accepts the o�er si = (j, q),

i.e. s̃j ([i, j, q]) = i. If not, then si could not be optimal with respect to a consistent CPS
that assigns probability 1 to Rm≠2

≠i .
Second, because (mÕÕ, aI) œ Rm≠1

I we can apply Lemma 5 and obtain a profile (mÕÕ, sú
J)

in Rm≠2
J with the property that every o�er (ä̂, q̂) by player i such that ‹ (wÕÕ

i , fä̂) + q̂ >

‹
1
wÕÕ

i , fµ(i)
2

+ pi,µ(i) is rejected by sú
ä̂ . That is, sú

ä̂ ([i, ä̂, q̂]) = r.
Third, consider a probability fli œ � (R≠i) that has support (mÕÕ, a≠i, sú

J) and (m, a≠i, s̃j).
By construction, it satisfies fli

1
Rm≠2

≠i

2
= 1 and the strategy si = (j, q) is the unique best

reply to fli. By Lemma 1, fli can be extended to a consistent CPS bi such that bi,? = fli

and the pair (si, bi) satisfies (P1-(m ≠ 1))-(P4-(m ≠ 1)) with respect to the outcome mÕÕ.
Hence (mÕÕ, si, a≠i) œ Rm≠1

I .
Therefore mÕÕ satisfies (11). Thus „ (wÕÕ

i , fj) ≠ q > „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j . Because

this is true for every mÕÕ that satisfies (12), we conclude that (i, j, q) (n + 1)-blocks the
outcome (w, f , µ, p). So (w, f , µ, p) /œ �n+1.

Proof of Theorem 1. Consider a market M. Since M ◊ S is finite there exists N

large enough such that either RN = ÿ or RŒ = RN . Similarly, there exists n such that
�Œ = �n. Therefore �n = �¸ for every ¸ Ø n. Let m œ �Œ. By Theorem 2, taking ¸ Ø N

we obtain �¸ ™ �N ™ S1+2N ™ SN = SŒ. Hence m œ SŒ. Conversely, let m œ SŒ. If
¸ Ø N then m œ S¸ = S3¸ and Theorem 2 implies m œ S3¸ ™ �¸. Since ¸ is arbitrary
then m œ �Œ.

A.4 Proof of Theorem 3

The market is composed of two groups of agents, labelled – and —. In each group there is
one worker and N firms. The set of types is W = F = {1, 2, . . . , N}. In each group there
is one firm of each type. A match between a worker of type w and a firm of type f in
group – leads to premuneration denoted by ‹– (w, f) and „– (w, f), and defined as follows.
For every f < N ,

‹– (w, f) = 2w if w = f , ‹– (w, f) = 2w≠1 if w < f , ‹– (w, f) = 0 if w < f

„– (w, f) = 0 if w = f and „– (w, f) = ≠Ÿ if w ”= f

where Ÿ > 2N+10. For f = N ,

‹– (w, N) = 0 if w < N and ‹– (w, N) = 2N if w = N

„– (w, N) = 0 for all w.

A match among a worker of type w and firm of type f in group — leads to premuneration
payo�s:

‹— (w, f) = 2w if w = f , ‹— (w, f) = 2w+2 if w < f , ‹— (w, f) = 0 if w < f
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„— (w, f) = 0 if w = f and „— (w, f) = ≠Ÿ if w ”= f

We assume a match between two agents that are in di�erent groups lead to a premuneration
of ≠1 both for the worker and the firm, irrespectively of their types. Hence, from now on,
we can omit without loss of generality matches among agents in di�erent groups.

Premuneration values are defined so that firms have an incentive to match with a
worker of the same type. In group –, workers have an incentive to match to a firm of equal
type. In group —, workers have an incentive to match to a firm of a lower type.We take Q

to be an Á-grid where 0 < Á < 1.
A matching outcome is complete-information stable if and only if in each group a

worker is matched to a firm of the same type at a transfer q œ [2≠w, 0] where w is the
worker’s type. We denote by C the set of complete-information stable outcomes. We also
denote by m– (w) the matching outcome where the worker in group – is of type w and
unmatched, while the worker in group — is of type N and matched to firm N . Similarly,
m— (w) is the matching outcome where the worker in group — is of type w and unmatched,
while the worker in group – is of type N and matched to firm N . It remains to define the
market M. We let

M = C fi {m– (w) : w Æ N} fi {(m— (w)) : w Æ N}

The next lemma characterizes the set of level ¸ incomplete-information stable outcomes.

Lemma 10 For all ¸ = 0, . . . , N ,

�¸ = C fi {m– (w) : w Æ N ≠ ¸} fi {(m— (w)) : w Æ N ≠ ¸} .

Proof. For ¸ = 0 this holds by definition. Assume the claim is true for ¸ ≠ 1. We wish to
show it holds for ¸. In group –, we have m– (N ≠ ¸) /œ �¸. As a way of contradiction, assume
m– (N ≠ ¸) œ �¸. Consider a blocking pair between worker w = N ≠ ¸ and firm N ≠ ¸ at
transfer q œ (≠2N≠¸, 0). For any wÕ < N ≠ ¸ we have ‹– (wÕ, N ≠ ¸) + q < 0. In addition,
‹– (w, N ≠ ¸) + q > 0 and „– (w, N ≠ ¸) + q > 0. This shows that m– (N ≠ ¸) /œ �¸.

We now show that m– (w) œ �¸ for all w < N ≠ ¸. Fix w < N ≠ ¸ and consider a
candidate blocking pair between worker w < N ≠ ¸ and a firm f at transfers q. We must
have q < 0 and ‹– (w, f) ≠ q > 0. Hence f Æ w. Because ‹– (N ≠ ¸, f) Ø ‹– (w, f), then
‹– (N ≠ ¸, f) ≠ q > 0. Hence both types w and N ≠ ¸ would profit from the blocking pair.
It follows that property (4) in the definition of �¸ is violated. Hence m– (w) œ �¸.

We now consider group —. We have m— (N ≠ ¸) /œ �¸. Similarly to what we have shown
in group –, by the inductive hypothesis, worker w = N ≠ ¸ and firm N ≠ ¸ can form
a blocking pair at transfer ≠q œ

1
2N≠¸, 3

22N≠¸≠1
2
. Hence m— (N ≠ ¸) /œ �¸. It remains

to show that m— (w) œ �¸ for all w < N ≠ ¸. To this end, consider a worker of type
w < N ≠ ¸. Consider a candidate blocking pair between w and firm f Æ w. Because
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‹— (w, f) Æ ‹— (N ≠ ¸, f), then the candidate blocking pair would be profitable both for
type w and N ≠ ¸. As in the case of group –, it follows that property (4) in the definition
of �¸ is violated. This concludes the proof of the claim.

We now study rationalizability. We first consider group –. To simplify the notation, we
let Rn

–,k be the set of pairs (m– (w) , sk) œ Rn
k where w œ W and sk œ Sk. We also define

Sn
–,k (w) =

Ó
sk œ Sk : (m– (w) , sk) œ Rn

–,k

Ô

Without risk of confusion, we denote a firm j by its type f = fj and denote by i the worker
in group –.

Lemma 11 Fix w, wÕ œ W . If a œ Sm
–,i (w) fl Sm

–,i (wÕ) then Sm+1
–,f (w) = Sm+1

–,f (wÕ) for
every f .

Proof. Since a œ Sm
–,i (w) fl Sm

–,i (wÕ), Lemma 4 implies Sm+1
–,f (w) ”= ÿ and Sm+1

–,f (wÕ) ”= ÿ.
In addition, we have Pf (m– (w)) = Pf (m– (wÕ)) since in both matching outcomes firm f

is unmatched. It is immediate to verify that this implies Sm+1
–,f (w) = Sm+1

–,f (wÕ).
The next lemmas characterizes the sequence

1
S2n

–,k (w)
2

n
.

Lemma 12 Let a œ Sm
–,i (w) fl Sm

–,i (wÕ), where w < wÕ. Then for every f there exists
a strategy sf œ Sm+1

–,f (w) such that for every si = (f, q), if ‹– (w, f) + q > 0 then si is
rejected by sf .

Proof. Fix f and consider an o�er si = (f, q) such that ‹– (w, f) + q > 0. We claim that
for every r Æ m, {f} ”=

Ó
w̃ : si œ Sr

–,i (w̃)
Ô

. To this end, notice that if ‹– (w, f) + q > 0
then f Æ w. Moreover, since wÕ > w, then ‹– (wÕ, f) + q > 0. Assume, without loss
of generality, that

Ó
w̃ : si œ Sr

–,i (w̃)
Ô

is nonempty. This means si is accepted by some
strategy sf œ Sr≠1

–,f (wÕÕ), where wÕÕ œ
Ó

w̃ : si œ Sr
–,i (w̃)

Ô
. Lemma 11 implies Sr≠1

–,f (wÕÕ) =
Sr≠1

–,f (w) = Sr≠1
–,f (wÕ). By assumption we have a œ Sr

–,i (w). Let bi be a corresponding
conditional probability system with respect to which abstaining is optimal for i. As in
the proof of Lemma 4, we can obtain a new conditional probability system bÕ

i that agrees
with bi except for its marginal on S–,f , where bÕ

i assigns probability 1 to a strategy in
sf œ Sr≠1

–,f (w) that accepts o�er si. Then, si is optimal with respect to bÕ
i, and we obtain

si œ Sr
–,i (w). By repeating the same argument for wÕ, we obtain si œ Sr

–,i (wÕ). So,
{w, wÕ} ™

Ó
w̃ : si œ Sr

–,i (w̃)
Ô

.
Let Hú be the set of histories h obtained when an o�er si = (f, q) is made to f

and satisfies ‹– (w, f) + q > 0. Given h œ Hú, let r (h) be the largest r Æ m such that
{w̃ : si œ Sr

i (w̃)}. The claim implies we can construct a probability flh œ � (M ◊ S≠f )
that assigns probability 1 to ({m– (w̃)} ◊ S≠f ) fl Rr(h)

≠f , where w̃ is a type other than f .
Let (flh)hœHú be the resulting array of probabilities. As in the proof of Lemma 4, this array

31



can be extended to a consistent conditional probability system bf that satisfies properties
(P2-(m + 1))-(P4-(m + 1)). Let sf be a strategy that is optimal with respect to bf . Then
sf œ Sm+1

f (w) and sf rejects any o�er si = (f, q) such that ‹– (w, f) + q > 0.

Lemma 13 For every n œ {0, . . . , N ≠ 1},

1. S
2(n+1)
–,i (w) = ÿ for all w > N ≠ n;

2. S
2(n+1)
–,i (N ≠ n) ”= ÿ and si œ S

2(n+1)
–,i (N ≠ n) only if si is an o�er to firm N ≠ n;

3. a œ S
2(n+1)
–,i (w) for all w < N ≠ n;

4. For every w < N ≠ n and every f there exists sf œ S
2(n+1)
–,f (w) with the property that

if si = (f, q) is such that ‹– (w, f) + q > 0 then si is rejected by sf .

Proof. The proof is by induction on n. We first consider n = 0. For every w, s–,i =
(f, q) œ S1

–,i (w) if and only if ‹– (w, f) + q > 0. It is also immediate to verify that for
every f < N and w, sf œ S1

–,f (w) if and only if sf accepts any o�er (f, q) where q < ≠Ÿ

and rejects any o�er where q > 0. If f = N then sf œ S1
–,f (w) if and only if sf accepts

any o�er where q < 0 and rejects any o�er where q > 0.
When n = 0 (1) holds trivially. To see that (2) holds, notice that for a worker of type

N , an o�er to firm f = N at wage q œ (≠1, 0), if accepted, provides a payo� greater than
the payo� the worker could obtain from any other o�er to a firm f ”= N that is accepted
by some strategy in S1

–,f (N). In addition, an o�er to f = N at transfer q < 0 is accepted
by every strategy sf œ S1

–,f (N). Hence, si œ S2
–,i (N) only if si is an o�er to firm N .

Claim (3) follows from the fact that for any w < N and any o�er si = (f, q) such that
‹– (w, f) + q > 0, si is rejected by some strategy in S1

–,f (w), together with an application
of Lemma 5. Claim (4) follows from Lemma 12.

Assume (1)-(4) hold for n. Conditions (1) and (2) imply, by Lemma 4,

S2n+3
–,i (w) = ÿ for every w > N ≠ n ≠ 1 (13)

Condition (4) and Lemma 3 imply

a œ S2n+3
–,i (w) for all w < N ≠ n. (14)

Let si = (f, q) be an o�er where f = N ≠ n ≠ 1 and q œ (≠1, 0). Lemma 7 and
the fact that a œ S2n+2

–,i (N ≠ n ≠ 1) imply si œ S2n+2
–,i (N ≠ n ≠ 1). In addition, we have

si /œ S2n+2
–,i (wÕ) for any wÕ ”= N ≠ n ≠ 1. For wÕ > N ≠ n ≠ 1 this follows directly from (1)

and (2). For wÕ < N ≠ n ≠ 1 this follows from the fact that ‹– (wÕ, f) + q Æ 0. Therefore,
given f = N ≠ n ≠ 1, any strategy sf œ S2n+3

–,f (N ≠ n ≠ 1) must accept o�er si.
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Let w < N≠n≠1. By the inductive hypothesis we have a œ S2n+2
–,i (w)flS2n+2

–,i (N ≠ n ≠ 1).
Hence, by applying Lemma 12 with m = 2n + 2 we obtain that for every f there exists
sf œ S2n+3

–,f (w) with the property that if si = (f, q) is such that ‹– (w, f) + q > 0 then si

is rejected by sf .
We now verify that conditions (1)-(4) hold with respect to n + 1. By (13) we have

S2n+4
i (w) = ÿ for every w > N ≠ n ≠ 1. As established above, any o�er si = (f, q)

where f = N ≠ n ≠ 1 and q œ (≠1, 0) is accepted by any strategy sf in S2n+3
f (w). Hence

a /œ S2n+4
i (N ≠ n ≠ 1) and si œ S2n+4

i only if si is an o�er to f = N ≠ n ≠ 1. Hence (2)
holds. In addition, for every w < N ≠n≠1 and every si = (f, q) such that ‹– (w, f)≠q > 0,
si is rejected by some strategy sf œ S2n+3

f (w). Hence a œ S2n+4 (w). This implies (3). To
establish property (4), for every w < N ≠n ≠ 1 we have a œ S2n+3

i (w)flS2n+3
i (N ≠ n ≠ 1).

Hence, by applying, as above, Lemma 12 with m = 2n + 3 we obtain that for every f there
exists sf œ S2n+4

f (w) with the property that if si = (f, q) is such that ‹– (w, f) + q > 0
then si is rejected by sf .

We now consider group —. Let Rn
—,k be the set of pairs (m— (w) , sk) œ Rn

k where w œ W

and sk œ Sk. Let
Sn

—,k (w) =
Ó

sk œ Sk : (m— (w) , sk) œ Rn
—,k

Ô

The next lemmas characterizes the sequence
1
S3n

—,k (w)
2

n
.

Lemma 14 Let a œ Sm
—,i (w) fl Sm

—,i (wÕ), where w < wÕ. Then for every f there exists a
strategy sf œ Sm+1

—,f (w) such that for every si = (f, q) such that ‹– (w, f) + q > 0, si is
rejected by sf .

Proof. The result follows by replicating the proof of Lemma 12.

Lemma 15 For every n Ø 0,

1. S
3(n+1)
—,i (w) = ÿ for all w > N ≠ n;

2. S
3(n+1)
—,i (N ≠ n) ”= ÿ and a /œ S

3(n+1)
—,i (N ≠ n) ”= ÿ;

3. a œ S
3(n+1)
—,i (w) for all w < N ≠ n.

4. For every w < N ≠ n and every f there exists sf œ S
3(n+1)
—,f (w) with the property that

if si = (f, q) is such that ‹– (w, f) + q > 0 then si is rejected by sf .

Proof. The proof is by induction on n. We first describe S1
—,i (w) and S1

—,f (w). It is
immediate to verify that for every w we have si = (f, q) œ S1

—,i (w) if and only if f Æ w

and ‹– (w, f) + q > 0. It is also immediate to verify that for every f and w, sf œ S1
—,f (w)

if and only if sf accepts any o�er (f, q) where q < ≠Ÿ and rejects any o�er where q > 0.
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We now consider S2
—,i (w) and S2

—,f (w). For every w, si = (f, q) œ S1
—,i (w) if and only if

‹– (w, f) + q > 0 and q < 0. For every f < N , sf œ S2
—,f (w) if and only if sf accepts any

o�er (f, q) where q < ≠Ÿ and rejects any o�er where q > 0. For f = N , every sf œ S2
—,f (w)

must accept any o�er si = (N, q) where q < 0.
When n = 0 (1) holds vacuously. To see that (2) holds, notice that for a worker of

type N , an o�er to firm f = N at transfer q œ (≠1, 0) provides a strictly positive payo�
and is accepted by any strategy sf œ S2

—,f (N), so a /œ S3
—,i. In addition a œ S2

—,i (N) hence
S3

—,i (N) ”= ÿ. This concludes the proof of (2). Claim (3) follows from the fact that for any
w < N and any o�er si = (f, q) such that ‹– (w, f) + q > 0, si is rejected by some strategy
in S2

—,f (w), together with an application of Lemma 5. To verify (4), let w < N . As shown
above, a œ S2

—,i (w) fl S2
—,i (N). Hence, Lemma 14 implies (4).

Before proceeding with the inductive steps we prove the following fact: If m Ø 3,
a œ Sm

—,i (w) and Sm
—,i (w + 1) ”= ÿ, then for every f there exists a strategy sf œ Sm+1

—,f (w)
with the property that any o�er si = (f, q) such that ‹– (w, f) + q > 0 is rejected by sf

Recall that any o�er si = (f, q) such that f Æ w and q œ (2≠f , 0] satisfies si œ Sm
—,i (w̃)

for w̃ = f . This follows from Lemma 4. Now let si = (f, q) be an o�er such that
‹– (w, f)+q > 0. Thus f Æ w. Let r be the largest r̃ Æ m such that

Ó
w̃ : si œ S r̃

—,i (w̃)
Ô

”= ÿ.
We now argue that {f} ”=

Ó
w̃ : si œ Sr

—,i (w̃)
Ô

. Consider first the case where q > 0 or
q Æ ≠2f . In this case si /œ S2

—,i (w̃) if w̃ = f but
Ó

w̃ : si œ S2
—,i (w̃)

Ô
”= ÿ. Now suppose

q œ (≠2f , 0]. We now show that si œ Sm
—,i (w + 1). As shown above, for every o�er sÕ

i =
(f Õ, qÕ) such that f Õ Æ w and q Æ 2≠f Õ or qÕ > 0, there exists a strategy sf Õ œ Sm≠1

—,f Õ (w + 1)
that rejects sÕ

i. In addition, because a œ Sm
i (w), then for any o�er sÕ

i = (f Õ, qÕ) such that
f Õ Æ w and qÕ œ (2≠f Õ

, 0] there is a strategy sf Õ œ Sm≠1
f Õ (w) = Sm≠1

f Õ (w + 1) rejecting
si. Finally, since si œ Sm

i (w̃) for w̃ = f , there exists a strategy in Sm≠1
f (w̃) = Sm≠1

f (w)
that accepts si. By applying Lemma 3 we can therefore find a profile of firms’ strategies
in Rn

— such that among all o�ers sÕ
i = (f Õ, qÕ) such that f Õ Æ w and sÕ

i is profitable for
w + 1, only o�er si is accepted. Let bi a consistent conditional probability system for i

that assigns probability 1 to such a profile of strategies. To show that si is optimal with
respect to bi it remains to prove that no o�er to firm f = w + 1 is optimal under bi. O�er
si, if accepted, provides a payo� greater or equal to 2w+3 ≠ q Ø 2w+3 ≠ 2w. This payo�
is higher then the payo� worker w + 1 can obtain from any o�er to firm f Õ = w + 1 at a
negative wage. Hence si is optimal with respect to bi. Hence si œ Sm

i (w + 1). It follows
that {f} ”=

Ó
w̃ : si œ Sr

—,i (w̃)
Ô

. Given this fact, we can now replicate the argument used
in the proof of Lemma 12 to conclude the proof of the claim.

Assume claims (1)-(4) to be true for n. Conditions (1) and (2) imply, by Lemma 4,

S3n+4
—,i (w) = ÿ for every w Ø N ≠ n (15)
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Condition (4) and Lemma 5 imply

a œ S3n+4
—,i (w) for all w < N ≠ n. (16)

We now show that for every w < N ≠ n there exists sf œ S3n+4
—,f (w) such that for every

o�er si = (f, q), if ‹– (w, f)+ q > 0 then sf rejects si. In the case w = N ≠n≠1, the claim
follows from a œ S3n+3

—,i (N ≠ n ≠ 1), S3n+3
—,i (N ≠ n) ”= ÿ and the fact proved above. If w <

N≠n≠1, the claim follows from Lemma 14 together with a œ S3n+3
—,i (w)flS3n+3

—,i (N ≠ n ≠ 1).
We now study the (3n + 5)-th step of the rationalizability procedure. It follows from

(15) and (16) that S3n+5
—,i (w) = ÿ for every w Ø N ≠ n. In addition for every w < N ≠ n,

every o�er that is profitable for w is rejected by some strategy sf œ S3n+4
—,f (w). Hence

Lemma 5 implies a œ S3n+5
—,i (w).

Now consider an o�er si = (N ≠ n ≠ 1, q) where q œ (≠1, 0). Because a œ S3n+4
—,i (N ≠ n ≠ 1)

then Lemma 7 implies si œ S3n+4
—,i (N ≠ n ≠ 1). In addition, si /œ S3n+4

—,i (w) for any
w ”= N ≠ n ≠ 1. For w < N ≠ n ≠ 1 this follows from ‹– (w, f) + q < 0. For w > N ≠ n ≠ 1
we have S3n+4

—,i (w) = ÿ. It follows that any strategy sf œ S3n+5
—,f (N ≠ n ≠ 1) must accept

o�er si. Finally, by applying, as above, Lemma 14, we obtain that for every w < N ≠ n ≠ 1
there exists sf œ S3n+5

—,f (w) such that for every o�er si = (f, q), if ‹– (w, f) + q > 0 then
sf rejects si.

We now verify that conditions (1)-(4) hold with respect to n + 1. By (15) we have
S3n+6

—,i (w) = ÿ for every w > N ≠ n ≠ 1. As established above, any o�er si = (f, q)
where f = N ≠ n ≠ 1 and q œ (≠1, 0) is accepted by any strategy sf in S3n+5

—,f (w). Hence
a /œ S3n+6

—,i (N ≠ n ≠ 1). Hence (2) holds. In addition, for every w < N ≠ n ≠ 1 and every
si = (f, q) such that ‹– (w, f) ≠ q > 0, si is rejected by some strategy sf œ S3n+5

—,f (w).
Hence Lemma 5 implies a œ S3n+6

—,i (w). This implies (3). Property (4) follows the fact we
established in the first part of the proof, a œ S3n+6

—,i (N ≠ n ≠ 2) and S3n+6
—,i (N ≠ n ≠ 1) ”= ÿ.

We can now conclude the proof of the theorem. Let Sn
– =

Ó
w : (m– (w) , a) œ Rn

i,–

Ô

and Sn
— =

Ó
w : (m– (w) , a) œ Rn

i,—

Ô
. So, Sn = C fi Sn

– fi Sn
—. Lemma 13 shows that for

every n we have a œ S2n+1
–,i (N ≠ n) (as implied by S2n+2

–,i (N ≠ n) ”= ÿ and Lemma 4) and
a /œ S2n+2

–,i (N ≠ n). Hence

S2n+1
– = {m–(1), . . . , m–(N ≠ n)}

S2n+2
– = {m–(1), . . . , m–(N ≠ n ≠ 1)}

S2n+3
– = {m–(1), . . . , m–(N ≠ n ≠ 1)}
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Similarly, 15 implies, for every n,

S3n
— = {m— (1) , . . . , m—(N ≠ n)}

S3n+1
— = {m— (1) , . . . , m—(N ≠ n)}

S3n+2
— = {m— (1) , . . . , m—(N ≠ n)}

S3n+3
— = {m— (1) , . . . , m—(N ≠ n ≠ 1)}

Given ¸ = 0, . . . , N we have Sn ™ �¸ if and only if Sn
– ™ Sn

— ™ {m1 (1) , . . . , m1(N ≠ ¸)},
i.e. if and only if n Ø 3¸. Similarly, �¸ ™ Sn if and only if n Æ 1 + 2¸. Hence B (¸) = 3¸

and b (¸) = 1 + 2¸.

A.5 Proofs of Other Results

Proof of Theorem 4. Let m be stable under forward induction. So (m, aI) œ RŒ
I .

Let n be such that Rn≠1 = RŒ. Since (m, aI) œ Rn
I , by Lemma 6 there exists a strategy

profile (sú
j ) such that (m, sú

j ) œ Rn≠1
j = RŒ

j for every j and sú
j (h) = r for every j and

every history h = [i, j, q] that satisfies ‹ (wi, fj) + q > ‹
1
wi, fµ(i)

2
+ pi,µ(i). Lemma 2

implies
1
m, aI , (sú

j )jœJ

2
œ Rn≠1 = RŒ.

Proof of Theorem 5. Suppose m is not strictly stable. Let (w, si) œ RŒ
i , where

si = (j, q). We can choose n Ø 0 large enough so that RŒ = Rn = Rn≠2. There
must exist a strategy sj such that (w, sj) œ RŒ

j and sj accepts the o�er (j, q), i.e.,
sj ({(i, j, q)}) = i. Let bj a CSP such that sj and bj satisfy (P1-n)-(P4-n). By (P4-n) it
must be that bj,h

1
RŒ

≠j

2
= 1. Hence, there is a profile wÕ œ W in the support of bj,h such

that „ (wÕ
i, fj) ≠ q Ø „

1
wµ≠1(j), fj

2
≠ pµ≠1(j),j , wÕ

µ≠1(j) = wµ≠1(j) and (wÕ, si) œ RŒ
i . By

Lemma 2, (wÕ, aI) œ RŒ
I . Hence (wÕ, f , µ, p) œ �Œ. This concludes the proof.

We now show the “if” part of the proof. Suppose we can find a tuple (i, j, q) and a
profile wÕ œ W such that ‹ (wi, fj) + q > ‹

1
wi, fµ(i)

2
+ q, wÕ

µ≠1(j) = wµ≠1(j), and

„
!
wÕ

i, fj
"

≠ q Ø „
1
wµ≠1(j), fj

2
≠ pµ≠1(j),j , (17)

‹
!
wÕ

i, fj
"

+ q > ‹
1
wÕ

i, fµ(i)
2

+ pi,µ(i), and (18)
!
wÕ, f , µ, p

"
œ �Œ.

Because (wÕ, f , µ, p) œ �Œ then (wÕ, aI) œ RŒ
I . Let si = (j, q). Then, (17), (18) and

Lemma 7 imply (wÕ, si) œ RŒ
i . We now show that (w, si) œ RŒ

i , concluding that (1) must
be violated. The proof is similar to the proof of Lemma 7. Because (wÕ, si) œ RŒ

i , there
must exist a strategy sj such that sj accepts the o�er (j, q) and (wÕ, sj) œ RŒ

j . Because
(w, aI) œ RŒ

I , by Lemma 5 we can find a strategy profile
1
sú

j

2

jœJ
such that

1
w, sú

j

2
œ RŒ

j
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for every j and such that any o�er (ä̂, q̂) by worker i that, if accepted, would improve
worker i’s payo� above the default allocation is rejected by strategy sú

ä̂ . Now define a new
strategy sÕ

j as follows. At the history h corresponding to the o�er (j, q) from worker i, let
sÕ

j (h) = sj (h) = i. At every other history h, sÕ
j (h) = sú

j (h). By Lemma 3,
1
w, sÕ

j

2
œ RŒ

j .
Let bÕ

i be a conditional probability system such that bÕ
i,? is concentrated on

3
w, a≠i, sÕ

j ,
1
sú

ä̂

2

ä̂œJ≠{j}

4
.

Under bÕ
i the o�er si = (j, q) is a strict best response. It is immediate to check that si and

bÕ
i satisfy (P1-n)-(P4-n), where Rn = RŒ. Hence (w, si) œ RŒ

i . Thus, m is not strictly
stable.
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