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Abstract

Predictions about the future are often evaluated through statistical tests. As shown
by recent literature, many known tests are subject to adverse selection problems and
are ineffective at discriminating between forecasters who are competent and forecasters
who are uninformed but predict strategically.
This paper presents necessary and sufficient conditions under which it is possible to
discriminate between informed and uninformed forecasters. It is shown that optimal
tests take the form of likelihood-ratio tests comparing forecasters’ predictions against
the predictions of a hypothetical Bayesian outside observer. The paper also illustrates
a novel connection between the problem of testing strategic forecasters and the classical
Neyman-Pearson paradigm of hypothesis testing.
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1 Introduction

Forecasts are often formulated in terms of probability distributions over future events (e.g.,
“a recession will happen with 5% probability”). Probabilistic forecasts appear across a
wide variety of economic and scientific activities, including the analysis of weather and
climate (Gneiting and Raftery, 2005), aggregate output and inflation (Diebold, Tay and
Wallis, 1997), epidemics (Alkema, Raftery and Clark, 2007), seismic hazard (Jordan et al.,
2011), financial risk (Timmermann, 2000), demographic variables (Raftery et al., 2012)
and elections (Tetlock, 2005), among many others.1

One practical difficulty with probabilistic forecasts is that they cannot be falsified by
casual observation but only through proper statistical tests. From an economic perspective,
a key issue is that statistical tests aimed at evaluating forecasters can be subject to adverse
selection. Consider, to illustrate, a forecaster who is asked to predict how a stochastic
process of interest will evolve over time and is evaluated by an empirical test comparing her
prediction against the realized sequence of outcomes. The forecaster can be either a true
expert, who knows the actual distribution P generating the data and is willing to report it
truthfully, or a strategic forecaster, who is uninformed about the stochastic process but is
interested in passing the test in order to establish a false reputation of competence. Recent
literature shows that many tests of interest cannot discriminate between the two.

In their seminal paper, Foster and Vohra (1998) examine the well-known calibration
test.2 They construct a randomized forecasting algorithm that allows to pass the test
regardless of how data unfold and without any knowledge of the true data generating
process. By employing such an algorithm, an uninformed but strategic forecaster can
completely avoid being discredited by the data, thus defeating the purpose of the test.

This surprising phenomenon is not restricted to calibration. Subsequent work empha-
sizes one critical feature of the calibration test: the fact that it is free of Type-I errors. For
any possible true law P generating the data, where P is an arbitrary probability measure
defined over sequences of outcomes, an expert who predicts according to P will pass the
calibration test with high probability (Dawid, 1982). This remarkable property ensures
that the test is unlikely to reject any competent forecaster. However, as shown by Sandroni
(2003) and Olszewski and Sandroni (2009), once incentives are taken into account, the same
property leads to a general impossibility result for testing probabilistic predictions: any
test that operates in finite time and is free of Type-I errors can be passed by a strategic
but uninformed forecaster. This impossibility result has been further extended in several
directions by Olszewki and Sandroni (2008) and Shmaya (2008), among many others.

1Corradi and Swanson (2006) and Gneiting and Katzfuss (2014) review the literature on probabilistic
forecasts.

2Consider a stochastic process that every day can generate two outcomes, say “rain” and “no rain.” A
forecaster passes the calibration test if, roughly, for every p ∈ [0, 1], the empirical frequency of rainy days
computed over the days where the forecaster predicted rain with probability p is close to p.
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Tests, such as calibration, that are free of Type-I errors, do not impose any restriction
on the unknown law P generating the process. However, such a degree of agnosticism is all
but common in economics and statistics. Indeed, most empirical studies posit that data
are generated according to a specific model, often fully specified up to a restricted set of
parameters. This paper takes a similar approach to the problem of testing forecasters and
examines the problem of testing forecasters in the presence of a theory about the data
generating process.

This paper considers a framework where it is known that the law generating the data
belongs to a given set Λ, which represents a theory, or paradigm, about the phenomenon
under consideration. Accordingly, forecasters are required to provide forecasts belonging
to Λ, while predictions incompatible with the paradigm are rejected.

For the purpose of this paper, paradigms admit multiple interpretations. A paradigm
can be seen as a summary of pre existing knowledge about the problem. It can also
represent the set of restrictions imposed on the data-generating process by a scientific
theory. It can, alternatively, be interpreted as a normative standard to which forecasters’
predictions must conform in order to qualify as useful. Classic examples of paradigms
include the classes of i.i.d., Markov or stationary distributions. In this paper, in order to
make the analysis applicable to a broad class of environments, no a priori restrictions are
imposed over paradigms (beyond measurability).

A paradigm Λ is testable if it admits a test with the following three features. First, it is
unlikely that the test will reject a true expert who knows the correct law in Λ. Second, for
any possible strategy that a forecaster might employ to misrepresent her knowledge, there
is a law belonging to Λ under which the forecaster will fail the test with high probability.
Hence, strategic forecasters are not guaranteed to avoid rejection. Third, the test returns
a decision (acceptance or rejection) in finite time. So, under a testable paradigm it is
possible to construct tests that do not reject true experts and cannot be manipulated.

A crucial question, then, is which paradigms are testable and, if they are, by using what
tests. The existing literature has presented instances of testable classes of distributions
(see, among others, Olszewski and Sandroni, 2009, and Al-Najjar, Sandroni, Smorodinsky
and Weinstein, 2010). However, reasonably general conditions under which a paradigm is
testable are not known.

The first step of the analysis is a general characterization of testable paradigms.
The result is formulated by taking the perspective of a hypothetical Bayesian outside
observer. Given a paradigm Λ, consider, for the sake of illustration, an analyst, consumer
or statistician who is uncertain about the odds of the data generating process, and who is
sophisticated enough to express a prior probability µ over the set of possible laws. The
prior assigns probability 1 to the paradigm. It is shown that Λ is testable if and only if
there exists at least one prior µ such that the observer, by predicting according to the
prior, is led to forecasts that are incompatible with any law in the paradigm. Formally,
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testability is equivalent to the existence of a prior µ over the paradigm such that the law∫
Λ Pdµ (P ) obtained by averaging with respect to the prior is sufficiently distant, in the
appropriate metric (the total-variation distance), from every law P in the paradigm.

The second main result of the paper shows that, given any testable paradigm, it is
without loss of generality to restrict the attention to standard likelihood-ratio tests: Given
a testable paradigm Λ there exists a finite likelihood-ratio test that is unlikely to reject a
true expert and cannot be manipulated. Such tests are constructed as follows.

First, the test creates a fictitious Bayesian forecaster. This forecaster is obtained by
placing a sufficiently “uninformative” prior µ over the paradigm. Actual forecasters are
then evaluated by comparing their predictions to the forecasts generated by the test. A
forecaster passes the test if only if the realized sequence of outcomes was, ex-ante, deemed
more likely by the agent than by the fictitious Bayesian forecaster.

The results suggests a, perhaps intuitive, criterion for identifying competent forecasters:
a predictor is recognized as knowledgeable if her forecasts results more accurate, in
likelihood-ratio terms, than the predictions of a Bayesian endowed with an uninformative
prior.

The third main result of the paper shows that likelihood-ratio tests are in, a proper
sense, optimal. The result is based on a novel ordering over tests. A test T is evaluated by
the worst-case probability of passing the test an uninformed forecaster can guarantee herself,
where the worst-case is computed over all possible laws of the data-generating process. A
test T1 is less manipulable than T2 if such worst-case probability is lower under T1 than
under T2. So, less manipulable tests are more effective at screening between informed
and uninformed experts. Theorem 3 shows that for any paradigm, and controlling for
sample size and for the level of Type-I error, there exists a likelihood-ratio test that is less
manipulable than any other test. The result provides a foundation for likelihood-ratio tests
as a general methodology for testing probabilistic predictions under adverse selection. As
explained in the main text, the result is related to the celebrated Neyman-Pearson lemma
and highlights a novel connection between the problem of testing strategic forecasters and
the theory of hypothesis testing.

Section 4 studies several examples of paradigms: Markov processes, Mixing processes,
paradigms defined by moments inequalities, and maximal paradigms. For each example,
we provide conditions such that the paradigm under consideration is testable.

Section 5 discusses extensions and provides further comments on the related literature.
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1.1 Related Literature

Foster and Vohra (2011) and Olszewski (2015) survey the literature on testing strategic
forecasters.3 In this section, we comment on those papers that are closer to the present
work.

Likelihood-ratio tests appear in Al-Najjar and Weinstein (2008) as a method for
comparing the predictions of two forecasters under the assumption that at least one of
them is informed.

Olszewski and Sandroni (2009) extend the impossibility result of Sandroni (2003) to
finite tests where the paradigm is convex and compact. In addition, they provide examples
of testable paradigms.

Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) consider the set of laws that
have a learnable and predictable representation, a class of distributions introduced by
Jackson, Kalai and Smorodinsky (1999). They show that the paradigm is testable by
constructing a test where experts are asked to announce a deadline after which they must
be able to provide sharp predictions about future frequencies of outcomes.

This paper is also related to the work of Babaioff, Blumrosen, Lambert and Reingold
(2010), who consider a principal-agent model where the principal offers a monetary contract
with the intent of discriminating between informed and uninformed experts. They show,
quite surprisingly, that screening is possible if and only if the true law is restricted to a
non-convex set of distributions. There are several important differences between the two
approaches. In Babaioff, Blumrosen, Lambert and Reingold (2010) payoffs are a function
solely of the monetary transfers (which are allowed to be negative and unbounded). This
paper follows the literature on testing strategic experts where transfers are absent and the
forecaster expected payoff is the probability of passing the test chosen by the tester. As
a consequence, the two papers arrive at different conclusions. In particular, there exist
non-convex paradigms that are not testable, and convex paradigms that are testable.4

Likelihood-ratio tests play an important role in Stewart (2011). Stewart proposes a
framework where the tester is a Bayesian endowed with a prior over laws and the forecaster
is evaluated according to a likelihood-ratio test against the predictions induced by the
prior. In the current paper the tester is not assumed to be Bayesian. Instead, the existence
of an appropriate prior which allows to construct a nonmanipulable likelihood-ratio test is
shown to be a property that is intrinsic to all testable paradigm.

Section 5.3 discusses more in details the relation between this paper and the work of
3Recent contributions to the literature that are not included in the surveys include Al-Najjar, Pomatto,

and Sandroni (2014), Feinberg and Lambert (2015), and Kavaler and Smorodinsky (2017).
4The paradigm studied in Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) is convex, but testable.

Consider a binary process that in each period can take two values, x or y. The paradigm of all distributions
such that the probability of observing x in the first period is restricted to be in [0, 0.25) ∪ (0.75, 1] is not
convex and not testable.
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Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) and Stewart (2011).

2 Basic Definitions

In each period an outcome from a finite X is realized, where |X| ≥ 2. A path is an infinite
set of outcomes and Ω = X∞ denotes the set of all paths. Time is indexed by n ∈ N, and
for each path ω = (ω1, ω2, . . .) the corresponding finite history of length n is denoted by
ωn. That is, ωn is the set of paths that coincide with ω in the first n periods. We denote
by Fn the algebra generated by all histories of length n and by B the σ-algebra generated
by
⋃
nFn. The set of paths Ω is endowed with the product topology, which makes B the

corresponding Borel σ-algebra. We denote by ∆(Ω) the space of Borel probability measures
on Ω. Elements of ∆ (Ω) will be interchangeably referred to as laws or distributions. The
space ∆ (Ω) is endowed with the weak* topology and the corresponding Borel σ-algebra.5

The same applies to the space ∆ (∆ (Ω)) of Borel probability measures over ∆ (Ω). Given
a measurable subset Γ ⊆ ∆(Ω), ∆(Γ) is the set of Borel probability measures on ∆(Ω) that
assign probability 1 to Γ.

2.1 Empirical Tests

A forecaster announces a law P ∈ ∆ (Ω), under the claim that P describes how the data
will evolve. A tester is interested in evaluating this claim using a statistical test.

Definition 1 A test is a measurable function T : Ω×∆ (Ω)→ [0, 1].

A test T compares the realized path ω with the reported law P . The law is accepted
if T (ω, P ) = 1 and rejected if T (ω, P ) = 0. Values strictly between 0 and 1 describe
randomized tests where the forecaster is accepted with probability T (ω, P ).6 The timing
is as follows: (i) At time 0, the tester chooses a test T ; (ii) After having observed T , the
forecaster chooses whether or not to participate in the test; (iii) A forecaster who chooses
to participate must announce a law P ; (iv) Nature generates a path ω; and (v) T reports
acceptance or rejection.

Following Olszewski (2015), we call a test T finite if for every law P there exists a time
nP such that T (·, P ) is measurable with respect to FnP . That is, a law P is accepted or
rejected as a function of the first nP observations, where nP is deterministic and known
ex-ante. Throughout the paper we restrict the attention to finite tests. A relevant special
case is given by the class of non-asymptotic tests, where there exists a single deadline

5A sequence (Pn) in ∆ (Ω) converges to P in the weak* topology if and only if EPn [φ] → EP [φ] for
every continuous function φ : Ω → R. Given a measure P , EP denotes the expectation operator with
respect to P .

6Except for Theorem 3 below, none of the results are affected by restricting the attention to non-
randomized tests.
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N such that nP ≤ N for every P . While the main focus will be on asymptotic tests, in
Section 5.1 we show that many of the results extend without difficulties to non-asymptotic
tests.

2.2 Strategic Forecasting

The forecaster can be of two possible types. A true expert (or informed forecaster) knows
the law governing the data generating process and is willing to report it truthfully. A
strategic (or uninformed) forecaster does not possess any relevant knowledge about the
data generating process. Her goal is to simply pass the test. Strategic forecasters can
produce their predictions using mixed strategies. Formally, a strategy is a randomization
over laws ζ ∈ ∆ (∆ (Ω)).

The next example shows how a standard likelihood-ratio test can be manipulated by
strategic forecasters.

Example 1. (A manipulable likelihood-ratio test) The test is specified by a time n
and a probability measure Q ∈ ∆ (Ω) with full support. The law Q serves as a benchmark
against which the forecaster is compared. Given a forecast P and a path ω, the test returns
1 if

P (ωn)
Q (ωn) > 1 (1)

and 0 otherwise. Thus, the forecaster passes the test if and only if the realized history is
more likely under the forecast P than under the benchmark Q. The test can be manipulated
using the following simple strategy. For each history ωn of length n, consider the measure
Pωn = Q (·|Ω− ωn) obtained by conditioning Q on the complement of ωn. It satisfies

Pωn (ωn) = 0 and Pωn (ω̃n) > Q (ω̃n) for all ω̃n 6= ωn.

Let ζ be the mixed strategy that randomizes uniformly over all measures of the form Pωn .
Given a history ωn, a forecaster using strategy ζ will pass the test as long as the law she
happens to announce is different from Pωn . This is an event that under ζ has probability
greater or equal than 1− 2−n. So, no matter how the data will unfold, even for n relatively
small, the forecaster is guaranteed to pass the test with high probability.

The test in Example 1 does not assume any structure on the data-generating process.
In this example, the freedom of announcing any law allows the uninformed predictor to
manipulate the test. We will see how appropriate restrictions on the domain of possible
laws for the observed stochastic process will allow even simple likelihood-ratio tests to
screen between informed and uninformed forecasters.
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2.3 Testable Paradigms

The tester operates under a theory, or paradigm, about the data generating process. In this
paper a theory is identified with the restrictions it imposes over the law of the observed
process. Formally, a paradigm is a measurable set Λ ⊆ ∆ (Ω), with the interpretation
that the data are generated according to some unknown law belonging to Λ. Beyond
measurability, no assumptions are imposed on Λ.

A paradigm can be defined in many ways. For instance, it can express statistical
independence between different variables (“the outcome ωn realized at time n is independent
from the outcome realized at time n + 365”) or it might reflect assumptions about the
long run behavior of the process (“P is ergodic”). Additional examples will be discussed in
Section 4.

Given a paradigm, a basic property a test should satisfy is to not reject informed
experts.

Definition 2 Given a paradigm Λ, a nonrandomized test T does not reject the truth with
probability 1− ε if for all P ∈ Λ it satisfies

P ({ω : T (ω, P ) = 1}) ≥ 1− ε. (2)

A test that does not reject the truth is likely to accept an expert who reports the actual
law of the data generating process. As shown by Olszewski and Sandroni (2008, 2009),
any finite test that does not reject the truth with respect to the unrestricted paradigm
Λ = ∆ (Ω) can be manipulated: Given a finite test T that satisfies property (2) for all
P ∈ ∆ (Ω), there exists a strategy ζ such that

ζ ({P : T (ω, P ) = 1}) ≥ 1− ε for all paths ω ∈ Ω.

Thus, the strategy allows the forecaster to completely avoid rejection. The result motivates
the next definition.

Definition 3 Given a paradigm Λ, a non-randomized test T is ε-nonmanipulable if for
every strategy ζ there is a law Pζ ∈ Λ such that

(Pζ ⊗ ζ) ({(ω, P ) : T (ω, P ) = 1}) ≤ ε.

The notation Pζ ⊗ ζ stands for the independent product of Pζ and ζ. A test T is
ε-nonmanipulable if for any strategy ζ there is a law Pζ in the paradigm such that the
forecaster is rejected with probability greater than 1− ε. Thus, no strategy can guarantee
a strategic forecaster more than an ε probability of passing the test.

As discussed by Olszewski and Sandroni (2009b), nonmanipulable tests can screen out
uninformed forecasters. To elaborate, sssume that a forecaster who opts not to participate
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in the test receives a payoff of 0, while a forecaster announcing a law P obtains a payoff
that depends on the outcome of the test. If P is accepted then she is recognized as
knowledgeable and gets a payoff w > 0. If the law is rejected then she is discredited
and incurs a loss l < 0. Assume, in addition, that an uninformed forecaster chooses in
accordance with the maxmin criterion of Wald (1950) and Gilboa and Schmeidler (1989),
where each strategy ζ is evaluated according to the minimum expected payoff with respect
to a set of laws. If such a set equals the paradigm, then for each strategy ζ the expected
payoff is7

inf
P∈Λ

EP⊗ζ [wT + l (1− T )] (3)

If ε is sufficiently small, then the value (3) is negative and so the optimal choice for a
strategic forecaster is to not take the test. Therefore, given a test that rejects the truth
with probability 1− ε and is ε-nonmanipulable, a true expert finds profitable to participate
in the test, while for an uninformed expert it is optimal not to participate.8

Definitions 3 and 4 extend immediately to general, randomized, tests. Given a paradigm
Λ, a test T does not reject the truth with probability 1 − ε if for every P ∈ Λ it satisfies
EP [T (·, P )] ≥ 1 − ε. The test is ε-nonmanipulable if for every strategy ζ there is a law
Pζ ∈ Λ such that EPζ⊗ζ [T ] ≤ ε. The next definition summarizes the properties introduced
so far.

Definition 4 Given ε > 0, a paradigm Λ is ε-testable if there is a finite test T such that:

1. T does not reject the truth with probability 1− ε; and

2. T is ε-nonmanipulable.

A paradigm Λ is testable if it is ε-testable for every ε > 0.

3 Main Results

It will be useful, in what follows, to consider the perspective of a Bayesian outside observer
(e.g. an analyst, a voter, or a statistician) who is interested in the problem at hand and
uncertain about the odds governing the data generating process. The uncertainty perceived
by the observer is expressed by a prior probability µ ∈ ∆ (Γ), where Γ ⊆ ∆ (Ω) is the set
of laws the observer believes to be possible. Of particular interest is the case where Γ
coincides with (or is close to) the paradigm Λ, so that the observer and the tester have
compatible views. If asked to make forecasts about the future, the observer would predict
according to the probability measure defined as

Qµ (E) =
∫

Γ
P (E) dµ (P ) for all E ∈ B. (4)

7In what follows, EP⊗ζ denotes the expectation with respect to Pζ ⊗ ζ.
8Section 8.3 considers a different specification where uninformed forecasters are less conservative and, in

(3), the worst case scenario is taken with respect to a neighborhood of laws in the paradigm.
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The definition (4) follows the standard approach in Bayesian statistical decision theory of
defining, from the prior µ, a probability measure over the sample space Ω by averaging
with respect to the prior.9

3.1 Characterization

The next result characterizes testable paradigms. Given laws P and Q, let ‖P −Q‖ =
supE∈B |P (E)−Q (E)| denote the (normalized) total-variation distance between the two
measures. Given a paradigm Λ, its closure with respect to the weak* topology is denoted
by Λ.

Theorem 1 A paradigm Λ is testable if and only if for every ε > 0 there exists a prior
µ ∈ ∆(Λ) such that ‖Qµ − P‖ ≥ 1− ε for all P ∈ Λ.

Consider an outside observer whose prior assigns probability 1 to (the closure of) Λ.
The result compares the observer’s forecasts with the paradigm. Two polar cases are of
interest. If Qµ ∈ Λ, then the observer’s prediction cannot be distinguished, ex-ante, from
the prediction of an expert who announced Qµ knowing it was the true law of the process.
Theorem 1 is concerned with the opposite case, where the prediction Qµ is far from any
possible law P in the paradigm. It shows that a paradigm is testable if and only if there is
some observer whose uncertainty about the data generating process leads her to predictions
that are incompatible (in the sense of being far with respect to the total-variation distance)
with respect to any law in the paradigm.

Given a prior µ with the above properties, it is possible to define an explicit non-
manipulable test. In the next section we provide a direct construction of such a test,
together with an intuition for the result. The intuition for why testability of a paradigm
implies the existence of a prior that satisfies the conditions of Theorem 1 can be sketched as
follows. For a strategic forecaster, randomization is valuable because it allows to increase
the probability of passing the test in the worst-case, across all possible distributions
that belong to the paradigm. Naturally, to different strategies will correspond different
worst-case distributions. For a given strategy ζ it is irrelevant whether the worst-case
is computed within the paradigm, or across the set of all distributions of the form Qµ

for some prior µ. This follows from the fact that the forecaster’s “payoff function” is
given by the expectation of T , hence it is linear in the randomization ζ and in the law
P . However, as we show in the proof of Theorem 1, considering the set of laws Qµ that
can be achieved by some prior µ is important. In the proof we show that given a test,
there exists a worst-case distribution Qµ that is common to all strategies. Intuitively, this

9In the literature, Qµ is often referred to as a predictive probability. Cerreia-Vioglio, Maccheroni, and
Marinacci (2013) provide, under appropriate conditions on Γ, an axiomatic foundation for the representation
(4).
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worst-case distribution must not be within the paradigm, since otherwise a forecaster could
simply announce it and pass the test. The result shows that, in a specific sense, it must be
sufficiently far away from the paradigm.

Testability of a paradigm is a property which can be formulated as a lack of compactness
and convexity. In order to illustrate this idea we now associate to each paradigm Λ an
index I(Λ) of its compactness and convexity. The definition is based on notions introduced
in the context of general equilibrium theory by Folkmann, Shapley, and Starr (see Starr,
1969). Given a subset Λ ⊆ ∆ (Ω), let

I(Λ) = sup
Q∈co(Λ)

inf
P∈Λ
‖Q− P‖

where co (Λ) is the weak*-closed convex hull of Λ. I satisfies 0 ≤ I(Λ) ≤ 1 by the definition
of the total-variation distance. If I(Λ) = 0, then any law Q in the closed convex hull of the
paradigm can be approximated with arbitrary precision by a law P in Λ. In this case, as
shown by Olszewski and Sandroni (2009), any finite test that does not reject the truth
is manipulable.10 In the opposite case, when I(Λ) = 1, one can find a law in the closed
convex hull of Λ that has distance arbitrarily close to 1 from every law in the paradigm.
The next result shows that this is true if and only if the paradigm is testable.

Corollary 1 A paradigm Λ is testable if and only if it satisfies I(Λ) = 1.

3.2 Nonmanipulable Tests

Next we study non-manipulable tests. By applying the characterization provided by
Theorem 1, we show that given a testable paradigm, it is without loss of generality to
restrict the attention to simple likelihood-ratio tests:

Theorem 2 Let Λ be a testable paradigm. Given ε > 0, let µ ∈ ∆(Λ) be a prior that
satisfies ‖Qµ − P‖ > 1− ε for all P ∈ Λ. There exist positive integers (nP )P∈Λ such that
the test defined as

T (ω, P ) =
{

1 if P ∈ Λ and P (ωnP ) > Qµ (ωnP )
0 otherwise

(5)

does not reject the truth with probability 1− ε and is ε-nonmanipulable.
10The intuition behind the result can be sketched as follows. Finiteness of the test, together with

compactness and convexity of Λ, allow to invoke Fan’s minmax theorem and establish the equality
minP∈Λ maxζ EP⊗ζ [T ] = maxζ minP∈Λ EP⊗ζ [T ]. If T does not reject the truth with probability 1− ε then
the left-hand side is greater than 1− ε. Hence there exists a strategy that passes the test with probability
1− ε for every P ∈ Λ. Therefore, the paradigm is not testable.
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Given a law P , the test reaches a decision after nP observations, where nP is known
in advance. The forecaster passes the test if and only if the history realized at time
nP is strictly more likely under P than under the law Qµ. The prior µ is required to
be sufficiently “uninformative” so that the induced law Qµ is far from every law in the
paradigm. As implied by Theorem 1, such a prior exists whenever the paradigm is testable.

The likelihood-ratio test is one of the most well-known statistical tests.11 It is therefore
reassuring that all testable paradigms can be unified under the same, canonical, family of
tests.

The main idea behind the proof of Theorem 2 is to exploit a key relation between
likelihood-ratio tests and the total-variation distance. To illustrate, let AP be the set of
paths where the law P ∈ Λ passes the test (5), and consider the difference in probability
P (AP ) − Qµ(AP ). It can be shown that by taking nP large enough, this difference
approximates the distance ‖P −Qµ‖ between the two measures. Hence, the event AP must
have probability higher than 1− ε under P , so the test does not reject the truth with high
probability. In addition, AP must have probability at most ε under Qµ. Because this is true
for every P , then, in the hypothetical scenario where the data were generated according to
Qµ, a forecaster would be unlikely to pass the test regardless of what law is announced and,
therefore, regardless of whether or not she randomizes her prediction. It follows from this
observation and from the fact that Qµ is a mixture of laws in the paradigm, that against
every fixed randomization ζ there must exist some law Pζ in the paradigm against which
passing the test is unlikely. That is, the test cannot be manipulated.

3.3 The Optimality of Likelihood Tests: a Neyman-Pearson Lemma

Theorem 2 shows that simple likelihood-ratio tests can screen between informed and
uninformed forecasters. However, it leaves open the possibility that such tests are inefficient
in the number of observations they require. A natural question is whether there exist tests
that for a fixed sample size can outperform likelihood-ratio tests in screening between
experts and strategic forecasters. We now make this question precise by introducing a
novel ordering over tests.

Definition 5 Let Λ be a paradigm. Given tests T1 and T2, say that T1 is less manipulable
than T2 if

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T1] ≤ sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T2] . (6)

Consider a strategic forecaster who is confronted with a test T and must choose
whether or not to undertake the test. As discussed in Section 2, an uninformed forecaster
will participate only if the value supζ∈∆(Λ) infP∈Λ Eζ⊗P [T ], which is proportional to the
maxmin expected payoff from taking the test, is sufficiently large. So, the left-hand side of

11See, for instance, Lehmann and Romano (2006) for an introduction to the likelihood-ratio test.
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(6) is proportional to the highest expected payoff a strategic forecaster can guarantee when
facing test T1.

The ranking (6) requires that any strategic forecaster who finds optimal not to partici-
pate in the test T2 must also find optimal not to participate in the test T1. Hence, any
uninformed forecaster who is screened out by the test T2 is also screened out by the test
T1. In other terms, a less manipulable test has a greater deterrent effect against strategic
forecasters.

A comparison between tests is more informative when some variables, such as the
required number of observations, are kept fixed. To this end, we call a collection (nP )P∈Λ
of positive integers a collection of testing times if the map P 7→ nP is measurable. A test T
is bounded by the testing times (nP )P∈Λ if T (·, P ) is a function of the first nP observations.
The definition allows for the possibility that different predictions may need different sample
sizes in order to be properly tested. Finally, given a class T of tests, we say that a test T
is least manipulable in T if it belongs to T and is less manipulable than any other test in
the same class. We can now state the main result of this section.

Theorem 3 Fix a paradigm Λ, testing times (nP )P∈Λ and a probability α ∈ [0, 1]. There
exists a prior µ∗ ∈ ∆(Λ), thresholds (λP )P∈Λ in R+ and a test T ∗ such that:

1. T ∗ (ω, P ) = 1 if P ∈ Λ and P (ωnP ) > λPQµ∗ (ωnP );

2. T ∗ (ω, P ) = 0 if P /∈ Λ or P (ωnP ) < λPQµ∗ (ωnP ); and

3. T ∗ is least manipulable in the class of tests that are bounded by (nP ) and do not
reject the truth with probability α.

Theorem 3 is a general result illustrating the optimality of likelihood-ratio tests. Given
the number of data points nP that the tester is willing to collect for each forecast P ,
and given a lower bound α on the probability of accepting a true expert, there exists a
likelihood-ratio test that is less manipulable than any other test that satisfies the same
constraints.

The result does not demand any assumptions on the paradigm, which is not required
to be testable. Another difference with the test introduced in Theorem 2 is the use of
law-specific thresholds λP which allow to adjust the probability of accepting a true expert
as a function of the desired level α of Type-I errors.12

The result is based on a novel connection between the problem of testing strategic
forecasters and the statistical hypothesis testing literature. To illustrate this idea, consider

12The proof of Theorem 3 provides a complete description of the test T ∗ and illustrates how the thresholds
and the prior µ∗ are computed. In the knife-edge case where P (ωnP ) = λPQµ (ωnP ) the test is randomized.
The use of randomized tests greatly simplifies the analysis and allows the tester to achieve a probability of
accepting a true expert that is exactly equal to α.
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the standard problem of testing a null hypothesis P0 against an alternative hypothesis P1,
where P0 and P1 are two given probability measures over paths. To be clear, in such a
context a (possibly randomized) hypothesis test is a function φ : Ω→ [0, 1], where φ (ω) is
the probability of accepting P0 given the path ω.

The test T ∗ is formally equivalent to a hypothesis test where the law P produced by
the expert plays the role of the null hypothesis while the outside observer’s prediction
Qµ∗ plays the role of the alternative. The crucial difference with the standard hypothesis
testing framework is that the two “hypotheses” P and Qµ∗ are not given exogenously: P
is produced by a possibly strategic forecaster while Qµ∗ is chosen by the tester.

The celebrated Neyman and Pearson lemma shows that given two hypotheses P0 and P1,
and given an upper bound on the probability of Type I error, there exists a likelihood-ratio
test between P0 and P1 that minimizes the probability of Type II errors. The proof of
Theorem 3 applies this fundamental result to the problem of strategic forecasters. The
proof proceeds in two steps. First, the belief µ∗ is obtained as the solution of an explicit
nonlinear minimization problem over the space of priors. The test T ∗ is then defined by
applying the Neyman-Pearson Lemma to each pair of laws P and Qµ∗ . The key step is
to show, through a duality argument, that because of the particular choice of µ∗, a test
which minimizes the probability of Type-II errors with respect to Qµ∗ is also a test that is
least manipulable.

4 Examples and Properties Related to Testability

In this section we analyze examples of paradigms. In each case, we provide conditions
under which the paradigm under consideration is testable.

4.1 Markov Processes

We first consider Markov processes. The law of a Markov process is described by a
transition probability π : X → ∆ (X) and an initial probability ρ ∈ ∆(X). We denote
by Π = ∆(X)X the set of all transition probabilities. Every pair (ρ, π) induces a Markov
distribution Pρ,π ∈ ∆(Ω). We denote such a law by Pπ whenever ρ is uniform.

Consider a Bayesian outside observer who is uncertain about the transition probability
of the process and believes the true law to be Pπ for some π. Let m be a Borel probability
measure over Π that for every c ∈ [0, 1] and x, y ∈ X satisfies m({π : π(x)(y) = c}) = 0.
In particular, m is non-atomic.13 By taking π to be distributed according to m, we obtain,
implicitly, a prior µ defined over the set of Markov distributions such that the resulting

13For instance, if X = {x, y} then we can define m by setting π(x)(y) and π(y)(x) to be independent
and uniformly distributed over (0, 1).
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law Qµ satisfies
Qµ (E) =

∫
Π
Pπ (E) dm(π) for all E ∈ B

The next result follows by applying standard asymptotic results for Markov processes.

Proposition 1 The prior µ satisfies ‖Qµ − Pπ,ρ‖ = 1 for all Markov Pπ,ρ.

It follows from Theorem 2 that the paradigm of Markov distributions is testable by
means of a likelihood-ratio test defined with respect to the law Qµ. Under this test,
forecasters’ predictions are compared against the predictions of a Bayesian who is endowed
with a non-atomic prior over the true transition probabilities of the process.

4.2 Asymptotic Independence

There is considerable interest, in the analysis of economic time series, in dependence condi-
tions that go beyond independence. A common assumption is mixing, which, informally,
expresses the idea that two events are approximately independent provided they occur
sufficiently far apart in time. Mixing is a generalization of the i.i.d. assumption which
has found applications in econometrics and in the forecasting literature: See, for instance,
Davidson (1994) and Nze and Doukhan (2004), and the reference therein, for the role of
mixing and its generalizations in the analysis of time series, and Giacomini and White
(2006, Theorem 1) for an example of applications of mixing in the forecasting literature.
In this section, we study mixing in the context of strategic forecasting.14

For every k ∈ N denote by F∞k the σ-algebra generated by the coordinate random
variables (Zk, Zk+1, . . .), where, for every m ≥ 1, Zm(ω) = ωm is the outcome in period m.
So, F∞k is the collection of all events that do not depend on the first k − 1 realizations of
the process. A law P is mixing if for every history ωn it satisfies P (ωn) > 0 and

sup
A∈F∞

k

|P (A|ωn)− P (A)| → 0 as k →∞. (7)

So, under a mixing measure P , the information ωn known at time n has a negligible
effect in changing the predicted probability P (A) of an event A, if A depends on realizations
of the process which will occur only in the far enough future.

The fact that a paradigm consists of laws that are mixing does not, without further
assumptions, imply that the same paradigm is testable. For instance, if the laws in Λ
disagree only about the odds of the first realization ω1 of the process, testability is not
achieved. The next result provides an elementary richness condition that, when added to
the mixing assumption, ensures that the paradigm is testable.

14Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) study the paradigm of asymptotically reverse
mixing laws, a paradigm strictly larger than the class of all mixing distributions. We discuss the relation
with their work in Section 5.3.
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For the next result, recall that the measures P1, . . . , Pn are orthogonal if they satisfy
‖Pi − Pj‖ = 1 for all i 6= j. Equivalently, for every i 6= j there is an event E such that
Pi(E) = 1− Pj(E) = 1. So, two orthogonal measures fully disagree about the probability
of some event.

Proposition 2 Let Λ be a paradigm such that each P ∈ Λ is mixing and for every n ∈ N
there are laws P1, . . . , Pn in Λ that are orthogonal. Then Λ is testable.

In the proof, given n, we consider a prior µn that is uniform over n orthogonal laws
P1, . . . , Pn in Λ, and show that the induced distribution Qµn has total-variation distance
of at least 1/n from every law in Λ. Hence, by Theorem 2, a non-manipulable test can be
obtained by a likelihood-ratio test with respect to Qµn , for n suitably large.15

The result implies, in particular, that the paradigm of all mixing processes is testable.
This is because i.i.d. laws are mixing and the collection of all i.i.d. distributions satisfies
the richness condition. However, the main contribution of Proposition 2 is showing that
any set of mixing distributions that satisfies the above richness condition is testable. This
is an important difference, since, in applications, mixing is usually coupled with additional
conditions which further restrict the paradigm under consideration (e.g. assumptions on
the rate of convergence in (7), or parametric assumptions on the functional form of the
process. See, for instance, Davidson, 1994), and a subset of a testable paradigm is not
necessarily testable.

4.3 Moment Inequalities

Economic models based on optimizing behavior lead to predictions that, in many cases,
can be described by inequality constraints on the law of the data generating process. This
is the subject of a large literature (e.g. Andrews and Soares (2010) and Pakes (2010),
among others) studying inferential methods for models defined by moment inequalities.
The purpose of this section is to consider a stylized example of a paradigm defined by
moment inequalities and provide conditions under which it is testable.

A parameter θ belongs to a finite set Θ. The parameter θ and the law P ∈ ∆(Ω) of
the data generating process are related by the inequality

EP [g(·, θ)] ≥ 0 (8)

with respect to a moment restriction g : Ω×Θ→ (−∞, u], where u > 0. We assume g is
measurable (and bounded above). Let Λθ = {P ∈ ∆(Ω) : EP [g(·, θ)] ≥ 0}. The paradigm
is the collection of all laws that satisfy the moment inequality (8) for some θ:

ΛΘ =
⋃
θ∈Θ

Λθ

15Notice that the mixing assumption is crucial for the result. The paradigm Λ = ∆(Ω) trivially satisfies
the richness assumption but is not testable.
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As usual, the forecaster is assumed to know P while the tester only knows the paradigm.
As a concrete example, consider a decision maker who is observed making an investment.

The investment is made at time 0, and its future payoff g(ω, θ) is a function of the unobserved
agent’s type θ (e.g. a characteristic of the agent), as well as a sequence ω of future observable
payoff-relevant shocks (e.g. returns or stock prices) distributed according to P . In order for
the investment decision to be individually rational, g(·, θ) must have positive expectation.
In this context, a competent forecaster is one who is able to forecast the correct distribution
P of payoff-relevant shocks that, by satisfying (8), can rationalize the decision maker’s
choice.

The paradigm ΛΘ is in general not testable. If, for instance, Θ has a single element and
g is continuous, then ΛΘ is compact and convex and hence, by Corollary 1, not testable.
A different type of difficulty arises if there exists a value θ of the parameter such that
g(ω, θ) ≥ 0 holds everywhere. In this case ΛΘ = ∆(Ω), hence ΛΘ is non-testable. Therefore,
intuitively, in order for ΛΘ to be testable, the moment restriction g must display enough
variability both in θ and in ω.

To this end, we introduce the following assumptions. First, as Proposition 3 below
makes formal, we assume that Θ contains sufficiently many types. In addition, we impose
the following conditions on g:

(i) There is ` > 0 and for every θ an event Ωθ ⊆ Ω such that ω ∈ Ωθ =⇒ g(ω, θ) < −`.

(ii) For every θ the set
(⋂

θ′ 6=θ Ωθ′

)⋂
{ω : g(ω, θ) > 0} is non-empty.

In the language of the example above, (i) states that the investment is not without
risk. For every agent’s type θ, there is a region Ωθ of realizations where the agent incurs a
loss greater than `. If condition (ii) is satisfied then g(·, ω) depends nontrivially on θ. For
every type θ, there is at least some path ω such that the investment is profitable for type
θ but leads to a loss larger than ` for every other type. In particular, the events (Ωθ) are
not nested.

Proposition 3 For every ε > 0 there exist ` > 0 and n > 0 such that if |Θ| > n and the
moment restriction g satisfies assumptions (i) and (ii) with ` > `, then ΛΘ is ε-testable.

Therefore, assumptions (i)-(ii) imply that a paradigm defined by moment inequalities
is ε-testable, provided that the set Θ of types is sufficiently rich, and that the loss ` in (i)
is large enough.

4.4 Maximal Paradigms

We have taken as a datum that the paradigm Λ is correctly specified. A paradigm that is
incorrectly specified exposes the tester to the risk of rejecting, out of hand, forecasters who
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are informed but whose predictions lie outside Λ. Adopting a larger paradigm mitigates
such a risk. Olszewski (2015) posed the question of which testable paradigms are maximal,
in the sense of not being included in any other testable paradigm. The next result provides
an answer to this open question.

Proposition 4 Let ε ∈ (0, 1) and fix a law P ∈ ∆ (Ω). The paradigm

ΛεP =
{
P̃ ∈ ∆ (Ω) : ‖P − P̃‖ > 1− ε

}
is ε-testable and is not included in any testable paradigm.

The paradigm is constructed by simply fixing a distribution P and considering all laws
which are sufficiently far from it. The resulting set Λε

P is not included in any testable
paradigm.16

As shown in the proof of Proposition 4, P equals the law Qµ induced by some prior µ
that assigns probability 1 to the closure of ΛεP . Therefore, by Theorem 2 and the definition
of ΛεP , the law P can be used to construct a non-manipulable likelihood-ratio test where it
plays the role of a benchmark against which forecasters’ predictions are compared.

5 Discussion and Extensions

5.1 Non-asymptotic Tests

We now consider the case of non-asymptotic tests where at most n observations are available
to the tester. A paradigm is ε-testable in n periods if it admits a test T such that T (·, P )
is Fn-measurable for every P , does not reject the truth with probability 1 − ε, and is
ε-nonmanipulable. The next result shows how Theorems 1 and 2 can be adapted to non-
asymptotic tests. Given n, we define the semi-metric ρn(Q,P ) = maxE∈Fn |Q(E)− P (E)|.

Proposition 5 Let Λ be a paradigm. If Λ is ε-testable in n periods then there exists a
prior µ ∈ ∆(Λ) such that ρn(Qµ, P ) > 1− 2ε for every P ∈ Λ. Conversely, if there exists
a prior µ ∈ ∆(Λ) with the property that ρn(Qµ, P ) > 1− ε for every P ∈ Λ, then the test

T (ω, P ) =
{

1 if P ∈ Λ and P (ωn) > Qµ (ωn)
0 otherwise

does not reject the truth with probability 1− ε and is ε-nonmanipulable.
16As shown in the proof, ΛεP is not included in any δ-testable paradigm, for all δ > 0 sufficiently small.

However, we do not know if the class of paradigms that are testable, rather than ε-testable, and have the
property of not being strictly included in any testable paradigm, admits a simple characterization. For
example, given a non-degenerate law P , it can be shown that Λ =

{
P̃ ∈ ∆ (Ω) : ‖P − P̃‖ = 1

}
is testable.

Λ is however strictly included in the testable paradigm Λ′ = {P̃ ∈ ∆ (Ω) : ‖P (·|E)− P̃‖ = 1}, where E is
any event such that P (E) ∈ (0, 1), since Λ′ contains the measure P (·|Ec) but Λ does not.
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Hence, similarly to Theorem 1, testability in n periods is equivalent to a high distance
between the law Qµ induced by some prior µ and any law in the the paradigm. Conversely,
if such a prior exists, then restricting the attention to likelihood-ratio tests is without loss
of generality.

5.2 Maxmin and Strategic Forecasters

As discussed in Section 4, a strategic but uninformed forecaster evaluates a strategy ζ as

inf
P∈C

EP⊗ζ [wT + l(1− T )]

where C ⊆ ∆(Ω) is a set of laws. So far, we have considered the case where C is equal to
the paradigm. However, an uninformed forecaster may adopt a less conservative decision
making criterion.

To this end, let d be a distance that metrizes the weak*-topology on ∆ (Ω), and for
every law P ∈ ∆ (Ω) denote by Bδ (P ) the open ball of radius δ around P . We consider
the specification

C = Bδ(Po) ∩ Λ for some Po ∈ Λ. (9)

So, under (9), an uninformed forecaster evaluates a strategy by considering the worst-case
expected payoff with respect to laws that are within distance δ from a reference measure Po.
Similar definitions appear in robust statistics (Huber, 1981) and economics (Bergemann
and Schlag, 2011, and Babaioff, Blumrosen, Lambert and Reingold, 2010). We will not
assume that Po coincides with the correct law generating the data nor that Po is known to
the tester.

The definition of testable paradigm can now be strengthened as follows:

Definition 6 A paradigm Λ is uniformly testable with precision δ if for every ε > 0 there
exists a finite test T such that:

1. T does not reject the truth with probability 1− ε; and

2. For every strategy ζ and every Po ∈ Λ there exists a law Pζ ∈ Λ ∩Bδ(Po) such that
EPζ⊗ζ [T ] ≤ ε.

Thus, the test passes a true expert with high probability. In addition, for every strategy
ζ, there is a law Pζ in the paradigm under which rejection is likely. Given a reference law
Po, the measure Pζ can be chosen to belong to Λ ∩ Bδ(Po). Hence, the test guarantees
that the value (9) an uninformed forecaster can expect from participating in the test is
negative whenever ε is sufficiently small. So, the test can screen between the two types of
forecasters.

While a complete characterization of paradigms that fulfill the requirements of Definition
6 is beyond the scope of this paper, the next proposition provides a basic sufficient condition
for a paradigm to be uniformly testable.
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Proposition 6 Let Λ be a paradigm. If there exists a prior µ ∈ ∆(Λ) with support Λ and
such that Qµ satisfies ‖Qµ − P‖ = 1 for every P in Λ, then Λ is uniformly testable with
precision δ for every δ > 0.

The most significant difference with respect to Theorem 1 is the assumption that the
prior µ has full support over the paradigm. Following the interpretation presented in
Section 2, a Bayesian outside observer endowed with such a prior µ is “cautious,” in the
sense of assigning positive probability to any open set of possible laws.

5.3 Discussion of the Related Literature

Mixing Al-Najjar, Sandroni, Smorodinsky, and Weinstein (2010) study the paradigm
of asymptotically reverse mixing distributions (henceforth, ARM), a class introduced by
Jackson, Kalai and Smorodinsky (1999). It contains deterministic, i.i.d. and Markov laws.
In fact, it is even larger than the class of mixing distributions.

Large paradigms, such as the class of ARM distributions or the paradigm defined
in Proposition 4, come with the cost of making nonmanipulability a conceptually weak
property for a test. The assertion that uninformed forecasters are screened out by non-
manipulable tests rests on the assumption that uninformed agents evaluate the odds of
passing the test according to the worst-case scenario distribution in the paradigm Λ. Such
an assumption becomes more demanding as Λ gets larger.

Notice, in addition, that a subset of a testable paradigm is not necessarily testable.
Hence, the results in Al-Najjar, Sandroni, Smorodinsky, and Weinstein (2010) do not
directly imply (nor are implied) by Propositions 1 or 2.

Orderings Over Tests Theorem 3 relies on the “less manipulable” ordering over tests
introduced in Section 3. This ordering is related to a different notion introduced by
Olszewski and Sandroni (2009b). Given two tests T1 and T2, Olszewski and Sandroni define
T1 as being harder than T2, henceforth T1 - T2, if for every path ω and law P ∈ ∆(Ω)
the relation T1(ω, P ) ≤ T2(ω, P ) holds.17 Hence, a harder test is more likely to reject a
forecaster regardless of how the data unfolds and of what prediction is made.

To simplify the language, given a paradigm Λ, we write T1 �Λ T2 if T1 is less manipulable
than T2. In order to compare the two orders - and �Λ, observe that �Λ is a complete
ordering over tests, while by contrast the relation - is incomplete. It is moreover immediate
to verify that

T1 - T2 =⇒ T1 �Λ T2 for every Λ ⊆ ∆(Ω).

So, the order defined by the “less manipulable” ordering �Λ is a completion of -. We note
that the conclusions of Theorem 3 do not extend to the more stringent order -. Given

17Olszewski and Sandroni’s original definition is adapted here to general, possibly randomized, tests.

20



a class T of tests defined as in Theorem 3, there might not be any test T ∗ ∈ T with the
property that T ∗ - T for every T ∈ T .18

Bayesian Priors. Stewart (2011) studies strategic forecasting in an environment where
the tester is a Bayesian endowed with a prior µ over ∆(Ω). Stewart (2011) considers a
(non-finite) likelihood-ratio test which compares the forecaster’s predictions to the tester’s
predictions induced by Qµ. The paper studies priors µ for which the quantity

ε =
∫
P

{
ω :

T∑
t=1

(Qµ(ωt|ωt−1)− P (ωt|ωt−1))2 converges
}
dµ(P ).

is sufficiently small. Intuitively, this implies that over time a true expert is able to provide
more precise predictions than the tester. For every strategy ζ, a strategic but ignorant
forecaster will fail the test in Stewart (2011) with probability 1 under Qµ ⊗ ζ, while a true
expert will almost surely pass the test, for a class of measures P that has probability 1− ε
under µ.

To see more clearly the connection between the two papers, consider the case where ε is
zero, and define the paradigm Λ consisting of all distributions P for which

∑T
t=1(Qµ(ωt|ωt−1)−

P (ωt|ωt−1))2 diverges P -almost surely. The assumption that ε = 0 implies that µ(Λ) = 1.
The same argument used by Stewart (2011) in the proof of his main result shows that every
such P ∈ Λ has the property that the likelihood-ratio P (ωt)\Qµ(ωt) diverges, P -almost
surely. In turn, by an application of the Lebesgue-Decomposition Theorem,19 this implies
that each P in Λ is orthogonal to the predictive distribution Qµ. That is, the two have
total variation distance 1. So, while there are many modeling differences between the two
papers, given a prior µ that satisfies the condition ε = 0 in Stewart (2011), there is a
paradigm that satisfies the conditions of Theorem 1 with respect to µ.

At a conceptual level, Stewart (2011) and the present paper provide complementary
perspectives on the use of the log-likelihood ratio as a way to screen forecasters. In this
paper, we take as a primitive a paradigm, while the prior µ and the corresponding Bayesian
forecaster are endogenously derived from the test. Stewart (2011) takes as a primitive the
prior, and the tester is willing to discard measures that have low probability under her
subjective belief.

On the Notion of Non-Manipulability. We conclude by comparing the notion of
definition of non-manipulability used in this paper to other notions that appear in the

18For instance, assume X = {1, . . . , n}, and define the class T by setting Λ = ∆(Ω), nP = 1 for every P ,
and α = 1− 1/n. If P assigns probability 1/n to each outcome x occuring in the first period, then for each
x ∈ X there is a non-randomized test T ∈ T that rejects P upon observing x and accepts it otherwise. So
a test satisfying T ∗ 6 T for every T ∈ T must reject P regardless of the realization. Such a test does not
belong to T .

19see Theorem 2, p. 525, in Shiryaev (1996).
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literature. In Dekel and Feinberg (2006) and Olszewski and Sandroni (2009) a test is
deemed non-manipulable if, for every strategy, there exists a topologically large set of
realizations for which the forecaster fails the test. This notion, while intuitive, is mute when
studying finite tests, since all finite histories are topologically equivalent.20 Section 5.2
explores a different methodology for strengthening non-manipulability, uniform testability,
that is based on decision-theoretic ideas. We leave a more comprehensive study of this
notion to further research.

A Appendix

A.1 Preliminaries

The space of paths Ω is endowed with the product topology. Hence, a function that is
Fn-measurable for some n is also continuous. This implies that for every finite test T
and any law P ∈ ∆ (Ω) the function Q 7→ EQ [T (·, P )], Q ∈ ∆ (Ω), is continuous. We will
denote by Hn the set of histories ωn of length n.

Recall that the space ∆ (∆ (Ω)) is endowed with the weak* topology. As proved in
Phelps (2001) (Proposition 1.1), the function µ 7→ Qµ assigning to each prior µ ∈ ∆ (∆ (Ω))
its barycenter Qµ is continuous. In particular, given a continuous function ψ : Ω → R,
the map µ 7→

∫
Ω ψ (ω) dQµ (ω), µ ∈ ∆ (∆ (Ω)) , is continuous. In addition, Qµ satisfies∫

Ω ψ (ω) dQµ (ω) =
∫
∆(Ω) (

∫
Ω ψ (ω) dQ (ω)) dµ (Q) for every bounded measurable function

ψ. Given a measurable subset Γ of ∆ (Ω), denote by ∆ (Γ) the set of probability measures
µ ∈ ∆(∆ (Ω)) assigning probability 1 to Γ. The space ∆(Γ) is compact by the Banach-
Alaoglu theorem (see Aliprantis and Border (2006, Chapter 16)).

Lemma 1 Let T be a finite test. For every strategy ζ the function P 7→ EP⊗ζ [T ], P ∈
∆ (Ω), is continuous.

Proof. Let (ωk) be a sequence in Ω converging to a path ω. Given a law P , the function
T (·, P ) is continuous. So, T (ωk, P )→ T (ω, P ) as k →∞. Given a strategy ζ, Lebesgue’s
convergence theorem implies Eζ [T (ωk, ·)] → Eζ [T (ω, ·)] as k → ∞. Hence, for every
strategy ζ the map ω 7→ Eζ [T (ω, ·)], ω ∈ Ω, is continuous. Fubini’s Theorem implies
EP⊗ζ [T ] =

∫
Ω Eζ [T (ω, ·)] dP (ω). Therefore, for each P ,

∫
Ω Eζ [T (ω, ·)] dP (ω) is the ex-

pectation with respect to P of a continuous function. Hence, it follows from the definition
of weak* topology that the map P 7→ EP⊗ζ [T ], P ∈ ∆ (Ω), is continuous.

20One could ask a different question, and demand a test such that for every strategy there exists a
topologically large set of distributions under which the forecaster fails the test with high probability. This
property would require, for every ε and every P ∈ Λ, the existence of a set A that is a finite union of finite
histories, and satisfies Q(A) ≥ 1− ε for a set of distributions Q that includes P and is a topologically small
subset of Λ. This property fails to hold under some simple examples of testable paradigms, such as the
case of i.i.d. distributions.
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A.2 Proofs of Theorems 1 and 2

Proof of Theorems 1 and 2. The first half of the proof shows the necessity part of Theorem
1. The second half establishes Theorem 2 and, therefore, the sufficiency part of Theorem 1.

Assume Λ is testable. Fix ε > 0 and let T be a test that satisfies the conditions of
Definition 4. Given a measure P ∈ ∆ (Ω) and a strategy ζ, let V (P, ζ) = EP⊗ζ [T ]. The
map V is affine in each argument and for each strategy ζ the map V (·, ζ) is continuous by
Lemma 1. Since T is ε-nonmanipulable then

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) ≤ ε. (10)

Let ∆o(Λ) ⊆ ∆ (Λ) be the subset of priors on Λ with finite support. We have

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) = sup
ζ∈∆(∆(Ω))

inf
µ∈∆o(Λ)

V (Qµ, ζ) = sup
ζ∈∆(∆(Ω))

min
µ∈∆(Λ)

V (Qµ, ζ) . (11)

The first equality follows immediately from the definition of Qµ and the affinity of V (·, ζ).
The second equality follows from the continuity of the map µ 7→ V (Qµ, ζ), µ ∈ ∆ (∆ (Ω)),
together with the fact that ∆o (Λ) is dense in ∆(Λ) (as implied by Aliprantis and Border
(2006, Theorem 15.10)) and that ∆(Λ) is compact.

The space ∆(Λ) is compact and convex and for every ζ the map µ 7→ V (Qµ, ζ),
µ ∈ ∆ (∆ (Ω)), is continuous (by Lemma 1) and affine. In addition, ∆ (∆ (Ω)) is convex
and for every µ the map V (Qµ, ·) is affine. We can therefore apply Fan’s Minmax Theorem
(Fan, 1953) to obtain the equality

sup
ζ∈∆(∆(Ω))

min
µ∈∆(Λ)

V (Qµ, ζ) = min
µ∈∆(Λ)

sup
ζ∈∆(∆(Ω))

V (Qµ, ζ) . (12)

For every µ , the function V satisfies V (Qµ, ζ) =
∫

∆(Ω) EQµ [T (·, P )] dζ (P ) by Fubini’s
theorem. So, supζ∈∆(∆(Ω)) V (Qµ, ζ) = supP∈∆(Ω) V (Qµ, δP ). Hence the right-hand side
of (12) can be written as

min
µ∈∆(Λ)

sup
ζ∈∆(∆(Ω))

V (Qµ, ζ) = min
µ∈∆(Λ)

sup
P∈∆(Ω)

V (Qµ, δP ) = min
µ∈∆(Λ)

sup
P∈∆(Ω)

EQµ [T (·, P )] .

(13)
Taken together, (10), (11) (12) and (13) prove the existence of a prior µ ∈ ∆(Λ) such that

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) = sup
P∈∆(Ω)

EQµ [T (·, P )] ≤ ε.

Because the test does not reject the truth with probability 1− ε, it follows that

EP [T (·, P )]− EQµ [T (·, P )] ≥ 1− 2ε for all P ∈ Λ. (14)

As shown by Lemmas 1 and 2 in Shiryaev (2016, Chapter 8), the (normalized) total
variation distance ‖Qµ − P‖ satisfies

‖Qµ − P‖ = sup
φ

∣∣∣∣∫
Ω
φdQµ −

∫
Ω
φdP

∣∣∣∣
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where the supremum is taken over all measurable functions φ : Ω → [0, 1]. By letting
φ = T (·, P ), it follows from (14) that ‖Qµ − P‖ ≥ 1−2ε. Thus, ‖Qµ − P‖ ≥ 1 − 2ε for
every P ∈ Λ. Since ε is arbitrary, the first part of the proof is concluded.

Consider a prior µ ∈ ∆(Λ) such that ‖Qµ − P‖ > 1− ε for all P ∈ Λ. Fix a measure
P ∈ Λ. For any n,

max
E∈Fn

Qµ (E)− P (E) = max
E∈Fn

|Qµ (E)− P (E)| .

As shown in Halmos (1950, 13D), (maxE∈Fn |Qµ (E)− P (E)|) ↑ ‖Qµ − P‖ as n ↑ ∞.21

Therefore, we can conclude that for each P ∈ Λ the number

nP = min
{
n : max

E∈Fn
Qµ (E)− P (E) > 1− ε

}
(15)

is well defined. Consider now the test

T (ω, P ) =
{

1 if P ∈ Λ and P (ωnP ) > Qµ (ωnP )
0 otherwise

We now prove that T is measurable. First we show that for every k ∈ N the set
{P ∈ Λ : nP = k} is measurable. For every n and every E ∈ Fn the function P 7→ P (E),
P ∈ ∆ (Ω), is continuous. Because Fn is finite, it follows that ϕn : P 7→ maxE∈Fn Qµ (E)−
P (E), P ∈ ∆ (Ω), is measurable. Since Λ is measurable the restriction of ϕn on Λ is also
measurable. The set {P ∈ Λ : nP = k} can be written as {P ∈ Λ : ϕk > 1− ε} if k = 1, or
as the intersection ⋂

1≤n<k
{P ∈ Λ : ϕn ≤ 1− ε} ∩ {P ∈ Λ : ϕk > 1− ε}

if k > 1. Hence {P ∈ Λ : nP = k} is measurable. For each path ω, the function T (ω, ·)
is measurable: For each n, the set {P ∈ ∆ (Ω) : T (ω, P ) = 1} is given by the union over
k > 1 of all sets of the form{

P ∈ ∆ (Ω) : P (ωk)−Qµ(ωk) > 0
}
∩ {P ∈ Λ : nP = k} .

21We provide here a sketch of the proof. Let F = ∪nFn. It can be verified that for every Q ∈ ∆(Ω),
the collection of events E for which there exists a sequence (Fm) in F such that limnQ(E4Fn) = 0
is a σ-algebra containing F . Hence it equals B. Fix B ∈ B and let (Em) be a sequence in F such
that limm(P + Qµ)(B4Em) = 0. Hence limm |P (B) − P (Em)| ≤ limm P (B4Em) = 0. Similarly,
limm |Qµ(B)−Qµ(Em)| = 0.
Because, for every m,

|P (B)−Qµ(B)| ≤ |P (B)− P (Em)|+ |P (Em)−Qµ(Em)|+ |Qµ(B)−Qµ(Em)|

then letting m→∞, it follows that |P (B)−Qµ(B)| ≤ supF∈F |P (F )−Qµ(F )|. Because B is arbitrary,
then ‖P −Qµ‖ ≤ supF |P (F )−Qµ(F )| ≤ ‖P −Qµ‖. Since supF∈Fn

|P (F )−Qµ(F )| ↑ supF |P (F )−Qµ(F )|
as n→∞, the result is established.
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It follows that T (ω, ·) is measurable. For each ω ∈ Ω and P ∈ ∆ (Ω), the function T (·, P )
is continuous and T (ω, ·) is measurable. That is, T is a Carathéodory function. It follows
then from Lemma 4.51 in Aliprantis and Border (2016) that T is measurable.

We now show that P ({ω : T (ω, P ) = 1}) > 1− ε and Qµ ({ω : T (ω, P ) = 1}) < ε for
each P . The proof follows Lehmann and Romano (2006, Chapter 16). If P /∈ Λ the result
is obvious. So let P ∈ Λ, and denote be AP the set {ω : P (ωnP ) > Qµ (ωnP )}. Recall
HnP is the set of all histories of length nP . For every E ∈ FnP we have

P (E)−Qµ (E) =
∑

ωnP ∈HnP :ωnP⊆E
P (ωnP )−Qµ (ωnP )

≤
∑

ωnP ∈HnP :ωnP⊆E∩AP
P (ωnP )−Qµ (ωnP )

≤
∑

ωnP ∈HnP :ωnP⊆AP
P (ωnP )−Qµ (ωnP ) .

Therefore P (AP )−Qµ(AP ) = maxE∈FnP P (E)−Qµ (E) > 1− ε. So P (AP ) > 1− ε (in
particular, the test T does not reject the truth with probability 1− ε) and Qµ(AP ) < ε.
We can now show that T is ε-nonmanipulable. For every strategy ζ, we have

V (Qµ, ζ) =
∫

∆(Ω)
Qµ(AP )dζ (P ) < ε. (16)

Using again the fact that µ 7→ V (Qµ, ζ), µ ∈ ∆ (∆ (Ω)), is continuous and ∆o (Λ) is dense
in ∆(Λ), we can find a prior µζ ∈ ∆o (Λ) such that

V (Qµζ , ζ) =
∑
P∈Λ

µζ (P )V (P, ζ) < ε

Hence, there must exists some law Pζ ∈ Λ in the support of µζ such that V (Pζ , ζ) < ε.
Because ε is arbitrary, we conclude that Λ is testable.

Proof of Corollary 1. As shown in Phelps (2001, Proposition 1.2) a law P belongs to
the weak*-closed convex hull of Λ if and only if there exists a prior µ ∈ ∆(Λ) such that
P = Qµ. The result now follows immediately from Theorem 1 and the definition of I.

A.3 Proof of Theorem 3

The next result is a version of the Neyman-Pearson lemma. The standard proof parallels
the proof of Theorem 3.2.1 in Lehmann and Romano (2006) and is therefore omitted.

Theorem 4 (Neyman-Pearson Lemma) Let P0, P1 ∈ ∆ (Ω). Given n ∈ N and α ∈
[0, 1], let Φ be the set of Fn-measurable functions φ : Ω → [0, 1] that satisfy EP0 [φ] ≥ α.
Let

λ = sup {k ∈ R : P0 ({ω : P0 (ωn) ≥ kP1 (ωn)}) ≥ α}
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and, letting 0 · ∞ = 0, define

δ = P0 ({ω : P0 (ωn) > λP1 (ωn)})
γ = P0 ({ω : P0 (ωn) = λP1 (ωn)})

The function

φ∗ (ω) =


1 if P0 (ωn) > λP1 (ωn)
α−δ
γ if P0 (ωn) = λP1 (ωn) and γ > 0
0 otherwise

is a solution to minφ∈Φ EP1 [φ].

Proof of Theorem 3. Fix a paradigm Λ, testing times (nP ) and a probability α ∈ [0, 1].
Denote by T the class of finite tests that are bounded by (nP ) and do not reject the truth
with probability α.

For every P ∈ Λ, let ΦP be the set of FnP -measurable functions φ : Ω → [0, 1] that
satisfy EP [φ] ≥ α. Define the function f : ∆(Λ)→ R as

f (µ) = sup
P∈Λ

min
φ∈ΦP

EQµ [φ] .

The function f is lower-semicontinous: Fix P ∈ Λ. The set ΦP can be identified with a
subset of [0, 1]m, where m is the cardinality of the set of histories of length nP . It is then
immediate to verify that ΦP is compact. It then follows from the theorem of the maximum
that the map Q 7→ minφ∈ΦP EQ [φ], Q ∈ ∆ (Ω), is continuous. Thus, the continuity of the
map µ 7→ Qµ, µ ∈ ∆ (∆ (Ω)), implies that the map µ 7→ minφ∈ΦP EQµ [φ], µ ∈ ∆ (∆ (Ω))
is a composition of continuous functions. Thus, f is a supremum of continuous functions.
Hence f is lower-semicontinuous and so attains a minimum on ∆(Λ). Let µ∗ be a prior
which minimizes f .

Denote by φ∗P the test obtained by applying the Neyman-Pearson lemma when setting
P0 = P , P1 = Qµ∗ and n = nP in the statement of Theorem 4. Denote also by λP , δP and
γP the corresponding quantities. Let T ∗ be the test defined as

T ∗ (ω, P ) =
{
φ∗P (ω) if P ∈ Λ

0 if P /∈ Λ.

We now show that T ∗ is a well-defined test belonging to T . By definition, the test is
finite and does not reject the truth with probability α. It remains to show it is measurable.
By Lemma 4.51 in Aliprantis and Border (2016), it is enough to prove that T (ω, ·) is
measurable for every ω. We first show that the map P 7→ λP , P ∈ Λ, mapping each measure
to the corresponding threshold λP ∈ [0,∞] in the likelihood-ratio test, is measurable. For
every k ∈ R let

Γk = {P ∈ Λ : P ({ω : P (ωnP ) ≥ kQµ∗ (ωnP )}) ≥ α} .
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Notice that Γk can be written as⋃
m∈N

({P ∈ Λ : nP = m} ∩ {P ∈ Λ : P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) ≥ α})

Each set {P ∈ Λ : nP = m} is measurable. For each ωm the function P 7→ P (ωm), P ∈
∆ (Ω), is continuous. So, for each history ωm the set

Υωm = {P ∈ Λ : P (ωm) ≥ kQµ∗ (ωm)}

is measurable. Let 1Υωm be the indicator function of Υωm and notice that

P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) =
∑

ωm∈Hm
P (ωm) 1Υωm (P ) ,

where the latter is a measurable function of P . It then follows that each set of the form

{P ∈ Λ : P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) ≥ α}

is measurable. Thus, Γk is measurable. This in turn yields that for each k the function
P 7→ k1Γk (P ) is measurable. Notice that λP = supk∈Q k1Γk (P ) for every P . Thus, we can
conclude that the function P 7→ λP (mapping ∆ (Ω) to R∪ {∞}) is measurable. Now fix a
path ω. An argument analogous to that one used to prove the measurability of the set
Γk shows that {P ∈ Λ : P (ωnP ) > λPQµ∗ (ωnP )} and {P ∈ Λ : P (ωnP ) = λPQµ∗ (ωnP )}
are measurable and that δP and γP are measurable functions of P . It is then routine to
verify that T (ω, ·) is measurable. We can therefore conclude that T is a well defined test
belonging to T .

We now show that T ∗ is a least manipulable test in the class T . Let T ∈ T . As in the
proof of Theorems 1 and 2, given any test T ∈ T we can apply Fan’s minmax theorem to
conclude

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T ] = min
µ∈∆(Λ)

sup
P∈∆(Ω)

EQµ [T (·, P )] . (17)

It is without loss of generality to assume that T (ω, P ) = 0 for every ω and P /∈ Λ. So, the
expression can be simplified to

sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ] = min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] .

The test T is finite and does not reject the truth with probability α. So, it satisfies
T (·, P ) ∈ ΦP for every P ∈ Λ. Thus,

min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] ≥ min
µ∈∆(Λ)

sup
P∈Λ

min
φ∈ΦP

EQµ [φ]

= min
µ∈∆(Λ)

f (µ)

= sup
P∈Λ

min
φ∈ΦP

EQµ∗ [φ] .
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The essential idea is that the test T ∗ has been defined to satisfy, for every P ∈ Λ,

EQµ∗ [T ∗(·, P )] = min
φ∈ΦP

EQµ∗ [φ]

This means that

min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] ≥ sup
P∈Λ

min
φ∈ΦP

EQµ∗ [φ]

= sup
P∈Λ

EQµ∗ [T ∗ (·, P )]

≥ min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T ∗ (·, P )] .

By applying (17) to both T and T ∗ we now obtain

sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ] ≥ sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ∗] .

Hence, T ∗ is less manipulable than T .

A.4 Proof of Propositions 1-4

Proof of Proposition 1. Fix two outcomes x, y ∈ X. Let Nn(ω) be the number of periods
outcome x occurs along the path ω up to time n, and let N∞(ω) = supnNn(ω). In addition,
define Nn[x→ y](ω) to be the number of periods, up to time n, where the outcome x is
followed in the next period by y.

For every transition π, let Eπ be the set of paths ω such that N∞(ω) =∞ and

lim
n→∞

Nn[x→ y](ω)
Nn(ω) = π(x)(y) (18)

It is a standard result that every Markov Pρ,π satisfies Pρ,π({N∞ < ∞} ∪ Eπ) = 1.
We include here a proof for completeness. Let A = {N∞ < ∞} ∪ Eπ and notice that
Pρ,π(A) =

∑
z∈X Pρ,π({ω1 = z})Pz,π(A), where Pz,π denotes the Markov law with transition

π and initial probability putting mass 1 on z. Write X = S ∪R1 ∪ . . .∪Rn, where S is the
set of transient states and (Ri) are disjoint maximal irreducible sets of states (see Theorem
6.2.13 in Dembo, 2015). Assume x ∈ R1, without loss of generality. If z ∈ Ri and i > 1
then Pz,π({N∞ = 0}) = 1. So Pz,π(A) = 1. If z ∈ R1 then it is well known that Pz,π,
being irreducible, satisfies Pz,π(Eπ) = 1.22 Thus Pz,π(A) = 1. Hence Pz,π(A) = 1 for every
recurrent state. Now let z ∈ S and consider the stopping time τ(ω) = inf{n : ωn /∈ S}.
Because z is transient and X is finite then Pz,π({τ <∞}) = 1. Because Pz,π(A) = 1 for
every z /∈ S it follows from the strong Markov property (Proposition 6.1.16 in Dembo,
2015) that Pz,π(A) = 1.

22See, for example, http://www.statslab.cam.ac.uk/~james/Markov/s110.pdf
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The measure m assigns probability 1 to the set Π+ ⊆ Π of transition probabilities π
that satisfy π(y)(z) ∈ (0, 1) for all y, z ∈ X. Let π ∈ Π+. Then Pπ is irreducible and
satisfies Pπ(N∞ =∞) = 1. Hence Pπ(Eπ) = 1. Therefore, given a Markov law Pσ,ρ with
transition σ ∈ Π,

Pσ,ρ({N∞ <∞} ∪ Eσ)−Qµ({N∞ <∞} ∪ Eσ)

= 1−
∫

Π+
Pπ(Eσ)dm(π) = 1

where the last equality follows from the fact that π(x)(y) 6= σ(x)(y) implies Eσ ∩ Eπ = ∅
(hence Pπ(Eσ) = 0) and {π ∈ Π : π(x)(y) = σ(x)(y)} has probability 0 under m. Therefore
‖Qµ − Pπ,ρ‖ = 1.

Proof of Proposition 2. Recall that two measures P0, P1 ∈ ∆(Ω) that assign positive
probability to every history are orthogonal if and only if the event

A =
{
ω : P0(ωn)

P1(ωn) →∞
}

satisfies P0(A) = 1 and P1(A) = 0. See Shiryaev (1996, Theorem 2, p. 527).
Given two paths ω and ω̃, for every n and t in N, we denote by

(ω1, . . . , ωn, ω̃n+1, . . . , ω̃t)

the history where the first n outcomes are as in the path ω and the the outcomes from
time n+ 1 to t are as in path ω̃.

Now let P1, . . . , Pn in Λ be orthogonal. If i 6= j, then given a finite history ωn also
Pi(·|ωn) and Pj(·|ωn) are orthogonal. This implies that for every path ω = (ω1, ω2, . . .)
and every n, the event

A(ωn) =
{
ω̃ ∈ Ω : lim

t≥n+1,t→∞

Pi((ω1, . . . , ωn, ω̃n+1, . . . , ω̃t)|ωn)
Pj((ω1, . . . , ωn, ω̃n+1, . . . , ω̃t)|ωn) = +∞

}

satisfies Pi(A(ωn)|ωn) = 1 and Pj(A(ωn)|ωn) = 0. Notice that A(ωn) ∈ F∞n . In addition,
Pi(A(ωn)) = 1 and Pj(A(ωn)) = 0. Define A(n) =

⋂
ωn∈Hn A(ωn). Thus, A(n) ∈ F∞n ,

Pi(A(n)) = 1 and Pj(A(n)) = 0. Let A =
⋂
nA(n). Then A is tail-measurable (i.e.

measurable with respect to the tail σ-algebra
⋂
nF∞n ) and satisfies Pi(A) = 1 and Pj(A) = 0.

Hence, for every Pi and Pj we can find a tail-measurable event Ai,j such that Pi(Ai,j) = 1
and Pj(Ai,j) = 0. Let Ei =

⋂
j 6=iAi,j . Then each Ei is tail-measurable and satisfies

Pi(Ei) = 1 and Pj(Ei) = 0 for every j 6= i. If i 6= j then Ai,j and Aj,i are disjoint, and so
are Ei and Ej . By enlarging En to be equal to the complement of

⋃n−1
i=1 Ei, we can assume

that E1, . . . , En form a partition of Ω. Each of its element are tail-measurable.
Let µ be a uniform prior over P1, . . . , Pn. Then Qµ(Ei) = 1/n for every i = 1, . . . , n.

Fix P ∈ Λ. Because P is mixing, it satisfies P (F ) ∈ {0, 1} for every event F that is
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tail-measurable (see Theorem 13.18 in Davidson, 1994). Because E1, . . . , En is a partition
of Ω that consists of tail-measurable events, then P ∈ Λ satisfies P (EiP ) = 1 for some
iP ∈ {1, . . . , n}. Hence

‖Qµ − P‖ ≥ P (EiP )−Qµ(EiP ) = P (EiP )− µ(PiP ) = 1− 1/n.

Since P and n are arbitrary, it follows from Theorem 1 that Λ is testable.

Proof of Proposition 3. Fix ε > 0. Let n > 2/ε and ` = 2u/ε, and assume |Θ| > n and
` > `. For every θ, let Pθ be a measure that assigns probability 1 to the intersection
of
⋂
θ′ 6=θ Ωθ′ and {ω : g(ω, θ) > 0}. In particular, each Pθ satisfies EPθ [g(·, θ)] ≥ 0 hence

Pθ ∈ ΛΘ. Let µ be the uniform prior over {Pθ : θ ∈ Θ}. Then µ(Pθ) < ε/2 for every θ.
Let θ∗ ∈ Θ and P ∈ Λθ∗ . Then

0 ≤ EP [g(·, θ∗)] ≤
∫

Ωθ∗
g(ω, θ∗)dP (ω) + u(1− P (Ωθ∗)) ≤ −

2u
ε
P (Ωθ∗) + u

therefore P (Ωθ∗) ≤ ε/2. For every θ 6= θ∗, we have Pθ(
⋂
θ′ 6=θ Ωθ′) = 1, hence Pθ(Ωθ∗) = 1.

Therefore Qµ(Ωθ∗) =
∑
θ 6=θ∗ µ(Pθ) > 1− ε/2.

So, ‖Qµ − P‖ is greater than Qµ(Ωθ∗)− P (Ωθ∗) > 1− ε. Because this holds for every
P ∈ Λ then, by Theorem 2, the paradigm ΛΘ is ε-testable.

Proof of Proposition 4. As shown by Theorem 2, in order to prove that Λε
P is ε-

testable it is enough to find a prior µ ∈ ∆
(
ΛεP
)
such that P = Qµ. Consider the set

N = {ω : P ({ω}) = 0}. Each ω ∈ N satisfies δω ∈ Λε
P . Notice that P can have at most

countably many atoms, so N is dense. The function ω 7→ δω, ω ∈ Ω, is continuous, and so
{δω : ω ∈ N} is dense in {δω : ω ∈ Ω}. We can therefore conclude that {δω : ω ∈ Ω} ⊆ ΛεP .
Consider now the prior defined as µ (Γ) = P ({ω : δω ∈ Γ}) for every measurable set
Γ ⊆ ∆ (Ω). Standard arguments shows that µ is well defined and satisfies Qµ = P . Because
µ ({δω : ω ∈ Ω}) = 1, then µ ∈ ∆(ΛεP ). Therefore, ΛεP is ε-testable.

Suppose, as a way of contradiction, that Λε
P ⊆ Λ, where Λ is a paradigm that is

ε′-testable and ε′ < ε
2 . As shown in the proof of Theorem 1, there exists a prior ν ∈ ∆(Λ)

such that ‖Qν −Q‖ ≥ 1− 2ε′ for every Q ∈ Λ. Equivalently,{
Q ∈ ∆ (Ω) : ‖Q−Qν‖ < 1− 2ε′

}
⊆ Λc

By assumption, Λc ⊆ (ΛεP )c = {Q ∈ ∆ (Ω) : ‖Q− P‖ ≤ 1− ε}, so{
Q ∈ ∆ (Ω) : ‖Q−Qν‖ < 1− 2ε′

}
⊆ {Q ∈ ∆ (Ω) : ‖Q− P‖ ≤ 1− ε} . (19)

To show that this leads to a contradiction, let R ∈ ∆ (Ω) be a measure such that ‖R−Qν‖ =
‖R− P‖ = 1. For instance, let R = δω for some path ω that is not an atom of either Qν
or P . Fix t ∈ (2ε′, ε) and consider the measure tQν + (1− t)R. We have

‖tQν + (1− t)R−Qν‖ = (1− t) ‖R−Qν‖ = (1− t) < 1− 2ε′.
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Hence, it follows from (19) that ‖tQν + (1− t)R− P‖ ≤ 1 − ε. Now let E be an event
such that R (E) = 1 and Qν (E) = P (E) = 0. Then

1− ε ≥ ‖tQν + (1− t)R− P‖ ≥ tQν (E) + (1− t)R (E)− P (E) = 1− t.

By construction, 1− t > 1− ε. So we obtain a contradiction. Therefore, ΛεP is not included
in any testable paradigm.

A.5 Other Proofs

Proof of Proposition 5. Let Λ be ε-testable in n periods. Then, by substituting the
total-variation distance with the semi-distance ρn and following the same arguments
used in the proof of Theorem 1, it follows that there exists a prior µ ∈ ∆(Λ) such that
ρn(Qµ, P ) > 1− 2ε for all P ∈ Λ.

Only one change is necessary: the same results in Shiryaev (2016) cited in the proof of
Theorem 1 imply ρn(P,Q) = maxφ |

∫
Ω φdP −

∫
Ω φdQ| where the maximum is taken over

all functions φ : Ω→ [0, 1] that are Fn-measurable.
Conversely, let µ ∈ ∆(Λ) be a prior such that ‖Qµ − P‖n > 1− ε for all P ∈ Λ. The

first part of the proof follows, verbatim, the proof of Theorem 2 (notice that by assumption
nP ≤ n for every P ∈ Λ).

The next result will be used in the proof of Proposition 6. In what follows, Bδ(P )
denote the open ball of radius δ around P with respect to the same metric d fixed in the
main text.

Lemma 2 Let µ ∈ ∆ (∆ (Ω)) be a prior and let Γ ⊆ ∆ (Ω) be its support. For every δ > 0
there exists a constant λ > 0 such that

µ (Bδ (P )) ≥ λ for all P ∈ Γ.

Proof of Lemma 2. Suppose not. Then there must exist δ > 0 and a sequence (Pn) in
Γ such that µ (Bδ (Pn)) → 0 as n → ∞. The space ∆(Ω) is compact and Γ ⊆ ∆(Ω) is
closed. Hence, it is compact. So, we can assume (taking a subsequence if necessary) that
Pn converges to a law P ∈ Γ. Fix a law Q. Assume Q ∈ Bδ/2 (P ). Then d (Pn, Q) < δ for
all n large enough. Thus Q ∈ Bδ (Pn) for all n large enough. Thus,

1Bδ/2(P ) (Q) ≤ lim inf
n→∞

1Bδ(Pn) (Q) for every Q ∈ Γ

where 1Bδ/2(P ) denotes the indicator function of Bδ (P ). By applying Fatou’s lemma, we
can then conclude that

µ(Bδ/2 (P )) ≤
∫

∆(Ω)
lim inf
n→∞

1Bδ(Pn)dµ ≤ lim inf
n
µ (Bδ (Pn)) = 0
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Hence µ(Bδ/2 (P )) = 0. Since P ∈ Γ, then µ must assign positive probability to every
neighborhood of P , so we reach a contradiction, and the proof is finished.

Proof of Proposition 6. By Lemma 2, there exists a λ > 0 such that µ (Bδ (P )) ≥ λ for
every P ∈ Λ. Fix a sequence (εn) such that εn ↓ 0. Because ‖Qµ−P‖ = 1 for every P ∈ Λ,
then, as shown in the proof of Theorem 2, we can find for every n a finite test Tn with the
properties that Tn does not reject the truth with probability 1− εn and for every strategy
ζ, by equation (16),

EQµ⊗ζ [Tn] =
∫

Λ
EP⊗ζ [Tn] dµ(P ) ≤ εn.

By applying Markov’s inequality, for every k > 0 and ζ, we have

µ
({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

})
≥ 1−

EQµ⊗ζ [Tn]
kεn

≥ 1− 1
k

Fix ε > 0 and choose k large enough such that 1− 1
k + λ > 1. In addition, given k choose

N large enough such that kεn ≤ ε for all n > N . Now fix a particular n > N . Given
Po ∈ Λ and a strategy ζ, we have

µ
({
P ∈ Λ ∩Bδ (Po) : EP⊗ζ [Tn] ≤ ε

})
≥ µ

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

}
∩Bδ (Po)

)
= µ

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

})
+µ (Bδ (Po))− µ

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

}
∪Bδ (Po)

)
≥ 1− 1

k
+ λ− 1 > 0.

This implies we can select a measure Pζ ∈ Λ ∩ Bδ (Po) such that EPζ⊗ζ [Tn] ≤ ε. By
continuity of the map P 7→ EP⊗ζ [Tn] we can then select a measure P ′ζ ∈ Λ ∩Bδ (P0) such
that EP ′

ζ
⊗ζ [Tn] ≤ ε. Because Po is arbitrary, then it follows that the test Tn satisfies the

conditions of Definition 6. Because ε is arbitrary, it follows that Λ is uniformly testable
with precision δ.
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