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Abstract

In the evaluation of public policies, a crucial distinction is between plans that
involve purely idiosyncratic risk and policies that generate aggregate, correlated risk.
While natural, this distinction is not captured by standard utilitarian aggregators.

In this paper we revisit Harsanyi’s (1955) celebrated theory of preferences aggre-
gation and develop a parsimonious generalization of utilitarianism. The theory we
propose can capture sensitivity to aggregate risk in large populations and can be
characterized by two simple axioms of preferences aggregation.
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1 Introduction

Most public policies involve a mix of idiosyncratic risk (e.g. uncorrelated health accidents)
and correlated, aggregate risk (e.g. the risk of pandemics). This elementary, but
important, difference has been studied across several fields and has been highlighted in
recent institutional debates. Examples include the debate on the Precautionary Principle
as an appropriate response to catastrophic risk (Sunstein (2005)), the study of the ethical
implications of public risk (Keeney (1984)) and public hazards (Fishburn (1984) and
Bernard, Treich, and Rheinberger (2017)), the recent discussion on systemic risk in
financial markets (see Acharya, Pedersen, Philippon, and Richardson (2017) and Adrian
and Brunnermeier (2016)), and the analysis of the effect of evolution on shaping humans
attitude over risk (Robson (1996)), among many others.

In this paper we seek to understand how correlated and idiosyncratic risks should
be evaluated by a policy maker. It is common practice, in economics, to evaluate social
prospects according to the expectation of an additive utilitarian aggregator of the form:

U(s) =
∑
i∈I

ui(si) (1)

where s is a vector of outcome, si represents individual i’s outcome and ui her utility
function. The starting point of our analysis is the well known observation that utilitarian
aggregators cannot distinguish between idiosyncratic and correlated risk, since the
expectation of (1) does not depend on the degree of correlation of the variables (si)i∈I .1

Consider, for concreteness, two risky policies, labeled A and B. Assume each option
will affect a large population and, for each individual, will result in either a good or bad
outcome. Assume under A risk is perfectly correlated: with probability 1/2 all agents
will either obtain a high or low level utility. Under B, each individual has a probability
1/2 of receiving one of the two outcomes, but these odds are independent across agents.

From the perspective of the private interests of a single individual, the two policies can
be viewed as equivalent. The same conclusion is reached if the two policies are evaluated
according to the expectation of the aggregator (1). However, it is not obvious that the
policy maker should treat the two options in the same way. A policy maker may draw a
distinction among the two based on equity concerns, social considerations, or economic
motives.

One may argue that A is more equitable than B. The former will result in a perfectly
equal distribution of utility, while the second will split society in two subgroups enjoying
very different outcomes. Taking a different perspective, a policy maker may be concerned

1An important caveat is in order. Throughout the paper we adopt a somewhat narrow interpretation
of utilitarianism. We describe functionals as (1) as “utilitarian,” but we do not claim that this captures
the whole spectrum of ideas associated with the term. For instance, we maintain the assumption that
each individual utility ui is a function only of i’s outcome. This assumption, while very common in
economic models, might be inappropriate in certain contexts.
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with the fact that A exposes society to the (possibly catastrophic) risk of a uniformly bad
outcome. Such a scenario is guaranteed to happen with only very small probability under
the alternative B, which is therefore safer. Another reason to weight the two policies
differently is the fact that under policy B, society, as a whole, will not be exposed to
any risk. With respect to any aggregate statistic that is a function of the distribution of
outcomes in the population, the final effect of policy B is, unlike A, known in advance,
up to a vanishing degree of error.

We provide a parsimonious generalization of the utilitarian criterion that can capture
sensitivity to aggregate risk. We adopt an axiomatic approach and propose a theory of
preference aggregation that revisits Harsanyi’s (1955) foundation of utilitarianism.

We consider a standard economic environment given by a large population I of agents
and, for each agent i, a set of possible outcomes Xi. Policies are identified with lotteries
over profiles s ∈

∏
i∈I Xi. Each individual is endowed with a preference relation %i over

lotteries. These preferences must be aggregated in a social preference relation %, as a
guide for a policy maker. Both the individual and the social preference relations are
consistent with expected utility.

In Harsanyi’s theory, social and individual choices are related by a Pareto condition:
if all agents prefer a lottery P to a lottery Q, then society too should rank P as more
desirable than Q. While seemingly uncontroversial, Harsanyi’s axiom rules out concerns
for aggregate risk. In the environment we study in this paper, the axiom forces a policy
maker to deem as equally desirable any two policies that induce the same individual
risks, regardless of their degrees of correlation. Therefore, in this paper, we depart from
Harsanyi’s approach.

We relate the social preference and the individual preferences through two simple
axioms. The first condition, Restricted Pareto, is a weakening of Harsanyi’s Pareto axiom.
Call independent a lottery P under which the individual outcomes (si)i∈I are independent
random variables. So, an independent lottery describes idiosyncratic risk. The Restricted
Pareto axiom requires society to prefer a lottery P to a lottery Q whenever all agents
rank the first as preferable to second and both lotteries are independent.

The second axiom, Anonymity, posits a limit to the degree by which society can
discriminate or favor different groups. Consider a group a ⊂ I and an allocation sa

that assigns to each agent who belongs to a her most favorite outcome, and to each
agent who does not belong to a her worst favorite outcome. We call such an allocation
an extreme allocation, since it unambiguously favors a certain group to the rest of the
populations. The Anonymity axiom postulates that if two groups a and b represent the
same fraction of the population, then the policy maker should be indifferent between the
extreme allocations sa and sb.

The two axioms, together with a strict version of the Restricted Pareto axiom, are
satisfied if and only if the preference relation % ranks social prospects according to the
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expectation of the aggregator

U(s) = ϕ

(∫
I
ui(si)dλ(i)

)
(2)

where (I, λ) is a non-atomic space of agents (a primitive of the model), ui is individual
i’s von-Neumann Morgentstern utility, normalized to take values between 0 and 1, and ϕ
is a strictly increasing transformation.

When ranking deterministic allocations, the transformation ϕ plays no role in the
representation (2). So, in the absence of risk, a preference % that satisfies the axioms is
consistent with a standard utilitarian aggregator.

The ranking over lotteries, on the other hand, depends crucially on whether risk is
idiosyncratic or correlated. Given a lottery P that is independent, a law of large numbers
argument implies that the expectation of (2) takes the form

EP [U ] = ϕ

(∫
I
EP [ui]dλ(i)

)
That is, policy P is evaluated by averaging the individual expected utilities and then
applying the transformation ϕ. In particular, when ranking two lotteries P and Q that
are both independent, the comparison between the expected social utilities EP [U ] and
EQ[U ] does not depend on the transformation ϕ and, is again, consistent with the ranking
of a standard utilitarian aggregator. However, unless the function ϕ is linear, a social
preference consistent with the axioms above will display sensitivity to correlated risk.

We illustrate these features of the representation by means of our initial example.
Suppose that for every agent a good outcome provides utility 1 and a bad outcome utility
0. Then the policy maker will evaluate policy A as 1

2ϕ(1)+ 1
2ϕ(0). Under policy B, almost

surely, half of the agents will obtain utility 1 and half of the agents will obtain utility 0,
resulting in average realized utility

∫
I ui(si)dλ(i) equal to 1/2. Hence, A is preferred to B

by the policy maker if and only if 1
2ϕ(1) + 1

2ϕ(0) ≥ ϕ(1
2) holds. More generally, concavity

of ϕ captures aversion to aggregate risk.
The aggregator we propose in this paper is formally close to utilitarianism and

straightforward to apply. While the representation (2) we propose is simple, our main
characterization theorem requires us to develop some new techniques. Because we focus
on independent lotteries, which form a nonconvex set, we cannot apply some of the
standard arguments in the literature on preference aggregation (see Border (1985) for a
concise proof of Harsanyi theorem). The proof of our characterization theorem is based
instead on a novel probabilistic argument.

1.1 Related Literature

An important reason to study correlation among individual risks a concern about in-
equality. Two generalizations of utilitarianism that capture inequality aversion are the
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Generalized Utilitarian criterion, where U(si) =
∫
I φ(ui(si))dλ(i)(see, for instance, Adler

and Sanchirico (2006)), and the Expected Equally-Distributed Equivalent-Utility rep-
resentation U(si) = φ−1 (

∫
I φ(ui(si))dλ(i)), introduced by Fleurbaey (2010) and further

characterized in Grant, Kajii, Polak, and Safra (2012). Both criteria extend utilitarianism
by allowing for a (possibly) nonlinear transformation φ. In Section 5.1 we discuss in
detail the relation between our work and these alternative classes of social preferences.

The Restricted Pareto axiom was studied by Keeney (1980), by Bommier and Zuber
(2008) and in the context of multi-attribute decision theory (see Keeney and Raiffa
(1993)). These papers obtain representations where the aggregator U is multiplicative or,
more generally, multilinear with respect to the individual utility functions. In general,
multiplicative or multilinear aggregators differ from additively separator aggregators even
in the ranking of deterministic allocations. One of the contributions of this papers is to
show that in the context of large populations (a natural setup for studying public risk) it
is possible to capture sensitivity to aggregate risk while retaining most of the features of
utilitarian aggregators.

The Anonymity axiom captures a basic principle of impartiality. While anonomity
conditions are standard postulates in theories of preference aggregation (see, for instance,
May (1952)), the approach we take in this paper is more directly inspired by the work
of Karni (1998), Dhillon and Mertens (1999) and Börgers and Choo (2017), and Segal
(2000).

In econometrics, Manski and Tetenov (2007) study optimal treatment problems under
the social welfare functional (2). Their work provides support for fractional treatments as
an optimal way to hedge against risk. The same social welfare functional is also discussed
in Al-Najjar and Pomatto (2016) but without providing a foundation based on axioms of
preference aggregation.

2 Framework

We consider a society consisting of a set I of agents and a policy maker, or social planner.
For each agent i we are given a set Xi of individual outcomes.

The policy maker must choose among different policies, and each policy induces a
different probability distributions over allocations of outcomes. Formally, an allocation,
or profile, of outcomes is a vector s ∈

∏
i∈I Xi that assigns to each agent i an outcome

si ∈ Xi. We denote by S the set of all profiles. Each set of outcomes Xi is endowed with
a σ-algebra Σi containing all singletons. We denote by ΣI = ⊗i∈IΣi the corresponding
product σ-algebra. A lottery (or policy) is a σ-additive probability measure on (S,ΣI)
and ∆(S) is the set of all lotteries.

Of particular interest is the subset Π(S) ⊆ ∆(S) of product measures. Under a lottery
P ∈ Π(S) individual outcomes (si)i∈I are independent (but not necessarily identically
distributed) random variables. To simplify the language, we refer to a lottery P in Π(S)
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as an independent lottery. Independent lotteries describe idiosyncratic risk. We will
identify an allocation s with the degenerate lottery that assigns probability 1 to s. Notice
that a degenerate lottery is an independent lottery.

Given P ∈ ∆(S) and i ∈ I let Pi be the corresponding marginal on (Xi,Σi) defined
as Pi(E) = P ({s : si ∈ E}) for every E ∈ Σi. We consider completions of the above
σ-algebras. Given a lottery P , let ΣI

P be the completion of ΣI with respect to P and
denote by Σ the common completion Σ =

⋂
P∈∆(S) ΣI

P .

2.1 Preferences

The policy maker and the agents are expected utility maximizers. Each agent i is endowed
with a binary preference relation %i over the set of lotteries that admits the representation

P %i Q ⇐⇒ EPi [ui] ≥ EQi [ui]

where the von Neumann-Morgenstern utility function ui : Xi → R is bounded and Σi-
measurable. Throughout the paper we maintain the assumption, prevalent in economics,
that an individual’s utility function depends only on her outcome.

Each utility function ui is normalized, without loss of generality, to take value in a
subset of [0, 1]. We assume that for each agent i there are best and worst outcomes xi
and xi in Xi such that ui (xi) = 1 and ui (xi) = 0.

The policy maker is endowed with a social preference relation % over lotteries repre-
sented as

P % Q ⇐⇒ EP [U ] ≥ EQ [U ]

where U : S → R is bounded and Σ-measurable. For any two policies P and Q, the
ranking P % Q indicates that P is at least as desirable, from a social perspective, as Q.

2.2 The Pareto Axioms and Harsanyi Theorem

We now review the main concepts behind Harsanyi’s Theorem. A basic normative tenet
for aggregating individual preferences is that society should avoid Pareto dominated
allocations:

Axiom (Deterministic Pareto). For all profiles s and s′, if s %i s
′ for every i then s % s′.

Harsanyi’s celebrated solution to the problem of preferences aggregation is based
on the key idea of extending the Pareto principle from choices among deterministic
allocations to choices among lotteries:

Axiom (Extended Pareto). For all lotteries P and Q, if P %i Q for every i then P % Q.

In the present framework, Harsanyi Theorem can be stated as follows:2

2Zhou (1997) generalized Harsanyi Theorem to infinite populations. See also Remark 1 below.
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Theorem 1 (Harsanyi). Let I be finite. The preference relation % satisfies the Extended
Pareto axiom if and only if there exist α ∈ R and weights (λi)i∈I in R+ such that

U(s) =
∑
i∈I

λiui(si) + α for all s ∈ S

Hence, a social preference relation that abides by the extended Pareto axiom can be
represented by a utilitarian aggregator. In particular, as discussed in the introduction,
the Extended Pareto axiom rules out sensitivity to correlated, aggregate, risk. In order
to accommodate this basic disposition towards social risk, in the next section we provide
a theory of preference aggregation that weaken the Extended Pareto axiom.

3 Axioms and Representation

The contrast between idiosyncratic and correlated risk is more salient in large populations,
where individual idiosyncratic risks wash out at the aggregate level. In order to capture
this idea we will focus on the case where the population of agents I is large. This approach
will also simplify the analysis and facilitate the axiomatic derivation.

We model the population as a nonatomic space (I, λ), where I is infinite and λ is a
nonatomic probability measure defined on a collection of subsets of I. Given a group
a ⊆ I, λ(a) represents the fraction of agents that belong to that group.

In order to avoid the well known measurability issues that arise when dealing with an
uncountable family of independent random variables,3 we assume that I is countable and
λ is a finitely additive probability measure defined on the collection of all subsets of I.
We also assume that the map s 7→ λ({i : si = xi}) is Σ-measurable.4

We now turn to describing the axioms. The first axiom restricts Harsanyi’s Pareto
condition to choices among independent lotteries.

Axiom 1 (Restricted Pareto). For all independent lotteries P and Q, if P %i Q for
every i then P % Q.

The axiom describes a policy maker who abides by the Pareto principle as long as the
policy under considerations do not generate aggregate risk, and it reflects our motivation
of providing a parsimonious generalization of Harsanyi’s extended Pareto axiom.

Under the Extended Pareto axiom, two policies that induce the same marginal
distributions are deemed equally desirable by the policy maker. This is true regardless
of whether the welfare effect of the two policies is perfectly correlated or completely

3See Judd (1985), and Al-Najjar (2008) among many others.
4The latter assumption ensures that expectations with respect to a lottery P that involve integrals

with respect to λ are well-defined. Lemma 1 in the Appendix formalizes this claim. The Appendix also
contains an existence result. The choice of a countable set of agents and a finitely additive measure allows
us to keep the analysis mathematically rigorous, but nothing is lost in terms of intuition by taking I to
be the interval [0, 1] and λ the Lebesgue measure.
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idiosyncratic, hence regardless of whether the different policies involve risk only at the
individual level or also at the societal level. The Restricted Pareto axiom avoids this
strong conclusion by applying the Pareto principle only to the ranking of independent
lotteries.

The next condition is a strenghtening of axiom 1. For every α ∈ [0, 1], we denote
by Pα the independent lottery where each agent i receives her best outcome xi with
probability α and the worst outcome xi with probability 1− α. The Restricted Pareto
axiom ensures that the social preference % is monotone in the odds α of a good outcome,
in the sense that Pα % P β whenever 1 ≥ α ≥ β ≥ 0. The next axiom strengthen this
property to a strict form of monotonicity.

Axiom 2 (Strict Pareto). If α > β then Pα � P β.

The next axiom imposes some limit to the degree by which different groups can be
favored or discriminated against by the policy maker.

Given a set a ⊆ I of agents, we denote by sa the profile defined for every agent i as
sai = xi if i ∈ a and sai = xi if i /∈ a. Hence, the allocation sa assigns to every agent her
best outcome if she belongs to group a and her worst outcome otherwise. We refer to each
sa as an extreme allocation, as in many environments, whether the set of outcomes Xi

represents income, consumption bundles or health levels (ranging from “a life-threatening
health condition" to “being in perfect health”) an extreme allocation sa unambiguously
favors group a relative to the rest of the population.

The next axiom requires groups that represent equal fractions of the population to be
treated in the same way, at least in the context of choices between extreme allocations.

Axiom 3 (Anonymity). If λ(a) = λ(b) then sa ∼ sb.

Postulates related to axiom 3 have been discussed, in different contexts, by Karni
(1998), Dhillon and Mertens (1999), Segal (2000), and Piacquadio (2017), among others.

3.1 Representation

We can now present the main result of the paper.

Theorem 2. The preference relation % satisfies axioms 1-3 if and only if there exists a
strictly increasing function ϕ : [0, 1]→ R such that

U(s) = ϕ

(∫
I
ui(si)dλ(i)

)
for all s ∈ S. (3)

When confined to the ranking of deterministic profiles, the ordinal ranking described
by the function U is unaffected by the strictly increasing transformation ϕ. Hence, in
the absence or risk, the aggregator U is indistinguishable from an additively separable
aggregator. The ranking of lotteries, on the other hand, crucially hinges on whether risk
is independent or correlated. We illustrate this and other properties of the representation
in the next section.
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4 Idiosyncratic and Correlated Risk

We first consider the case where risk is purely idiosyncratic. Our analysis relies on the
following law of large numbers:

Theorem 3. Let U satisfy the representation (3). Then, for every independent lottery
P ,

U(s) = ϕ

(∫
I
ui(si)dλ(i)

)
= ϕ

(∫
I
EPi [ui]dλ(i)

)
for P -almost every profile s ∈ S.

Theorem 3 establishes that for almost all realized allocations s, the weighted average
realized utility

∫
I ui(si)dλ(i) will equal the weighted average expected utility

∫
I EPi [ui]dλ(i).

This fact formalizes the idea that from the perspective of the policy maker, randomness
vanishes in a large population under idiosyncratic risk.

The result implies that the expected social utility with respect to an independent
lottery P is given by the expression:

EP [U ] = ϕ

(∫
I
EPi [ui]dλ(i)

)
In particular, the social ranking of two independent lotteries resembles the ranking of a
standard utilitarian criterion:

Corollary 1. Let U satisfy the representation (3). Given two independent lotteries P
and Q,

EP [U ] ≥ EQ[U ] ⇐⇒
∫
I
EPi [ui]dλ(i) ≥

∫
I
EQi [ui]dλ(i)

As in the case of a ranking between deterministic allocations, the curvature of the
transformation ϕ plays no role in the evaluation of idiosyncratic risks.

We now study the case where risk has an aggregate component. A simple instance of
this class of risky policies is given by a lottery P ∗ that is a convex combination

P ∗ = αQ+ (1− α)R

between two independent lotteries Q and R. The lottery P ∗ admits a straightforward
interpretation. Consider a policy (for instance, a drug) whose effect on the population is
known to be distributed according to one of two possible independent distributions, Q
or R. Assume that the final distribution is determined by the realization of a common
aggregate shock represented by a binary random variable (e.g. whether or not the drug
is effective). Then the policy can be represented by the distribution P ∗.

It follows from Theorem 3 that the planner’s expected utility with respect to the
lottery P ∗ is given by:

EP ∗ [U ] = αϕ

(∫
I
EQi [ui]dλ(i)

)
+ (1− α)ϕ

(∫
I
ERi [ui]dλ(i)

)
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The expression makes clear that the non-linearity of ϕ plays a key role in the evaluation
of correlated lotteries. Indeed, as we record in the next remark, non-linearity implies a
violation of the Harsanyi Extended Pareto axiom.

Remark 1. If % satisfies the Extended Pareto axiom then ϕ is affine.

4.1 Conditionally i.i.d. Lotteries

We now consider a canonical class of distributions that display a mix of aggregate and
idiosyncratic risks. We assume a common set of individual outcomes X, so that Xi = X

for every i. We denote by ∆(X) the set of probability measures on X. An independent
lottery is i.i.d. if there is a single probability measure over outcomes θ ∈ ∆(X) that
satisfies Pi = θ for every i. Given θ, we denote by P θ the corresponding i.i.d. lottery. So,
P θ is an independent lottery with marginal θ common to all agents.

A lottery Pµ ∈ ∆(S) is conditionally i.i.d. with hyper-parameter µ if µ is a probability
over ∆(X) with finite support and Pµ is the mixture

Pµ =
∑

θ∈∆(X)
µ(θ)P θ

Informally, Pµ is a mixture of i.i.d. distribution where the parameter θ is unknown and
distributed according to µ.

This class of lotteries is widely used in applications for their tractability and because
they provide a clear separation between an aggregate common shock that determines
the parameter θ, and purely idiosyncratic individual shocks distributed according to P θ

(conditional on the realized θ).5

The following corollary of Theorem 3 gives a convenient formula for evaluating the
aggregative utility of conditionally i.i.d. lotteries in homogeneous populations:

Corollary 2. Assume there is a common utility function u : X → R such that u = ui

for every i. Then, for any conditionally i.i.d. lottery Pµ,

EPµ [U ] =
∑

θ∈∆(X)
µ(θ)ϕ (Eθ[u]) (4)

Concavity, or convexity, of the transformation ϕ characterize society’s aversion to, or
preference for, correlated risk. Given a conditionally i.i.d. lottery Pµ, define θµ ∈ ∆(X)
as the mixture

θµ =
∑

θ∈supp(µ)
µ(θ)θ

The social ranking between the conditionally i.i.d. lottery Pµ and the idiosyncratic
i.i.d. lottery P θµ is crucial in understanding how the policy maker tradeoffs adherence

5By de Finetti Theorem, conditional i.i.d. distributions can be characterized axiomatically as the only
lotteries that are invariant with respect to any permutation of the agents.
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to the Pareto principle and exposure to correlated risk. The two lotteries have identical
marginal distributions. Hence, under expected utility, agents must be indifferent between
the two, regardless of their von Neumman Morgensten utility function, i.e. we must
have Pµ ∼i P θ

µ for every i. Therefore, a strict ranking of the policy maker’s preference
between the two lotteries reveals a violation of Harsanyi’s Extended Pareto axiom.

A social planner who ranks P θµ � Pµ violates Harsanyi’s Extended Pareto axiom
by preferring idiosyncratic to correlated risk. An opposite conclusion applies whenever
Pµ � P θµ .

We say that the social preference % is averse to aggregate risk if P θµ % Pµ for
every µ. It is averse to idiosyncratic risk if Pµ % P θ

µ for every µ. As we record in the
next corollary, the social planner’s attitude towards social risk admits a straightforward
characterization in terms of the concavity of the transformation ϕ.

Corollary 3. The social preference % is averse to aggregate risk if and only if ϕ is
concave. It is averse to idiosyncratic risk if and only if ϕ is convex.

5 Discussion and Extensions

5.1 Comparison with other Generalizations of Utilitarianism

Here, we compare our work to other related generalizations of utilitarianism. The well-
known Generalized Utilitarian criterion (see, for instance, Adler and Sanchirico (2006)
and Grant, Kajii, Polak, and Safra (2010))

U(s) =
∫
I
φ(ui(si))dλ(i) (5)

can capture aversion to ex-post inequality by applying a concave transformation φ to
the individual utilities. Generalized utilitarianism cannot, however, capture sensitivity
to correlation, since the expectation of the aggregator U in (5) does not depend on the
correlation between the (si)’s.

Fleurbaey (2010) introduced the Expected Equally-Distributed Equivalent-Utility crite-
rion (henceforth, EEDEU) which, in our setting, takes the form

U(s) = φ−1
(∫

I
φ(ui(si))dλ(i)

)
. (6)

The representation displays aversion to inequality aversion if and only if the transformation
φ is concave. Concavity of φ translates, by the resulting convexity of φ−1, into a social
preference that is averse to idiosyncratic risk. To illustrate, consider a homogeneous
population where all agents have the same utility function u. If φ is concave, then for
every conditionally i.i.d. lottery Pµ, Jensen’s inequality and Theorem 3 imply

EPµ [U ] =
∑

θ∈∆(X)
µ(θ)φ−1 (Eθ[φ(u)]) ≥ φ−1

 ∑
θ∈∆(X)

µ(θ)Eθ[φ(u)]

 = Eθµ [U ]
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So, under the EEDEU criterion, a social preference can exhibit aversion to correlated
risk when ranking lotteries if and only if it favors inequity when ranking deterministic
allocations. We do not see this as a shortcoming of the EEDEU, but as an illustration of
the tension between two conflicting goals: reducing ex post inequality and mitigating cor-
related risk. Decreasing the impact of aggregate uncertainty may require a “diversification”
across individuals that exacerbates ex post welfare differences.

The two approaches may be unified by a more general criterion U(si) = (ϕ ◦
φ−1) (

∫
I φ(ui(si))dλ(i)). This more general class of social preferences would be able

to display, simultaneously, both ex-post inequity aversion and aversion to correlated
risk. We do not know to what extent the analysis in this paper and in Fleurbaey (2010)
can be adapted to provide an axiomatic foundation for this more general class of social
preferences.

5.2 Interpersonal Comparison of Utilities

In Theorem 2, the weight λ(a) represents the fraction of agent in the population that
belong to group a. In Harsanyi theorem, in contrast, the weight λ(a) is derived from
the social preference relation and is a subjective component of the representation. Thus,
different policy makers can satisfy Harsanyi axioms and yet attribute different social
weights to the same group of individuals. This particular feature of Harsanyi theorem
has been the subject of considerable scrutiny and critiques.

In this section we now show how Harsanyi’s approach can be integrated in our analysis
by weakening the Anonymity axiom. We consider a social preference relation that satisfies
the following three axioms.

The first condition requires each individual to be negligible.

Axiom a. Fix j ∈ I. If si = s′i for every i other than j, then s ∼ s′.

The next requirement is a continuity assumption.

Axiom b. For every s, {α : Pα � s} and {α : s � Pα} are open subsets of [0, 1].

The final axiom is a more substantive condition. It expresses the following logic:
whenever society is facing a choice between two extreme allocations sa and sb, the policy
maker should choose by taking into account only those agents who are affected by the
decision. The axiom is formally equivalent to de Finetti’s (1931) celebrated notion of
qualitative probabilities.

Axiom c. If (a ∪ b) ∩ c = ∅ then sa % sb ⇐⇒ sa∪c % sb∪c.

Notice that when choosing between sa and sb, or between sa∪c and sa∪c, in both
scenarios the final choice is inconsequential for agents who belong to the disjoint group c.

12



The axiom demands groups who do not have stakes in a decision over extreme allocations
to not play a role in determining what allocation will be implemented.

For the next result, we denote by P(I) the collection of all subsets of I.

Theorem 4. The preference relation % satisfies axioms 1,2 and a-c if and only if there
exists a strictly increasing function ϕ : [0, 1] → R and a nonatomic finitely additive
probability λ̃ defined on P(I) such that

U(s) = ϕ

(∫
I
ui(si)dλ̃(i)

)
for all s ∈ S.

All the results in the paper (including the analysis of Section 4) continue to hold when
the measure λ̃, derived from the preference %, is substituted to the original measure λ.6

Theorem 4 contributes to the literature on the representation of qualitative proba-
bilities. Our result differs from the existing literature (de Finetti (1931), Savage (1972),
Niiniluoto (1972), Wakker (1981) and Gilboa (1985), among others) in two main ways.
The additional probabilistic structure available in our framework allows substituting
Savage’s assumptions of fine and tight qualitative probability by the simple axioms a-b
and to provide a proof that is concise and almost self-contained.

5.3 Finite Populations

The social welfare functional introduced in this paper can be easily applied to finite large
populations. For every n, consider a finite population In ⊆ I of size n and the social
welfare functional defined as

Un(s) = ϕ

 1
n

∑
i∈In

ui(si)


The functional Un is a discretization of the representation in Theorem 2. It satisfies the
Restricted Pareto axiom asymptotically as the size of the population grows to infinity,
up to a vanishing degree of error.

Theorem 5. Let ϕ be continuously differentiable. There exists a sequence (εn) ↓ 0 such
that for every pair of independent lotteries P and Q,

if EPi [ui] ≥ EQi [ui] for every i ∈ In then EP [Un] ≥ EQ[Un]− εn

Notice that the same error term εn applies uniformly over all pairs of independent
lotteries P and Q. The result follows from a concentration of measure argument. As we
show in the Appendix (see lemma 5) the law of large numbers described in theorem 3
continues to hold, asymptotically, for finite populations.

6Formally, this follows from the fact that the only assumptions imposed on λ are that it is non-atomic
and satisfies a measurability conditions. Both assumptions are satisfied by a measure λ∗ obtained through
Theorem 4.
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5.4 Non-Expected Utility

We now extend our main result to non-expected utility preferences. Our aggregation
theorem continue to hold under very minimal assumption on the social planner’s preference
over lotteries. We now consider a policy maker endowed with a binary preference relation
% over lotteries which does not necessarily satisfy the von-Neumann Morgenstern axioms.

We impose two basic axioms on %. For the next condition, we denote by %|S the
restriction of % over the set of all deterministic allocations.

Axiom I. The preference %|S is complete, transitive and S contains a countable %|S-order-
dense subset.7For every s∗ ∈ S, the sets {s : s % s∗} and {s : s∗ % s} are Σ-measurable.

The axiom is equivalent to the existence of a social utility function U : S → R that
represents %|S and is Σ-measurable and bounded. The next axiom requires % to satisfy
a basic form of stochastic dominance.

Axiom II. Let P,Q ∈ ∆ (S). If s′, s′′ ∈ S are such that

P
({
s : s ∼ s′

})
= Q

({
s : s ∼ s′′

})
= 1 (7)

then P % Q if and only if s′ % s′′.

The two axioms are compatible with several models of decision under risk. Notice that
axiom II only has bite over lotteries that satisfy (7). Thus, it does not require the social
preference % to be complete, or even transitive, over the whole domain of lotteries. The
axiom is compatible with a preference that ranks lotteries according to the expectation
and the variance of U , as well as with rank dependent preferences. The next result shows
how our main result extends to any social preference relation consistent with axioms I
and II.

Theorem 6. Let % be a binary preference relation on ∆(S) that satisfies axioms I and
II. Let U : S → R be a bounded and Σ-measurable function that represents %|S. Then, %
satisfies axioms 1-3 if and only if there exists a strictly increasing function ϕ : [0, 1]→ R
such that

U(s) = ϕ

(∫
I
ui(si)dλ(i)

)
for all s ∈ S.

The result generalizes Theorem 2. Any preference % that satisfies axioms I and II must,
under the Anonymity and the Restricted Pareto axioms, rank deterministic allocations
in a utilitarian way. It can be shown that the conclusions of Corollary 1 continue to hold
under this more general framework. In particular, the ranking of independent lotteries
remains consistent with the expectation of a standard utilitarian aggregator.

7That is, there exists a countable set T ⊂ S such that for all s, s′ ∈ S, if s � s′ there exists t ∈ T such
that s % t % s′.
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A Appendix

A.1 Technical Preliminaries

As is well known, nonatomic population models lead to some measure theoretic subtleties.
In this paper, a first difficulty consists in making sure that the expectation of the average∫
I ui(si)dλ(i) is well-defined with respect to any lottery P . An additional difficulty is
establishing the law of large numbers property described in Theorem 3.

It is common in applications to model large populations as the interval [0, 1] endowed
with the standard Lebesgue measure; to assume, as a useful heuristic, that results such
as Theorem 3 hold; and to omit the measurability issues that arise with a continuum
of random variables. It is also natural in many problems to restrict the attention to
conditionally i.i.d. social lotteries, for which payoffs can be directly computed using
Corollary 2, without any reference to λ.

In this section we provide technical results that allows us to address the aforementioned
measurability issues while keeping the analysis rigorous. Recall that P(I) denotes the
collection of all subsets of I.

Lemma 1. Let λ be a nonatomic finitely additive probability defined on P(I). Consider
the following properties:

1. s 7→ λ({i : si = xi}), s ∈ S, is Σ-measurable;

2. s 7→
∫
I ui(si)dλ(i), s ∈ S, is Σ-measurable;

3. ξ 7→ λ({i : ξi = 1}), ξ ∈ {0, 1}I , is universally measurable.8

The following hold: (1) =⇒ (2) and (1)⇐⇒ (3).

Proof: (1) implies (2). Fix a Borel set A ⊆ [0, 1] and, for each i, the function φi : Xi → R
defined as φi(xi) = 1A(ui(xi)), where 1A is the indicator function of A. Each φi is
Σi-measurable. The function φ : S → S defined as φ(s) = (φi(si)) is then ΣI\ΣI -
measurable. We claim that φ is also Σ\Σ-measurable. To see this, let E ∈ Σ and
P ∈ ∆(S). Define Q ∈ ∆(S) as the pushforward measure Q = Pφ−1. Then E ∈ ΣI

Q,
hence there exist E1, E2 ∈ ΣI such that E1 ⊆ E ⊆ E2 and Q(E2) = Q(E1). Hence
φ−1(E1) ⊆ φ−1(E) ⊆ φ−1(E2) and P (φ−1(E1)) = P (φ−1(E2)). Hence φ−1(E) ∈ ΣI

P . So,
φ−1(E) ∈ Σ. It follows that the composition s 7→ λ({i : φ(s)i = xi}) is Σ-measurable.
Equivalently, s 7→

∫
I 1A(ui(si))dλ(i) is Σ-measurable. The linearity of the integral with

respect to λ implies that for every partition A1, ..., An of [0, 1] and all α1, ..., αn in
[0, 1], the function s 7→

∫
I

∑n
k=1 αk1Ak(ui(si))dλ(i) is Σ-measurable. For every n, let

fn : [0, 1] → [0, 1] be a function with finite range such that |f(t) − t| ≤ 1/n for every
t ∈ [0, 1]. Then s 7→

∫
I fn ((ui(si))) dλ(i) is Σ-measurable. For every s,∣∣∣∣∫

I
fn (ui(si)) dλ(i)−

∫
I
ui(si)dλ(i)

∣∣∣∣ ≤ ∫
I
|fn (ui(si))− ui(si)| dλ (i) ≤ 1/n

8The space {0, 1}I is endowed with the product topology.
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Hence s 7→
∫
I (ui(si)) dλ(i) is the limit of a sequence of Σ-measurable functions. Hence it

is Σ-measurable.
(1) implies (3). We denote by B({0, 1}I) and Bum({0, 1}I) the collections of, re-

spectively, Borel and universally measurable subsets of {0, 1}I . Let fi : {0, 1} → Xi

be defined as fi (1) = xi and fi (0) = xi. Then fi is measurable. Let f : {0, 1}I → S

be defined as f (ξ) = (fi (ξi))i∈I for all ξ ∈ {0, 1}I . By standard arguments f is
$B({0, 1}I)\ΣI -measurable. By replicating the argument applied in the first part of the
proof we obtain that f is also Bum({0, 1}I)\Σ-measurable. Let l : S → R be defined
as l(s) = λ({i : si = xi}). The composition l ◦ f is Bum({0, 1}I)-measurable. For all
ξ ∈ {0, 1}I , it satisfies

l(f(ξ)) = λ ({i : fi (ξi) = xi}) = λ ({i : ξi = 1}) .

(3) implies (1). For every i, consider the map φi : Xi → {0, 1} defined as the indicator
function of xi, and define φ : S → R as φ(s) = (φi(si)) for all s. Then φ is ΣI\B({0, 1}I)-
measurable. As before, the same argument applied in the first part of the proof shows
that φ is Σ\Bum({0, 1}I)-measurable. The map s 7→ λ{i : si = xi} is the composition of
φ and ξ 7→

∫
I ξidλ(i) and is therefore Σ-measurable.

By Lemma 1, any λ such that s 7→ λ({i : si = xi}) is Σ-measurable guarantees that
the expectation of

∫
I ui(si)dλ(i) is well defined with respect to any lottery P .

The next theorem, a direct corollary of a result by Fremlin, establishes the existence
of a nonatomic probability λ that satisfies the appropriate measurability properties under
an additional set theoretic axiom. Let c denote the cardinality of the continuum.

Axiom (P) The interval [0, 1] cannot be covered by less than c meager sets.

As implied by the Baire category theorem, the interval [0, 1] cannot be covered by
countably many meager sets. Axiom P strengthens this conclusion to any collection of
meager sets which cardinality is less than the continuum. In particular, it is implied by
the Continuum Hypothesis.9 The result follows directly from Theorem 538S in Fremlin
(2008) and lemma 1.

Theorem 7. Under Axiom P there exists a nonatomic finitely additive probability λ
defined on P(I) such that s 7→ λ({i : si = xi}), s ∈ S, is Σ-measurable.

The use of set theoretic assumption may appear peculiar. Substantively, our view is
that decision theoretic and economic considerations dictate the choice of a mathematical
structure, not the other way around. A decision maker is justified to question whether
expected utility or additive separability are appropriate on economic, ethical, or other
normative grounds. But modelers and practitioners who accept the stylized nature of

9In fact, it is implied by Martin’s Axiom, which is weaker than the continuum hypothesis.
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abstract models should not, and are unlikely to, take a stand on the status of the axioms of
set theory. For example, one may disagree with Savage’s theory of decision making under
uncertainty on substantive grounds, but usually not because it requires an infinite set of
states of the world. Axiom P is just what it takes to make the analysis mathematically
consistent.

The next result is a law of large numbers for abstract nonatomic population models.

Theorem 8. Let λ be a nonatomic finitely additive probability defined on P(I) such that
s 7→ λ({i : si = xi}) is Σ-measurable. Then, for every independent lottery P ,∫

I
ui(si)dλ (i) =

∫
I
EP [ui] dλ (i) P -a.s.

Proof: By Lemma 1 the map ξ 7→ λ({i : ξi = 1}), ξ ∈ {0, 1}I , is universally measurable.
The result now follows from Theorem 1 in Al-Najjar and Pomatto (2017).

Given any independent lottery, the realized average
∫
I ui(si)dλ (i) is almost surely

equal to the average expectation
∫
I EP [ui] dλ(i).

A.2 Proof of Theorems 2 and 6

Since Theorem 2 is a special case of Theorem 6 it is sufficient to prove the latter. To
this end, we fix a preference relation % defined on ∆(S) that satisfies the two axioms
introduced in Section 5.4. In particular, we fix a bounded, Σ-measurable function U such
that s % s′ iff U(s) ≥ U(s′) for all s, s′ ∈ S, and assume that % satisfies axiom II.

We first show the sufficiency of the axioms. By the Anonymity axiom, if λ(a) = λ(b)
then U(sa) = U(sb). Hence, there exists a function ϕ : [0, 1] → R such that U(sa) =
ϕ(λ(a)) for every a ⊆ I.

We now show that ϕ is strictly increasing. Let α ∈ (0, 1). By Theorem 8

λ({i : si = xi}) =
∫
I
ui(si)dλ(i) =

∫
I
EPα [ui]dλ(i) = α

for Pα-almost every s ∈ S. We can therefore conclude that for every α ∈ [0, 1],

Pα({sa : λ(a) = α}) = 1 (8)

Now let 1 ≥ α > β ≥ 0. By (8) we can find two subsets c, d ⊆ I such that λ(c) = α

and λ(d) = β. In addition,

Pα({sa : λ(a) = α}) = P β({sa : λ(a) = β}) = 1.

Hence
Pα({sa : ϕ(λ(a)) = ϕ(λ(c))}) = P β({sa : ϕ(λ(a)) = ϕ(λ(d))}) = 1.

So,
Pα({sa : sa ∼ sc}) = P β({sa : sa ∼ sd}) = 1.
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By the strict Pareto axiom, Pα � P β . Hence, by axiom II, sc � sd. So, ϕ(λ(c)) = ϕ(α) >
ϕ(β) = ϕ(λ(d)). It follows that ϕ is strictly increasing.

Now fix a profile s̃ ∈ S. Let P be the independent lottery defined so that for each i
the marginal Pi ∈ ∆ (Xi) satisfies

Pi ({xi}) = ui (s̃i) and Pi ({xi}) = 1− ui (s̃i)

for every i ∈ I. By the Restricted Pareto axiom, s̃ ∼ P .
By Theorem 8 we have ∫

I
ui(si)dλ(i) =

∫
I
EP [ui]dλ(i)

for P -almost every profile s. Notice that
∫
I ui(si)dλ(i) = λ({i : si = xi}) for P -almost

every profile s and
∫
I EP [ui]dλ(i) =

∫
I ui(s̃i)dλ(i) by construction. Since P assigns

probability 1 to extreme allocations, we obtain

P

({
sa : λ(a) =

∫
I
ui(s̃i)dλ(i)

})
= 1.

Fix a set ã ⊆ I such that λ(ã) =
∫
I ui(s̃i)dλ(i). Then

P ({sa : ϕ(λ(a)) = ϕ(λ(ã))}) = 1.

Equivalently, P
(
{sa : sa ∼ sã}

)
= 1. Since P ∼ s̃, axiom II implies sã ∼ s̃.

Therefore,
U(s̃) = U(sã) = ϕ (λ(ã)) = ϕ

(∫
I
ui(s̃i)dλ(i)

)
.

Because s̃ is arbitrary, this concludes the proof of sufficiency. We now turn to the proof of
necessity. We first show that the Restricted Pareto axiom is implied by the representation.
Consider two independent lotteries P and Q such that P %i Q for every i. We can apply
Theorem 8 to conclude

P

({
s :
∫
I
ui(si)dλ(i) =

∫
I
EPi [ui]dλ(i)

})
= 1

Q

({
s :
∫
I
ui(si)dλ(i) =

∫
I
EQi [ui]dλ(i)

})
= 1

Fix two profiles s′ and s′′ such that
∫
I ui(s′i)dλ(i) =

∫
I EPi [ui]dλ(i) and

∫
I ui(s′′i )dλ(i) =∫

I EQi [ui]dλ(i). Then

1 = P

({
s : ϕ

(∫
I
ui(si)dλ(i)

)
= ϕ

(∫
I
ui(s′i)dλ(i)

)})

1 = Q

({
s : ϕ

(∫
I
ui(si)dλ(i)

)
= ϕ

(∫
I
ui(s′′i )dλ(i)

)})
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Hence, P ({s : s ∼ s′}) = Q({s : s ∼ s′′}) = 1. By assumption,
∫
I ui(s′i)dλ(i) ≥∫

I ui(s′′i )dλ(i). Hence, by the Restricted Pareto axiom applied to δs′ and δs′′ , U(s′) ≥
U(s′′), so s′ % s′′. Axiom II therefore implies P % Q.

We now verify that the strict Pareto axiom holds. To this end, let α > β and fix two
subsets c, d ⊆ I such that λ(c) = α and λ(d) = β. Then ϕ(λ(c)) > ϕ(λ(d)) by the strict
monotonicity of ϕ, hence sc � sd.

As in the proof of sufficiency, we have Pα({sa : λ(a) = α}) = 1 and P β({sa : λ(a) =
β}) = 1. Hence Pα({sa : λ(a) = α}) = 1. That is, Pα({sa : sa ∼ sc}) = 1. Similarly,
P β({sa : sa ∼ sd}) = 1. Axiom II, together with the fact that sc � sd, implies Pα � P β .

Finally, the Anonymity axiom follows immediately from the representation.

A.3 Proof of Theorem 4

Define ϕ : [0, 1]→ R as ϕ (α) = EPα [U ] for each α ∈ [0, 1]. By the Strict Pareto axiom ϕ

is strictly increasing.

Lemma 2. There exists a capacity ν : P(I) → [0, 1] such that ν(I) = 1 and U (sa) =
ϕ (ν (a)) for every a ⊆ I.

Proof: Given a ⊆ I, consider the sets {α : Pα % sa} and {α : sa % Pα}. Because
P 1
({
sI
})

= P 0
({
s∅
})

= 1, then the Pareto axiom implies 1 ∈ {α : Pα % sa} and
0 ∈ {α : sa % Pα}. By the Continuity axiom the two sets are closed and their union is
[0, 1]. Hence there exists α ∈ [0, 1] such that sa v Pα. By the Strict Pareto axiom, such
α is unique. Hence we can define a set function ν : P(I) → [0, 1] such that sa v P ν(a)

for every a ⊆ I. Whenever a ⊆ b the Pareto axiom implies P ν(b) ∼ sb % sa ∼ P ν(a) so
ν (b) ≥ ν (a). In addition, because s∅ ∼ P 0 then ν (∅) = 0. Thus ν is a capacity. To
conclude, notice that sa v P ν(a) implies U (sa) = EP ν(a) [U ] = ϕ (ν (a)).

Lemma 3. For every α ∈ [0, 1], ν satisfies Pα ({sa : ν (a) = α}) = 1.

Proof: By axiom a the function U is unaffected by changing the outcome of any finite
set of agents. Kolmogorov’s 0-1 law implies Pα ({sa : U (sa) = EPα [U ]}) = 1. Hence, by
the definition of ϕ and Lemma 2 we obtain Pα ({sa : ϕ (ν (a)) = ϕ (α)}) = 1. Because, ϕ
is strictly increasing, then ν (a) = α for Pα-almost every profile sa.

The next result constructs an algebra A ⊆ P(I) such that ν, when restricted to A, is
additive and strongly non-atomic. Axiom c is not needed for the result.

Theorem 9. There exists an algebra A ⊆ P(I) such that ν when restricted to A is a
finitely additive probability. For every n ≥ 1, A contains a partition a1, ..., an of I such
that ν (a1) = ... = ν (an) = 1/n.
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Proof: In the proof we will use an auxiliary probability space (Ω,F , µ), where Ω = [0, 1)I ,
µ is the product µ = ⊗i∈Im where m is the Lebesgue measure on [0, 1), and F the
completion with respect to µ of the σ-algebra of Borel subsets of Ω. Given ω ∈ Ω, denote
by ωi ∈ [0, 1] its i-th coordinate. For each n ≥ 1 let An be the algebra on [0, 1) generated
by the partition [0, 1/n), ..., [(n−1)/n, 1). Consider the algebra A =

⋃
nAn. Given A ∈ A

and ω ∈ Ω let ω−1 (A) = {i : ωi ∈ A}. For each ω, the collection

Aω =
{
ω−1 (A) : A ∈ A

}
is an algebra of subsets of I. We now show that for µ-almost every ω the realized algebra
Aω satisfies the properties in the statement of the theorem. Fix A ∈ A. Given i define
the random variable Zi : Ω→ Xi as

Zi (ω) =
{
xi if ωi ∈ A
xi otherwise

For each i we have
µ ({ω : Zi (ω) = xi}) = m (A)

By construction, the random variables (Zi) are independent. They form an i.i.d. process
whose distribution is the lottery Pα where α = m (A). Formally, consider the map
Z : Ω → S defined as Z (ω) = (Zi (ω))i∈I for all ω ∈ Ω. By standard arguments Z is
F\ΣI -measurable and satisfies the change of variable identity

Pm(A) (E) = µ
(
Z−1 (E)

)
for all E ∈ ΣI .

Because F is complete then the same identity extends to all events E ∈ Σ.10 By applying
Lemma 3, we then obtain

1 = Pm(A) {sa : ν (a) = m(A)} = µ
(
Z−1 ({sa : ν (a) = m (A)})

)
= µ ({ω : ν ({i : Zi (ω) = xi}) = m(A)}) = µ ({ω : ν ({i : ωi ∈ A}) = m(A)}) .

That is, µ
({
ω : ν

(
ω−1(A)

)
= m(A)

})
= 1. Therefore,

Ω∗ =
∞⋂
n=1

⋂
A∈An

{
ω : ν

(
ω−1 (A)

)
= m(A)

}
(9)

is a countable intersection of sets that have probability 1 under µ. Hence µ (Ω∗) = 1.
Fix ω ∈ Ω∗. We now show that ν is additive on Aω. Let ω−1 (A1) and ω−1 (A2)

in Aω be disjoint. Equivalently, ω−1 (A1 ∩A2) = ∅. Suppose m (A1 ∩A2) > 0. Then
(9) implies ν

(
ω−1 (A1 ∩A2)

)
= m (A1 ∩A2) > 0, i.e. ν (∅) > 0. A contradiction. Thus

10 Let E ∈ Σ. Then E belongs to the completion ΣI
Pm(A) . So, there exists E1, E2 ∈ ΣI such

that E1 ⊆ E ⊆ E2 and Pm(A) (E2) = Pm(A) (E1). Therefore, Z−1 (E1) ⊆ Z−1 (E) ⊆ φ−1 (E2) and
µ
(
Z−1 (E2)

)
= µ

(
Z−1 (E1)

)
. Since Z−1 (E2) , Z−1 (E1) ∈ F and F is complete, then Z−1 (E) ∈ F .
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m (A1 ∩A2) = 0. So, m (A1 ∪A2) = m (A1) + m (A2). Hence, ν
(
ω−1 (A1) ∪ ω−1 (A2)

)
is equal to

ν
(
ω−1 (A1 ∪A2)

)
= m (A1 ∪A2) = m (A1) +m (A2) = ν

(
ω−1 (A1)

)
+ ν

(
ω−1 (A2)

)
.

Hence ν is additive on Aω Finally, given n ≥ 1, let A1, ..., An be the atoms of An. Then
ω−1 (A1) , ..., ω−1 (An) is a partition of I and ν

(
ω−1 (A1)

)
= ... = ν

(
ω−1 (An)

)
= 1/n.

The next result establishes that the capacity ν is in fact additive.

Lemma 4. ν is a nonatomic finitely additive probability.

Proof: Throughout the proof we apply the following implication of axiom c. For every
a, b, c, d ⊆ I such that b∩d = ∅, if ν (a) ≤ ν (b) and ν (c) < ν (d) then ν (a ∪ c) < ν (b ∪ d).
See Fishburn (1970) (Lemma C3, p. 195) for a proof.

Let b ∩ c = ∅. We first show that ν(b) + ν(c) ≤ 1. Suppose not. Notice that the
range ν (A) is a dense subset of [0, 1]. Hence, we can find a1 and a2 in A such that
ν(b) > ν (a1), ν(c) > ν (a2) and ν (a1) + ν (a2) > 1. Because ν is additive on A, then
ν (a2) > 1− ν (a1) = ν (ac1). So, ν (b) > ν (a1) and ν(c) > ν (ac1). A contradiction. Hence,
ν(b) + ν(c) ≤ 1.

Consider the case where ν (b) + ν (c) ∈ [0, 1). Let (kn) and (ln) be sequences in N
such that kn/n ↓ ν (b) and ln/n ↓ ν (c). Let N be such that kn + ln ≤ n for every n ≥ N .
Let {an1 , ..., ann} ⊆ A be a partition of I into n coalitions that have equal weight under ν.
For every n ≥ N let

an = an1 ∪ . . . ∪ ankn and a′n = ankn+1 ∪ . . . ∪ ankn+ln .

Then an ∩ a′n = ∅. In addition, ν (an) ↓ ν (b) and ν (a′n) ↓ ν (c) as n → ∞. So,
ν (an ∪ a′n) > ν (b ∪ c). Hence ν (an) + ν (a′n) > ν (b ∪ c) for every n. Hence

ν (b) + ν (c) ≥ ν (b ∪ c) . (10)

In particular, ν (b) + ν (c) = ν (b ∪ c) if ν (b) + ν (c) = 0. By approximating ν (b) and ν(c)
from below, the same argument can be replicated to show that if ν(b) + ν(c) ∈ (0, 1], then

ν (b) + ν (c) ≤ ν (b ∪ c) . (11)

In particular ν (b) + ν (c) = ν (b ∪ c) if ν (b) + ν (c) = 1. In the case where ν (b) + ν (c) ∈
(0, 1), then (10) and (11) imply ν(b) + ν(c) = ν (b ∪ c). Hence ν is additive.

The proof of Theorem 4 can now be concluded as follows. By Lemma 4 there
exists a finitely additive probability λ̃ such that sa % sb ⇐⇒ λ̃(a) ≥ λ̃(b). In
particular, the preference % satisfies the Anonymity axiom with respect to λ̃. In addition,
U(sa) = ϕ(λ̃(a)) for every a ⊆ I.
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Theorem 4 will then follow from Theorem 2 once λ is substituted by λ̃. It remains
only to show that s 7→ λ̃{i : si = xi} is Σ-measurable. To this end let f : S → S

map each s to sa where a = {i : si = xi}. It is immediate to verify that f is ΣI\ΣI -
measurable. A routine argument implies it is Σ\Σ-measurable. For every s we have
λ̃{i : si = xi} = φ−1(U(f(s))). The proof is concluded by noting that U ◦ f is Σ-
measurable and φ strictly increasing.

A.4 Other Proofs

Proof of Theorem 3: The result follows immediately from Theorem 8.

Proof of Remark 1: Assume % satisfies the Extended Pareto axiom. Fix two profiles
s, s′ and α ∈ [0, 1]. Let P = αδs + (1− α)δs′ and let P ◦ be an independent lottery with
the same marginals as P . We have EP [U ] = αϕ (

∫
ui(si) dλ(i)) + (1−α)ϕ (

∫
ui(s′i) dλ(i))

while Theorem 8 implies

EP ◦ [U ] = ϕ

(∫
(αui(si) + (1− α)ui(s′i)) dλ(i)

)
= ϕ

(
α

∫
ui(si) dλ(i) + (1− α)

∫
ui(s′i) dλ(i)

)
Because s and s′ can be chosen such that

∫
ui(si) dλ(i) and

∫
ui(s′i) dλ(i) correspond to

any two points in the domain of ϕ, it follows that ϕ is affine.

Lemma 5. Let ϕ be continuously differentiable. Then there exists K > 0 such that for
every ε > 0, n ∈ N and independent lottery P ,

P

s :

∣∣∣∣∣∣ϕ
 1
n

∑
i∈In

ui(si)

− ϕ
 1
n

∑
i∈In

EPi [ui]

∣∣∣∣∣∣ < ε

 > 1− 2e−2n( ε
K

)2
.

Proof: Since ϕ is continuously differentiable then it is K-Lipschitz where K = maxϕ′.
The result now follows by applying McDiarmid concentration inequality McDiarmid (1998)
(Theorem 3.1) applied to the function 1

n

∑
i∈In ui and the fact that ϕ is K-Lipschitz.

Proof of Theorem 5: Fix a sequence δn ↓ 0 and setM = maxϕ, L(n) = 1−2e−2n( δn
K

)2

and A(n, P ) = φ
(

1
n

∑
i∈In EPi [ui]

)
. By Lemma 5,

|EP [Un]−A(n, P )| ≤ EP [|Un −A(n, P )|] ≤ (1− L(n))M + L(n)δn

Let εn = 2 ((1− L(n))M + L(n)δn). Then εn ↓ 0. If EPi [Un] ≥ EQi [Un] for every i ∈ In
then A(n, P ) ≥ A(n,Q), hence

EP [Un] ≥ A(n, P )− εn
2 ≥ A(n,Q)− εn

2 ≥ EQ[Un]− εn
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