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ABSTRACT

We propose a low complexity method for segmentation of text
regions in natural images. This algorithm is designed for mo-
bile applications (e.g. unmanned or hand-held devices) in
which computational and energy resources are limited. No
prior assumption is made regarding the text size, font, lan-
guage, character set or the camera angle. However, the text
is assumed to be located on a piecewise homogeneous back-
ground with a contrasting color. We have deployed our method
on a Nokia N800 Internet tablet as part of a system for auto-
matic detection and translation of outdoor signs. Our experi-
ments show that the 0.3 megapixel images taken by the phone
camera can be accurately segmented within the device in a
fraction of a second.

Index Terms— Text Detection, Text Segmentation, Sign
Detection, Mobile Devices

1. INTRODUCTION

The automatic detection of text within a natural image is an
important problem in many applications. Once identified, the
text can be analyzed, recognized and interpreted. Text in an
image can be in different character sets, languages and fonts.
Due to such a large diversity of text characteristics, reliable
text features are difficult to find.

Several approaches for automatic detection and transla-
tion of text in images and videos have been proposed. Most
of these methods aim to detect the characters based on general
properties of character pixels. The distribution of edges, for
example, is used in many text detection methods [1, 2, 3]. In
these methods the edges are grouped together based on fea-
tures such as size, color and aspect ratio. Texture is another
commonly used feature for text segmentation [4, 5]. First,
a texture analysis method such as Gabor filtering is used to
extract the texture features. Then, a classifier (e.g., support
vector machines [4, 5]) is used to classify the regions into
text/non-text. The methods that are based on edge or texture
features are not robust to skewness due to the camera angle.
Therefore, an affine rectification step is often added [2].

Text segmentation methods are often designed for a spe-
cific application such as detecting text in videos [6], license
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plates [7] and signs [2, 8]. Our method focuses on the detec-
tion of text on signs. It relies on the properties of the back-
ground of the text region, as opposed to the text itself. There-
fore, it is independent of language, character set and angle of
the sign with respect to the camera.

Our text segmentation method is part of the “Rosetta Phone”
[9] system, a handheld device (e.g., PDA or mobile telephone)
we are developing that is capable of acquiring a picture of
a sign, identifying the text within the image, and producing
both an audible and a visual English interpretation of the text.
Similar systems achieve this result by having the user select
the text [10]. However, automatic identification of the text’s
location simplifies the system for the user.

We require a computationally simple and energy savvy
approach to text segmentation, one that involves a small num-
ber of operations and preferably simple operations such as ad-
ditions and subtractions. Assuming that the text background
is (piecewise) homogeneous, our method quickly rules out
large non-text regions. As a result, the computational re-
sources can be used in further analysis of the remaining areas.

2. APPROACH
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Fig. 1. Schematic representation of proposed method.
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A schematic representation of our method is shown in Fig-
ure 1. We begin by dividing the image into blocks. Blocks
whose luminance is homogeneous are then selected. Homo-
geneity is measured by using a set of binary filters for each
block. The uniform areas are then grown using connected
components. Grown regions without a large hole are subse-
quently discarded; those whose hole does not contain a color
contrasting with the background are discarded as well. If no
text region is found, the image is divided again into smaller
blocks and the above steps are repeated. If no text region is
found after the smallest block size is used, a fine search is
performed. This final search is designed to find text in a doc-
ument or any other text area containing small characters. We
now describe each step of the procedure in detail.
Background Detection

We begin by locating areas with nearly uniform lumi-
nance and texture. To do this, the image is divided into k × k

non-overlapping blocks, where k is a power of two (Fig. 2).
The homogeneity of each block is calculated, and blocks that
are classified as homogeneous are selected as potential back-
grounds. The homogeneity of a block is defined as follows.
For each k× k block, let I be the vector of k2 luminance val-

Fig. 2. Input image divided into k × k pixel blocks

ues for the block. We compute M homogeneity features for
each block as

δ(m) =
2

k2

k2∑

i=1

Iiw
(m)
i

where w(m) for 0 ≤ m < M is a weight vector with binary
entries (i.e. each entry is ±1) that sum to zero. We use M =
3 features corresponding to the three binary weight vectors
shown in Fig. 3.

Fig. 3. Graphical representation of the M = 3 weight vectors used
to quantify homogeneity of the blocks. White and black are used to
represent +1 and -1 respectively.

After all δ(m) values have been computed, we select blocks
for which the L∞ norm of the vector δ = [δ0, ..., δM−1] is less

Fig. 4. Homogeneous block selection for the image in Fig. 2 using
various block sizes, k= 64, 32, 16, 8, 4, 2 (left to right and top to
bottom). Homogeneous regions are shown as white areas.

than a threshold, Tu = 1 (chosen based on human perception
of uniformity and training), and classify them as being homo-
geneous. Homogeneous blocks whose neighboring blocks are
all nonhomogeneous are discarded from the list of potential
background areas. Smaller block sizes have the advantage of
identifying smaller homogeneous areas, while larger blocks
are less susceptible to noise. Fig. 4 shows the homogeneous
blocks identified for k equal to 64, 32, 16, 8, 4, and 2. Notice
that homogenous blocks generally do not contain edges.
Background Segmentation

Once homogeneous blocks have been identified, we ex-
pand them using a region growing method in order to form
connected regions corresponding to potential text backgrounds.
Denote the set of 2-D lattice points making up the image as S,
and the individual locations of pixels in the image as s ∈ S

where s = (si, sj). Two neighboring pixels are considered
connected if the difference between their luminance values is
less than a fixed threshold, Tx = 5. We considered the four-
point neighborhood for each pixel.

To grow the blocks, we begin at any seed point s0 within
the detected uniform blocks and identify s0’s connected set.
Once this has been done, we label all the pixels in the con-
nected set, C(s0), as one region. We then select a new seed
point in a uniform block which is not in C(s0) and determine
its connected set. This process is repeated until every pixel
contained in the image’s uniform blocks maps to a connected
set. Fig. 5 shows the potential background regions in an im-
age after the uniform blocks have been grown for a block size
of 64, 32, 16, 8, 4, and 2.
False Background Rejection

Once the potential background regions of an image are
identified, each region is further tested for the presence of text
based on two criteria: 1) it must contain at least one hole, and
2) the hole color must contrast against the background color.
Holes

In order to identify holes we employ connected compo-
nents again. First, each potential background region is iso-
lated from the rest of the image. In order to do so, we assign
all pixels belonging to a given potential background region
the value 1 (white), and all the remaining pixels the value 0

1051



Fig. 5. Segmented potential backgrounds for various block sizes, k=
64, 32, 16, 8, 4, 2 (left to right and top to bottom). Non-black regions
are considered homogeneous. Each shade of gray corresponds to one
region.

(black). Then, a minimum rectangular bounding box is de-
fined around the region that contains all the white pixels. Two
rows and columns of black pixels are added to each side of the
sub-image so that the white region is surrounded on all sides
by black. Fig. 6 shows how an image containing different re-
gions is broken into sub-images. The bounding box has two
purposes: to decrease computation and to assist in the next
step of the process.

Fig. 6. Isolating the connected regions of an image: connected
regions (top) and isolated regions of the image enclosed by exagger-
ated bounding boxes (bottom)

All of the connected sets are then extracted from the bi-
nary sub-image. Since each sub-image is always surrounded
on all sides by black pixels, there will always be at least two
connected sets: the bounding region and the potential back-
ground region. If a region’s binary sub-image has more than
two connected sets, the potential background region has at
least one hole.

Noise or dirt may cause small holes to be enclosed by
the potential background region. Therefore, a constraint is
placed on the size of a connected set in order for a hole to
be considered a text hole. Connected sets that have an area
less than or equal to Th = |C(b)|

60 pixels are discarded from
the list of connected sets, where |C(b)| is the size of a poten-
tial background region. Defining Th as a function of region
size allows small signs to contain smaller text holes, while re-
quiring larger signs to contain larger text holes. Ideally, each
character or figure within a sign is defined as a hole.

Color Contrast
In order to be seen easily, text or figures must contrast

against the background. Given the background region, B, and
a hole region, H ,

|x̄B − x̄H | ≥ Tc

must hold true, where for region R, x̄R is the average lumi-
nance value of R’s pixels, and Tc is a fixed threshold of 60.

Many characters contain holes. However, when determin-
ing the average luminance of the text, the luminance of hole
pixels within characters or figures should not be included. If
the luminance of a pixel contained in the text region is less
than two standard deviations from the average luminance of
the background region, it is considered to be part of a hole
within a character. Figure 7 shows how a character’s region
is determined after discarding pixels similar to the character’s
background.

Fig. 7. (Left) Original image. (Middle) Text hole region. (Right)
Text hole region after discarding pixels similar to surrounding back-
ground.

Text regions that do not meet the contrast criterion are re-
moved from the potential text background area being exam-
ined. If there still remains more than 2 connected sets (at least
one text hole) in an examined area, the area is considered to
contain text or a figure.
Multi-scale Search Strategy

If no text regions have been identified, the block size k is
reduced by half and the process is repeated. If no region has
been identified by the end of the procedure for the smallest
possible block size, k = 2, then the threshold for the minimum
size of a hole, Th, is reduced by half until a region is found
or Th is smaller than the size of a decipherable letter, Tpt = 6
pixels.

3. TESTING RESULTS

We tested our method on a database of 265 0.3-megapixel im-
ages of signs and documents. These images, which contained
a large variety of text and figures, were taken using the VGA
camera on the Nokia N800. The accuracy of locating signs
(239 images) and documents (26 images) within the images
were determined separately. Images of road signs, plaques,
and posters were classified as signs, while images of business
cards and small handwritten documents were categorized as
documents. Because the camera used did not have a flash, a
majority of the images were taken outside.

Using our method, 97.1% of sign were identified in im-
ages. The 7 images of signs that were undetected contained
either grainy images or dirty signs. Sixteen regions were mis-
classified as text background regions, yielding a false positive
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(a) (b) (c) (d)

Fig. 8. Sample of the results of text area segmentation on 0.3-
megapixel images signs. (a) A complex scene, (b) a dirty sign con-
taining text of different colors and sizes and (c) a non-rectangular
sign. White regions are identified as text background and the holes
within the background correspond to the detected text areas. An un-
detected sign is shown in (d).

rate of 6.64% for signs. Document backgrounds were cor-
rectly identified in 96.2% of images. Documents had a false
positive rate of 3.8%. A sample of our results can be seen in
Fig. 8.

The Nokia N800 (CPU 330MHz, 128MB RAM) takes
0.766 seconds on average to identify a sign (standard devi-
ation of 0.678 seconds). A PC (CPU 2.40GHz, 1GB RAM)
takes an average of 0.031 seconds (standard deviation of 0.021
seconds) to correctly identify a sign in a 0.3-megapixel image.
Images containing text regions that are not correctly identified
by the algorithm take a longer time to process (on average
6.53 seconds on the N800, and 0.152 seconds on the PC).

To test the computational complexity of our algorithm, we
tested it on a database of 144 images used in the ICDAR 2005
competition on locating text in camera captured scenes [11].
The average time that it took to run the algorithm was then
compared to the average times of the competition’s submit-
ted algorithms. Our system proved to be very computation-
ally inexpensive, running over six times faster than the fastest
system submitted to the ICDAR 2005 competition. Table 1
contains the average time in seconds to process an image for
each system on a 2.4 GHz processor.

The energy consumption of our method is also very low.
We took several hundred images and processed them on the
Nokia N800, and we have not seen any appreciable changes
in the battery charge.

System Time (seconds)
Our System 0.055
Alex Chen 0.35
Qiang Zhu 1.6
Jisoo Kim 2.2

Nobuo Ezaki 2.8
Hinnerk Becker 14.4

Table 1. Average Time to Locate Text in ICDAR images
4. CONCLUSIONS

We have presented a low-complexity method for locating text
within natural images. Our proposed method searches for the
text’s background rather than the actual text. This allows for

a large variation in the distribution of text features while re-
quiring little computation. Our test show that our method is
robust, segmenting 97.1% of the 256 0.3-megapixel images
correctly (both signs and documents), and energy efficient.
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