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Abstract. The standard probabilistic perspective on machine learning gives rise to

empirical risk-minimization tasks that are frequently solved by stochastic gradient

descent (SGD) and variants thereof. We present a formulation of these tasks as classical

inverse or filtering problems and, furthermore, we propose an efficient, gradient-free

algorithm for finding a solution to these problems using ensemble Kalman inversion

(EKI). Applications of our approach include offline and online supervised learning

with deep neural networks, as well as graph-based semi-supervised learning. The

essence of the EKI procedure is an ensemble based approximate gradient descent in

which derivatives are replaced by differences from within the ensemble. We suggest

several modifications to the basic method, derived from empirically successful heuristics

developed in the context of SGD. Numerical results demonstrate wide applicability and

robustness of the proposed algorithm.

Keywords: Machine learning, Deep learning, Derivative-free optimization, Ensemble
Kalman inversion, Ensemble Kalman filtering. Submitted to: Inverse Problems

1. Introduction

1.1. The Setting

The field of machine learning has seen enormous advances over the last decade. These

advances have been driven by two key elements: (i) the introduction of flexible

architectures which have the expressive power needed to efficiently represent the input-

output maps encountered in practice; (ii) the development of smart optimization tools

which train the free parameters in these input-output maps to match data. The text

[21] overviews the start-of-the-art.
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While there is little work in the field of derivative-free, paralellizable methods

for machine learning tasks, such advancements are greatly needed. Variants on the

Robbins-Monro algorithm [63], such as stochastic gradient descent (SGD), have become

state-of-the-art for practitioners in machine learning [21] and an attendant theory

[14, 3, 70, 48, 37] is emerging. However the approach faces many challenges and

limitations [20, 60, 78]. New directions are needed to overcome them, especially for

parallelization, as attempts to parallelize SGD have seen limited success [87].

A step in the direction of a derivative-free, parallelizable algorithm for the training

of neural networks was attempted in [11] by use of the the method of auxiliary

coordinates (MAC). Another approach using the alternating direction method of

multipliers (ADMM) and a Bregman iteration is attempted in [78]. Both methods

seem successful but are only demonstrated on supervised learning tasks with shallow,

dense neural networks that have relatively few parameters. In reinforcement learning,

genetic algorithm have seen some success (see [73] and references therein), but it is not

clear how to deploy them outside of that domain.

To simultaneously address the issues of parallelizable and derivative-free

optimization, we demonstrate in this paper the potential for using ensemble Kalman

methods to undertake machine learning tasks. Optimizing neural networks via Kalman

filtering has been attempted before (see [26] and references therein), but most have been

through the use of Extended or Unscented Kalman Filters. Such methods are plagued

by inescapable computational and memory constraints and hence their application has

been restricted to small parameter models. A contemporaneous paper by Haber et al [25]

has introduced a variant on the ensemble Kalman filter, and applied it to the training

of neural networks; our paper works with a more standard implementations of ensemble

Kalman methods for filtering and inversion [44, 35] and demonstrates potential for these

methods within a wide range of machine learning tasks.

1.2. Our Contribution

The goal of this work is two-fold:

• First we show that many of the common tasks considered in machine learning

can be formulated in the unified framework of Bayesian inverse problems. The

advantage of this point of view is that it allows for the transfer of theory and

algorithms developed for inverse problems to the field of machine learning, in

a manner accessible to the inverse problems community. To this end we give a

precise, mathematical description of the most common approximation architecture

in machine learning, the neural network (and its variants); we use the language

of dynamical systems, and avoid references to the neurobiological language and

notation more common-place in the applied machine learning literature.

• Secondly, adopting the inverse problem point of view, we show that variants

of ensemble Kalman methods (EKI, EnKF) can be just as effective at solving

most machine learning tasks as the plethora of gradient-based methods that
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are widespread in the field. We borrow some ideas from machine learning and

optimization to modify these ensemble methods, to enhance their performance.

Our belief is that by formulating machine learning tasks as inverse problems, and

by demonstrating the potential for methodologies to be transferred from the field of

inverse problems to machine learning, we will open up new ways of thinking about

machine learning which may ultimately lead to deeper understanding of the optimization

tasks at the heart of the field, and to improved methodology for addressing those tasks.

To substantiate the second assertion we give examples of the competitive application

of ensemble methods to supervised, semi-supervised, and online learning problems with

deep dense, convolutional, and recurrent neural networks. To the best of our knowledge,

this is the first paper to successfully apply ensemble Kalman methods to such a range of

relatively large scale machine learning tasks. Whilst we do not attempt parallelization,

ensemble methods are easily parallelizable and we give references to relevant literature.

Our work leaves many open questions and future research directions for the inverse

problems community.

1.3. Notation and Overview

We adopt the notation R for the real axis, R+ the subset of non-negative reals, and

N = {0, 1, 2, . . . } for the set of natural numbers. For any set A, we use An to denote

its n-fold Cartesian product for any n ∈ N \ {0}. For any function f : A → B, we

use Im(f) = {y ∈ B : y = f(x), for somex ∈ A} to denote its image. For any subset

V ⊆ X of a linear space X , we let dimV denote the dimension of the smallest subspace

containing V . For any Hilbert space H, we adopt the notation ‖ · ‖H and 〈·, ·〉H to

be its associated norm and inner-product respectively. Furthermore for any symmetric,

positive-definite operator C : D(C) ⊂ H → H, we use the notation ‖ · ‖C = ‖C− 1
2 · ‖H

and 〈·, ·〉C = 〈C− 1
2 ·, C− 1

2 ·, 〉H. For any two topological spaces X ,Y , we let C(X ,Y)

denote the set of continuous functions from X to Y . We define

Pm = {y ∈ Rm | ‖y‖1 = 1, y1, . . . , ym ≥ 0}

the set of m-dimensional probability vectors, and the subset

Pm0 = {y ∈ Rm | ‖y‖1 = 1, y1, . . . , ym > 0}.

Section 2 delineates the learning problem, starting from the classical, optimization-

based framework, and shows how it can be formulated as a Bayesian inverse problem.

Section 3 gives a brief overview of modern neural network architectures as dynamical

systems. Section 4 outlines the state-of-the-art algorithms for fitting neural network

models, as well as the EKI method and our proposed modifications of it. Section 5

presents our numerical experiments, comparing and contrasting EKI methods with the

state-of-the-art. Section 6 gives some concluding remarks and possible future directions

for this line of work.
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2. Problem Formulation

Subsection 2.1 overviews the standard formulation of machine learning problems

with subsections 2.1.1, 2.1.2, and 2.1.3 presenting supervised, semi-supervised, and

online learning respectively. Subsection 2.2 sets forth the Bayesian inverse problem

interpretation of these tasks and gives examples for each of the previously presented

problems.

2.1. Classical Framework

The problem of learning is usually formulated as minimizing an expected cost over some

space of mappings relating the data [21, 81, 53]. More precisely, let X , Y be separable

Hilbert spaces and let P(x, y) be a probability measure on the product space X ×Y . Let

L : Y ×Y → R+ be a positive-definite function and define F to be the set of mappings

{G : X → Y} on which the composition L(G(·), ·) is P-measurable for all G in F . Then

we seek to minimize the functional

Q(G) =

∫
X×Y
L(G(x), y) dP(x, y). (1)

across all mappings in F . This minimization may not be well defined as there could be

infimizing sequences not converging in F . Thus further constraints (regularization) are

needed to obtain an unambiguous optimization problem. These are generally introduced

by working with parametric forms of G. Additional, explicit regularization is also often

added to parameterized versions of (1).

Usually L is called the loss or cost function and acts as a metric-like function on Y ;

however it is useful in applications to relax the strict properties of a metric, and we, in

particular, do not require L to be symmetric or subadditive. With this interpretation

of L as a cost, we are seeking a mapping G with lowest cost, on average with respect

to P. There are numerous choices for L used in applications [21]; some of the most

common include the squared-error loss L(y′, y) = ‖y − y′‖2
Y used for regression tasks,

and the cross-entropy loss L(y′, y) = −〈y, log y′〉Y used for classification tasks. In both

these cases we often have Y = RK , and, for classification, we may restrict the class of

mappings to those taking values in PK .

Most of our focus will be on parametric learning where we approximate F by a

parametric family of models {G(u|·) : X → Y} where u ∈ U is the parameter and

U is a separable Hilbert space. This allows us to work with a computable class of

functions and perform the minimization directly over U . Much of the early work in

machine learning focuses on model classes which make the associated minimization

problem convex [9, 31, 53], but the recent empirical success of neural networks has

driven research away from this direction [45, 21]. In Section 3, we give a brief overview

of the model space of neural networks.

While the formulation presented in (1) is very general, it is not directly transferable

to practical applications as, typically, we have no direct access to P(x, y). How we choose
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to address this issue depends on the information known to us, usually in the form of a

data set, and defines the type of learning. Typically information about P is accessible

only through our sample data. The next three subsections describe particular structures

of such sample data sets which arise in applications, and the minimization tasks which

are constructed from them to determine the parameter u.

2.1.1. Supervised Learning Suppose that we have a dataset {(xj, yj)}Nj=1 assumed to be

i.i.d. samples from P(x, y). We can thus replace the integral (1) with its Monte Carlo

approximation, and add a regularization term, to obtain the following minimization

problem:

arg min
u∈U

Φs(u; x, y), (2)

Φs(u; x, y) =
1

N

N∑
j=1

L(G(u|xj), yj) +R(u). (3)

Here R : U → R is a regularizer on the parameters designed to prevent overfitting

or address possible ill-posedness. We use the notation x = [x1, . . . , xN ] ∈ XN , and

analogously y, for concatenation of the data in the input and output spaces X ,Y
respectively.

A common choice of regularizer is R(u) = λ‖u‖2
U where λ ∈ R is a tunable

parameter. This choice is often called weight decay in the machine learning literature.

Other choices, such as sparsity promoting norms, are also employed; carefully selected

choices of the norm can induce desired behavior in the parameters [10, 82]. We note also

that Monte Carlo approximation is itself a form of regularization of the minimization

task (1).

This formulation is known as supervised learning. Supervised learning is perhaps

the most common type of machine learning with numerous applications including

image/video classification, object detection, and natural language processing [43, 50, 76].

2.1.2. Semi-Supervised Learning Suppose now that we only observe a small portion

of the data y in the image space; specifically we assume that we have access to data

{xj}j∈Z , {yj}j∈Z′ where xj ∈ X , yj ∈ Y , Z = {1, . . . , N} and where Z ′ ⊂ Z with

|Z ′| � |Z|. Clearly this can be turned into supervised learning by ignoring all data

indexed by Z \ Z ′, but we would like to take advantage of all the information known

to us. Often the data in X is known as unlabeled data, and the data in Y as labeled

data; in particular the labeled data is often in the form of categories. We use the terms

labeled and unlabeled in general, regardless or whether the data in Y is categorical;

however some of our illustrative discussion below will focus on the binary classification

problem. The objective is to assign a label yj to every j ∈ Z. This problem is known

as semi-supervised learning.
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One approach to the problem is to seek to minimize

arg min
u∈U

Φss(u; x, y) (4)

Φss(u; x, y) =
1

|Z ′|
∑
j∈Z′
L(G(u|xj), yj) +R(u; x) (5)

where the regularizer R(u; x) may use the unlabeled data in Z\Z ′, but the loss term

involves only labeled data in Z ′.

There are a variety of ways in which one can construct the regularizer R(u; x)

including graph-based and low-density separation methods [7, 6]. In this work, we will

study a nonparametric graph approach where we think of Z as indexing the nodes on

a graph. To illustrate ideas we consider the case of binary outputs, take Y = R and

restrict attention to mappings G(u|·) which take values in {−1, 1}; we sometimes abuse

notation and simply take Y = {−1, 1}, so that Y is no longer a Hilbert space. We assume

that U comprises real-valued functions on the nodes Z of the graph, equivalently vectors

in RN . We specify that G(u|j) = sgn(u(j)) for all j ∈ Z, and take, for example, the

probit or logistic loss function [62, 7]. Once we have found an optimal parameter value

for u : Z → R, application of G to u will return a labeling over all nodes j in Z. In

order to use all the unlabeled data we introduce edge weights which measure affinities

between nodes of a graph with vertices Z, by means of a weight function on X ×X . We

then compute the graph Laplacian L(x) and use it to define a regularizer in the form

R(u; x) = 〈u, (L(x) + τ 2I)αu〉RN .

Here I is the identity operator, and τ, α ∈ R with α > 0 are tunable parameters. Further

details of this method are in the following section. Applications of semi-supervised

learning can include any situation where data in the image space Y is hard to come by,

for example because it requires expert human labeling; a specific example is medical

imaging [49].

2.1.3. Online Learning Our third and final class of learning problems concerns

situations where samples of data are presented to us sequentially and we aim to refine

our choice of parameters at each step. We thus have the supervised learning problem

(2) and we aim to solve it sequentially as each pair of data points {xj, yj} is delivered.

To facilitate cheap algorithms we impose a Markovian structure in which we are allowed

to use only the current data sample, as well as our previous estimate of the parameters,

when searching for the new estimate. We look for a sequence {uj}∞j=1 ⊂ U such that

uj → u∗ as j →∞ where, in the perfect scenario, u∗ will be a minimizer of the limiting

learning problem (1). To make the problem Markovian, we may formulate it as the

following minimization task

uj = arg min
u∈U

Φo(u, uj−1;xj, yj) (6)

Φo(u, uj−1;xj, yj) = L(G(u|xj), yj) +R(u;uj−1) (7)
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where R is again a regularizer that could enforce a closeness condition between

consecutive parameter estimates, such as

R(u;uj−1) = λ‖u− uj−1‖2
U .

Furthermore this regularization need not be this explicit, but could rather be included

in the method chosen to solve (6). For example if we use an iterative method for the

minimization, we could simply start the iteration at uj−1.

This formulation of supervised learning is known as online learning. It can be

viewed as reducing computational cost as a cheaper, sequential way of estimating a

solution to (1); or it may be necessitated by the sequential manner in which data is

acquired.

2.2. Inverse Problems

The preceding discussion demonstrates that, while the goal of learning is to find a

mapping which generalizes across the whole distribution of possible data, in practice,

we are severely restricted by only having access to a finite data set. Namely formulations

(2), (4), (6) can be stated for any input-output pair data set with no reference to P(x, y)

by simply assuming that there exists some function in our model class that will relate

the two. In fact, since L is positive-definite, its dependence also washes out when ones

takes a function approximation point of view. To make this precise, consider the inverse

problem of finding u ∈ U such that

y = G(u|x) + η; (8)

here G(u|x) = [G(u|x1), . . . ,G(u|xN)] is a concatenation and η ∼ π is a YN -valued

random variable distributed according to a measure π that models possible noise in the

data, or model error. In order to facilitate a Bayesian formulation of this inverse problem

we let µ0 denote a prior probability measure on the parameters u. Then supposing

− log(π(y − G(u|x))) ∝
N∑
j=1

L(G(u|xj), yj)

− log(µ0(u)) ∝ R(u)

we see that (2) corresponds to the standard MAP estimator arising from a Bayesian

formulation of (8). The semi-supervised learning problem (4) can also be viewed as a

MAP estimator by restricting (8) to Z ′ and using x to build µ0. This is the perspective

we take in this work and we illustrate with an example for each type of problem.

Example 2.1. Suppose that Y and U are Euclidean spaces and let π = N (0,Γ) and

µ0 = N (0,Σ) be Gaussian with positive-definite covariances Γ,Σ where Γ is block-

diagonal with N identical blocks Γ0. Computing the MAP estimator of (8), we obtain

that L(y′, y) = ‖y − y′‖2
Γ0

and R(u) = ‖u‖2
Σ.
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Example 2.2. Suppose that U = RN and Y = R with the data yj = ±1 ∀j ∈ Z ′. We

will take the model class to be a single function G : RN × Z → R depending only on

the index of each data point and defined by G(u|j) = sgn(uj). As mentioned, we think

of Z as the nodes on a graph and construct the edge set E = (eij) = η(xi, xj) where

η : X × X → R+ is a symmetric function. This allows construction of the associated

graph Laplacian L(x). We shift it and remove its null space and consider the symmetric,

positive-definite operator C = (L(x) + τ 2I)−α from which we can define the Gaussian

measure µ0 = N (0, C). For details on why this construction defines a reasonable prior

we refer to [7]. Letting π = N (0, 1
γ2
I), we restrict (8) to the inverse problem

yj = G(u|j) + ηj ∀j ∈ Z ′.

With the given definitions, letting γ2 = |Z ′|, the associated MAP estimator has the

form of (4), namely
1

|Z ′|
∑
j∈Z′
|G(u|j)− yj|2 + 〈u,C−1u〉RN .

The infimum for this functional is not achieved [34], but the ensemble based methods we

employ to solve the problem implicitly apply a further regularization which circumvents

this issue.

Example 2.3. Lastly we turn to the online learning problem (6). We assume that there

is some unobserved, fixed in time parameter of our model that will perfectly match the

observed data up to a noise term. Our goal is to estimate this parameter sequentially.

Namely, we consider the stochastic dynamical system,

uj+1 = uj

yj+1 = G(uj+1|xj+1) + ηj+1

(9)

where the sequence {ηj} are Y-valued i.i.d. random variables that are also independent

from the data. This is an instance of the classic filtering problem considered in data

assimilation [44]. We may view this as solving an inverse problem at each fixed time with

increasingly strong prior information as time unrolls. With the appropriate assumptions

on the prior and the noise model, we may again view (6) as the MAP estimators of each

fixed inverse problem. Thus we may consider all problems presented here in the general

framework of (8).

3. Approximation Architectures

In this section, we outline the approximation architectures that we will use to solve

the three machine learning tasks outlined in the preceding section. For supervised and

online learning these amount to specifying the dependence of G on u; for semi-supervised

learning this corresponds to determining a basis in which to seek the parameter u. We
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do not give further details for the semi-supervised case as our numerics fit in the context

of Example 2.2, but we refer the reader to [7] for a detailed discussion.

Subsection 3.1 details feed-forward neural networks with subsections 3.1.1 and

3.1.2 showing the parameterizations of dense and convolutional networks respectively.

Subsection 3.2 presents basic recurrent neural networks.

3.1. Feed-Forward Neural Networks

Feed-forward neural networks are a parametric model class defined as discrete time,

nonautonomous, semi-dynamical systems of an unusual type. Each map in the

composition takes a specific parametrization and can change the dimension of its input

while the whole system is computed only up to a fixed time horizon. To make this

precise, we will assume X = Rd, Y = Rm and define a neural network with n ∈ N
hidden layers as the composition

G(u|x) = S ◦ A ◦ Fn−1 ◦ · · · ◦ F0 ◦ x

where d0 = d and Fj ∈ C(Rdj ,Rdj+1), n = 0, . . . , n−1 are nonlinear maps, referred to as

layers, depending on parameters θ0, . . . , θn−1 respectively, A : Rdn → Rm is an affine map

with parameters θn, and u = [θ0, . . . , θn] is a concatenation. The map S : Rm → V ⊆ Rm

is fixed and thought of as a projection or thresholding done to move the output to the

appropriate subset of data space. The choice of S is dependent on the problem at hand.

If we are considering a regression task and V = Rm then S can simply be taken as the

identity. On the other hand, if we are considering a classification task and V = Pm,

the set of probability vectors in Rm, then S is often taken to be the softmax function

defined as

S(w) =
1∑m

j=1 e
wj

(ew1 , . . . , ewm).

From this perspective, the neural network approximates a categorical distribution of

the input data and the softmax arises naturally as the canonical response function of

the categorical distribution (when viewed as belonging to the exponential family of

distributions) [51, 65]. If we have some specific bounds for the output data, for example

V = [−1, 1]m then S can be a point-wise hyperbolic tangent.

What makes this dynamic unusual is the fact that each map can change the

dimension of its input unlike a standard dynamical system which operates on a fixed

metric space. However, note that the sequence of dimension changes d1, . . . , dn is simply

a modeling choice that we may alter. Thus let dmax = max{d0, . . . , dn} and consider the

solution map φ : N0 × N0 × Rdmax → Rdmax generated by the nonautonomous difference

equation

zk+1 = Fk(zk)

where each map Fk ∈ C(Rdmax ,Rdmax) is such that dim Im(Fk) ≤ dk+1; then φ(n,m, x)

is zn given that zm = x. We may then define a neural network as

G(u|x) = S ◦ A ◦ φ(n, 0,Px)
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where P : Rd → Rdmax is a projection operator and A : Rdmax → Rm is again an

affine map. While this definition is mathematically satisfying and potentially useful

for theoretical analysis as there is a vast literature on nonautonomus semi-dynamical

systems [42], in practice, it is more useful to think of each map as changing the dimension

of its input. This is because it allows us to work with parameterizations that explicitly

enforce the constraint on the dimension of the image. We take this point of view for the

rest of this section to illustrate the practical uses of neural networks.

3.1.1. Dense Networks A key feature of neural networks is the specific parametrization

of each map Fk. In the most basic case, each Fk is an affine map followed by a point-wise

nonlinearity, in particular,

Fk(zk) = σ(Wkzk + bk)

where Wk ∈ Rdk+1×dk , bk ∈ Rdk+1 are the parameters i.e. θk = [Wk, bk] and σ ∈ C(R,R)

is non-constant, bounded, and monotonically increasing; we extend σ to a function on

Rd by defining it point-wise as σ(u)j = σ(uj) for any vector u ∈ Rd. This layer type is

referred to as dense, or fully-connected, because each entry in Wk is a parameter with

no global sparsity assumptions and hence we can end up with a dense matrix. A neural

network with only this type of layer is called dense or fully-connected (DNN).

The nonlinearity σ, called the activation function, is a design choice and usually does

not vary from layer to layer. Some popular choices include the sigmoid, the hyperbolic

tangent, or the rectified linear unit (ReLU) defined by σ(q) = max{0, q}. Note that

ReLU is unbounded and hence does not satisfy the assumptions for the classical universal

approximation theorem [32], but it has shown tremendous numerical success when the

associated inverse problem is solved via backpropagation (method of adjoints) [55].

3.1.2. Convolutional Networks Instead of seeking the full representation of a linear

operator at each time step, we may consider looking only for the parameters associated

to a pre-specified type of operator. Namely we consider

Fk(zk) = σ(W (sk)zk + bk)

where W can be fully specified by the parameter sk. The most commonly considered

operator is the one arising from a discrete convolution [46]. We consider the input zk
as a function on the integers with period dk then we may define W (sk) as the circulant

matrix arising as the kernel of the discrete circular convolution with convolution operator

sk. Exact construction of the operator W is a modeling choice as one can pick exactly

which blocks of zk to compute the convolution over. Usually, even with maximally

overlapping blocks, the operation is dimension reducing, but can be made dimension

preserving, or even expanding, by appending zero entries to zk. This is called padding.

For brevity, we omit exact descriptions of such details and refer the reader to [21]. The

parameter sk is known as the stencil. Neural networks following this construction are

called convolutional (CNN).



EKI: A Derivative-Free Technique For Machine Learning Tasks 11

In practice, a CNN computes a linear combination of many convolutions at each

time step, namely

F
(j)
k (zk) = σ

(
Mk∑
m=1

W (s
(j,m)
k )z

(m)
k + b

(j)
k

)
for j = 1, 2, . . . ,Mk+1 where zk = [z

(1)
k , . . . , z

(Mk)
k ] with each entry known as a channel

and Mk = 1 if no convolutions were computed at the previous iteration. Finally we

define Fk(zk) = [F
(1)
k (zk), . . . , F

(Mk+1)
k (zk)]. The number of channels at each time step,

the integer Mk+1, is a design choice which, along with the choice for the size of the

stencils s
(j,m)
k , the dimension of the input, and the design of W determine the dimension

of the image space dk+1 for the map Fk.

When employing convolutions, it is standard practice to sometimes place maps

which compute certain statistics from the convolution. These operations are commonly

referred to as pooling [54]. Perhaps the most common such operation is known as max-

pooling. To illustrate suppose [F
(1)
k , . . . , F

(Mk+1)
k ] are the Mk+1 channels computed as

the output of a convolution (dropping the zk dependence for notational convenience). In

this context, it is helpful to change perspective slightly and view each F
(j)
k as a matrix

whose concatenation gives the vector Fk. Each of these matrices is a two-dimensional

grid whose value at each point represents a linear combination of convolutions each

computed at that spatial location. We define a maximum-based, block-subsampling

operation

(p
(j)
k )il = max

q∈{1,...,H1}
max

v∈{1,...,H2}
(F

(j)
k )α(i−1)+q,β(l−1)+v

where the tuple (H1, H2) ∈ N2 is called the pooling kernel and the tuple (α, β) ∈ N2 is

called the stride, each a design choice for the operation. It is common practice to take

H1 = H2 = α = β. We then define the full layer as Fk(zk) = [p
(1)
k (zk), . . . , p

(Mk+1)
k (zk)].

There are other standard choices for pooling operations including average pooling, `p-

pooling, fractional max-pooling, and adaptive max-pooling where each of the respective

names are suggestive of the operation being performed; details may be found in

[79, 23, 24, 27]. Note that pooling operations are dimension reducing and are usually

thought of as a way of extracting the most important information from a convolution.

When one chooses the kernel (H1, H2) such that F
(j)
k ∈ RH1×H2 , the per channel output

of the pooling is a scalar and the operation is called global pooling.

Designs of feed-forward neural networks usually employ both convolutional (with

and without pooling) and dense layers. While the success of convolutional networks

has mostly come from image classification or object detection tasks [43], they can be

useful for any data with spatial correlations [8, 21]. To connect the complex notation

presented in this section with the standard in machine learning literature, we will give

an example of a deep convolutional neural network. We consider the task of classifying

images of hand-written digits given in the MNIST dataset [47]. These are 28 × 28

grayscale images of which there are N = 60, 000 and 10 overall classes {0, . . . , 9} hence

we consider X = R28×28 ∼= R784 and Y the space of probability vectors over R10. Figure

1 show a typical construction of a deep convolutional neural network for this task. The
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Convolutional Neural Network

Map Type Notation

F0 : R28×28 → R32×24×24 Conv 32x5x5 M0 = 1,M1 = 32, s
(j,m)
0 ∈ R5×5

j ∈ {1, . . . , 32},m = {1}

F1 : R32×24×24 → R32×10×10

Conv 32x5x5 M2 = 32, s
(j,m)
1 ∈ R5×5

MaxPool 2x2 j ∈ {1, . . . , 32},m ∈ {1, . . . , 32}
H1 = H2 = 2 (α = β = 2)

F2 :: R32×10×10 → R64×6×6 Conv 64x5x5 M3 = 64, s
(j,m)
2 ∈ R5×5

j ∈ {1, . . . , 64},m ∈ {1, . . . , 32}

F3 : R64×6×6 → R64

Conv 64x5x5 M4 = 64, s
(j,m)
3 ∈ R5×5

MaxPool 2x2 j ∈ {1, . . . , 64},m ∈ {1, . . . , 64}
(global) H1 = H2 = 2

F4 : R64 → R500 FC-500 W4 ∈ R500×64, b4 ∈ R500

A : R500 → R10 FC-10 W5 ∈ R10×500, b5 ∈ R10

S : R10 → R10 Softmax S(w) = 1∑10
j=1 e

wj
(ew1 , . . . , ew10)

Figure 1: A four layer convolutional neural network for classifying images in the MNIST

data set. The middle column shows a description typical of the machine learning

literature. The other two columns connect this jargon to the notation presented here.

No padding is added and the convolutions are computed over maximally overlapping

blocks (stride of one). The nonlinearity σ is the ReLU and is the same for every layer.

Figure 2: Output of each map from left to right of the convolutinal neural network shown

in Figure 1. The left most image is the input and the next three images show a single

randomly selected channel from the outputs of F0, F1, F2 respectively. The outputs of

F3, F4, A, S are vectors shown respectively in the four subsequent plots. We see that

with high probability the network determines that the image belongs to the first class

(0) which is correct.

word deep is generally reserved for models with n > 3. Once the model has been fit,

Figure 2 shows the output of each map on an example image. Starting with the digitized

digit 0, the model computes its important features, through a sequence of operations

involving convolutional layers, culminating in the second to last plot, the output of the

affine map A. This plot shows model determining that the most likely digit is 0, but

also giving substantial probability weight on the digit 6. This makes sense, as the digits

0 and 6 can look quite similar, especially when hand-written. Once the softmax is taken

(because it exponentiates), the probability of the image being a 6 is essentially washed

out, as shown in the last plot. This is a short-coming of the softmax as it may not
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accurately retain the confidence of the model’s prediction. We stipulate that this may

be a reason for the emergence of highly-confident adversarial examples [77, 22], but do

not pursue suitable modifications in this work.

3.2. Recurrent Neural Networks

Recurrent neural networks are models for time-series data defined as discrete time,

nonautonomous, semi-dynamical systems that are parametrized by feed-forward neural

networks. To make this precise, we first define a layer of two-inputs simply as the sum

of two affine maps followed by a point-wise nonlinearity, namely for j = 1, . . . , n define

Fθj : Rdh × Rd → Rdh by

Fθj(z, q) = σ(W
(j)
h z + b

(j)
h +W (j)

x q + b(j)
x )

where W
(j)
h ∈ Rdh×dh , W

(j)
x ∈ Rdh×d and b

(j)
h , b

(j)
x ∈ Rdh ; the parameters are then given

by the concatenation θj = [W
(j)
h ,W

(j)
x , b

(j)
h , b

(j)
x ]. The dimension dh is a design choice

that we can pick on a per-problem basis. Now define the map Fθ : Rdh × Rd → Rdh by

composing along the first component

Fθ(z, q) = Fθn(Fθn−1(. . . Fθ1(z, q), . . . q), q), q)

where θ = [θ1, . . . , θn] is a concatenation. Now suppose x0, . . . , xT−1 ∈ Rd is an observed

time series and define the dynamic

ht+1 = Fθ(ht, xt)

up to time t = T . We can think of this as a nonautonomous, semi-dynamical system on

Rdh with parameter x = [x0, . . . , xT−1]. Let φ : {0, . . . , T} × RT×d × Rdh → Rdh be the

solution map generated by this difference equation. We can finally define a recurrent

neural network G(u|·) : RT×d → V ⊆ RT×d by

G(u|x) =


S(A1 ◦ φ(1, x, h0))

S(A2 ◦ φ(2, x, h0))
...

S(AT ◦ φ(T, x, h0))


where A1, . . . , AT are affine maps, S is a thresholding (such as softmax) as previously

discussed, and u a concatenation of the parameters θ as well as the parameters for all of

the affine maps. Usually ones takes h0 = 0, but randomly generated initial conditions

are also used in practice.

The construction presented here is the most basic recurrent neural network. Many

others architectures such as Long Short-Term Memory (LSTM), recursive, and bi-

recurrent networks have been proposed in the literature [69, 30, 29, 21], but they

are all slight modifications to the above dynamic. These architectures can be used

as sequence to sequence maps, or, if we only consider the output at the last time that is

S(AT ◦ φ(T, x, h0)), as predicting xT or classifying the sequence x0, . . . , xT−1. We refer

the reader to [74] for an overview of the applications of recurrent neural networks.
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4. Algorithms

Subsection 4.1 describes the choice of loss function. Subsection 4.2 outlines the state-of-

the-art derivative based optimization, with subsection 4.2.1 presenting the algorithms

and subsection 4.2.2 presenting tricks for better convergence. Subsection 4.3 defines the

EKI method, with subsequent subsections presenting our various modifications.

4.1. Loss Function

Before delving into the specifics of optimization methods used, we discuss the general

choice of loss function L. While the machine learning literature contains a wide variety

of loss functions that are designed for specific problems, there are two which are most

commonly used and considered first when tackling any regression and classification

problems respectively, and on which we focus our work in this paper. For regression

tasks, the squared-error loss

L(y′, y) = ‖y − y′‖2
Y

is standard and is well known to the inverse problems community; it arises from an

additive Gaussian noise model. When the task at hand is classification, the standard

choice of loss is the cross-entropy

L(y′, y) = −〈y, log y′〉Y ,

with the log computed point-wise and where we consider Y = Rm. This loss is well-

defined on the space Pm0 × Pm. It is consistent with the the projection map S of the

neural network model being the softmax as Im(S) = Pm0 . A simple Lagrange multiplier

argument shows that L is indeed infimized over Pm0 by sequence y′ → y and hence the

loss is consistent with what we want our model output to be. ‡ From a modeling

perspective, the choice of softmax as the output layer has some drawbacks as it only

allows us to asymptotically match the data. However it is a good choice if the cross-

entropy loss is used to solve the problem; indeed, in practice, the softmax along with the

cross-entropy loss has seen the best numerical results when compared to other choices

of thresholding/loss pairs [21].

The interpretation of the cross-entropy loss is to think of our model as

approximating a categorical distribution over the input data and, to get this

approximation, we want to minimize its Shannon cross-entropy with respect to the

data. Note, however, that there is no additive noise model for which this loss appears in

the associated MAP estimator simply because L cannot be written purely as a function

of the residual y − y′.

‡ Note that the infimum is not, in general, attained in Pm
0 as defined, because perfectly labeled data

may take the form {y ∈ Rm | ∃!j s.t. yj = 1, yk = 0 ∀k 6= j} which is in the closure of Pm
0 but not in

Pm
0 itself.
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4.2. Gradient Based Optimization

4.2.1. The Iterative Technique The current state of the art for solving optimization

problems of the form (2), (4), (6) is based around the use of stochastic gradient descent

(SGD) [63, 39, 66]. We will describe these methods starting from a continuous time

viewpoint, for pedagogical clarity. In particular, we think of the unknown parameter

u ∈ U as the large time limit of a smooth function of time u : [0,∞) → U . Let

Φ(u; x, y) = Φs(u; x, y) or Φss(u; x, y) then gradient descent imposes the dynamic

u̇ = −∇Φ(u; x, y), u(0) = u0 (10)

which moves the parameter in the steepest descent direction with respect to the

regularized loss function, and hence will converge to a local minimum for Lebesgue

almost all initial data, leading to bounded trajectories [48, 71].

For the practical implementations of this approach in machine learning, a number of

adaptations are made. First the ODE is discretized in time, typically by a forward Euler

scheme; the time-step is referred to as the learning rate. The time-step is often, but

not always, chosen to be a decreasing function of the iteration step [14, 63]. Secondly,

at each step of the iteration, only a subset of the data is used to approximate the full

gradient. In the supervised case, for example,

Φs(u; x, y) ≈ 1

N ′

∑
j∈BN′

L(G(u|xj), yj) +R(u)

where BN ′ ⊂ {1, . . . , N} is a random subset of cardinality N ′ usually with N ′ � N .

A new BN ′ is drawn at each step of the Euler scheme without replacement until the

full dataset has been exhausted. One such cycle through all of the data is called an

epoch. The number of epochs it takes to train a model varies significantly based on

the model and data at hand but is usually within the range 10 to 500. This idea,

called mini-batching, leads to the terminology stochastic gradient descent (SGD). Recent

work has suggested that adding this type of noise helps preferentially guide the gradient

descent towards places in parameter space which generalize better than standard descent

methods [12, 13].

A third variant on basic gradient descent is the use of momentum-augmented

methods utilized to accelerate convergence [56]. The continuous time dynamic associated

with the Nesterov momentum method is [72]

ü+
3

t
u̇ = −∇Φ(u; x, y),

u(0) = u0, u̇(0) = 0.
(11)

We note, however, that, while still calling it Nesterov momentum, this is not the

dynamic machine learning practitioners discretize. In fact, what has come to be called

Nesterov momentum in the machine learning literature is nothing more than a strange

discretization of a rescaled version the standard gradient flow (10). To see this, we note
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that via the approximation k/(k+ 3) ≈ 1−3/(k+ 1) one may discretize (11), as is done

in [72], to obtain

uk+1 = vk − hk∇Φ(vk; x, y)

vk+1 = uk+1 +
k

k + 3
(uk+1 − uk)

with v0 = u0 and where the sequence {
√
hk} gives the step sizes. However, what machine

learning practitioners use is the algorithm

uk+1 = vk − hk∇Φ(vk; x, y)

vk+1 = uk+1 + λ(uk+1 − uk)

for some fixed λ ∈ (0, 1). This may be written as

uk+1 = (1 + λ)uk − λuk−1 − hk∇Φ((1 + λ)uk − λuk−1; x, y).

If we rearrange and divide by hk, we can obtain

uk+1 − uk
hk

= λ

(
uk − uk1
hk

)
−∇Φ((1 + λ)uk − λuk−1; x, y)

which is easily seen as a discretization of a rescaled version of the gradient flow (10),

namely

u̇ = −(1− λ)−1∇Φ(u; x, y).

However, there is a sense in which this discretization introduces momentum, but only

to order O(hk) whereas classically the momentum term would be on the order O(1). To

see this, we can again rewrite the discretization as

uk+1 = 2uk − uk−1 − (1− λ)(uk − uk−1)− hk∇Φ((1 + λ)uk − λuk−1; x, y).

Rearranging this and dividing through by hk we can obtain

hk

(
uk+1 − 2uk + uk−1

h2
k

)
+ (1− λ)

(
uk − uk−1

hk

)
= −∇Φ((1 + λ)uk − λuk−1; x, y)

which may be seen as a discretization of the equation

htü+ (1− λ)u̇ = −∇Φ(u; x, y),

where ht is a continuous time version of the sequence {hk}; in particular, if ht = h� 1

we see that whilst momentum is approximately present, it is only a small effect.

From these variants on continuous time gradient descent have come a plethora of

adaptive first-order optimization methods that attempt to solve the learning problem.

Some of the more popular include Adam, RMSProp, and Adagrad [40, 15]. There is no

consensus on which methods performs best although some recent work has argued in

favor of SGD and momentum SGD [85].
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Lastly, the online learning problem (6) is also commonly solved via a gradient

descent method dubbed online gradient descent (OGD). The dynamic is

u̇j = −∇Φo(uj, uj−1;xj, yj)

uj(0) = uj−1

which can be extended to the momentum case in the obvious way. It is common that

only a single step of the Euler scheme is computed. The process of letting all these

ODE(s) evolve in time is called training.

4.2.2. Initialization and Normalization Two major challenges for the iterative methods

presented here are: 1) finding a good starting point u0 for the dynamic, and 2)

constraining the distribution of the outputs of each map Fk in the neural network.

The first is usually called initialization, while the second is termed normalization; the

two, as we will see, are related.

Historically, initialization was first dealt with using a technique called layer-wise

pretraining [28]. In this approach the parameters are initialized randomly. Then the

parameters of all but first layer are held fixed and SGD is used to find the parameters

of the first layer. Then all but the parameters of the second layer are held fixed and

SGD is used to find the parameters of the second layer. Repeating this for all layers

yields an estimate u0 for all the parameters, and this is then used as an initialization

for SGD in a final step called fine-tuning. Development of new activation functions,

namely the ReLU, has allowed simple random initialization (from a carefully designed

prior measure) to work just as well, making layer-wise pretraining essentially obsolete.

There are many proposed strategies in the literature for how one should design this prior

[20, 52]. The main idea behind all of them is to somehow normalize the output mean

and variance of each map Fk. One constructs the product probability measure

µ0 = µ
(0)
0 ⊗ µ

(1)
0 ⊗ · · · ⊗ µ

(n−1)
0 ⊗ µ(n)

0

where each µ
(k)
0 is usually a centered, isotropic probability measure with covariance

scaling γk. Each such measure corresponds to the distribution of the parameters of

each respective layer with µ
(n)
0 attached to the parameters of the map A. A common

strategy called Xavier initialization [20] proposes that the inverse covariance (precision)

is determined by the average of the input and output dimensions of each layer:

γ−1
k =

1

2

(
dk + dk+1

)
thus

γk =
2

dk + dk+1

.

When the layer is convolutional, dk and dk+1 are instead taken to be the number of

input and output channels respectively. Usually each µ
(k)
0 is then taken to be a centered
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Gaussian or uniform probability measure. Once this prior is constructed one initializes

SGD by a single draw.

As we have seen, initialization strategies aim to normalize the output distribution

of each layer. However, once SGD starts and the parameters change, this normalization

is no longer in place. This issue has been called the internal covariate shift. To address

it, normalizing parameters are introduced after the output of each layer. The most

common strategy for finding these parameters is called batch-normalization [36], which,

as the name implies, relies on computing a mini-batch of the data. To illustrate the idea,

suppose zm(xk1), . . . , zm(xkB) are the outputs of the map Fm−1 at inputs xk1 , . . . , xkB .

We compute the mean and variance

νm =
1

B

B∑
j=1

zm(xkj); σ2
m =

1

B

B∑
j=1

‖zm(xkj)− νm‖2
2

and normalize these outputs so that the inputs to the map Fm are

zm(xkj)− νm√
σ2
m + ε

γ + β

where ε > 0 is used for numerical stability while γ, β are new parameters to be estimated,

and are termed the scale and shift respectively; they are found by means of the SGD

optimization process. It is not necessary to introduce the new parameters γ, β but is

common in practice and, with them, the operation is called affine batch-normalization.

When an output has multiple channels, separate normalization is done per channel.

During training a running mean of each νm, σ
2
m is kept and the resulting values are used

for the final model. A clear drawback to batch normalization is that it relies on batches

of the data to be computed and hence cannot be used in the online setting. Many

similar strategies have been proposed [80, 2] with no clear consensus on which works

best. Recently a new activation function called SeLU [41] has been claimed to perform

the required normalization automatically.

4.3. Ensemble Kalman Inversion

The Ensemble Kalman Filter (EnKF) is a method for estimating the state of a stochastic

dynamical system from noisy observations [17]. Over the last decade the method

has been systematically developed as an iterative method for solving general inverse

problems; in this context, it is sometimes referred to as Ensemble Kalman Inversion

(EKI) [35]. Viewed as a sequential Monte Carlo method [68], it works on an ensemble

of parameter estimates (particles) transforming them from the prior into the posterior.

Recent work has established, however, that unless the forward operator is linear and the

additive noise is Gaussian [68], the correct posterior is not obtained [18]. Nevertheless

there is ample numerical evidence that shows EKI works very well as a derivative-free

optimization method for nonlinear least-squares problems [38, 5]. In this paper, we

view it purely through the lens of optimization and propose several modifications to
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the method that follow from adopting this perspective within the context of machine

learning problems.

Consider the general inverse problem

y = G(u) + η

where η ∼ π = N(0,Γ) represent noise, and let µ0 be a prior measure on the parameter

u. Note that the supervised, semi-supervised, and online learning problems (8), (9)

can be put into this general framework by adjusting the number of data points in the

concatenations y, x and letting x be absorbed into the definition of G. Let {u(j)}Jj=1 ⊂ U
be an ensemble of parameter estimates which we will allow to evolve in time through

interaction with one another and with the data; this ensemble may be initialized by

drawing independent samples from µ0, for example. The evolution of u(j) : [0,∞)→ U
is described by the EKI dynamic [68]

u̇(j) = −Cuw(u)Γ−1(G(u(j))− y),

u(j)(0) = u
(j)
0 .

Here

Ḡ =
1

J

J∑
l=1

G(u(l)), ū =
1

J

J∑
l=1

u(l)

and Cuw(u) is the empirical cross-covariance operator

Cuw(u) =
1

J

J∑
j=1

(u(j) − ū)⊗ (G(u(j))− Ḡ).

Thus

u̇(j) = − 1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ u(k),

u(j)(0) = u
(j)
0 .

(12)

Viewing the difference of G(u(k)) from its mean, appearing in the left entry of the

inner-product, as a projected approximate derivative of G, it is possible to understand

(12) as an approximate gradient descent.

Rigorous analysis of the long-term properties of this dynamic for a finite J are

poorly understood except in the case where G(·) = A· is linear [68]. In the linear case,

we obtain that u(j) → u∗ as t→∞ where u∗ minimizes the functional

Φ(u; y) =
1

2
‖y − Au‖2

Γ

in the subspace A = span{u(j)
0 − ū}Jj=1, and where ū is the mean of the initial ensemble

{u(j)
0 }. This follows from the fact that, in the linear case, we may re-write (12) as

u̇(j) = −C(u)∇uΦ(u(j); y)
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where C(u) is an empirical covariance operator

C(u) =
1

J

J∑
j=1

(u(j) − ū)⊗ (u(j) − ū).

Hence each particle performs a gradient descent with respect to Φ and C(u) projects

into the subspace A.

To understand the nonlinear setting we use linearization. Note from (12) that

u̇(j) = − 1

J

J∑
k=1

〈G(u(k))− 1

J

J∑
l=1

G(u(l)),G(u(j))− y〉Γ u(k)

= − 1

J

J∑
k=1

〈G(u(k))− 1

J

J∑
l=1

G(u(l)),G(u(j))− y〉Γ (u(k) − ū)

= − 1

J2

J∑
k=1

J∑
l=1

〈G(u(k))− G(u(l)),G(u(j))− y〉Γ (u(k) − ū).

Now we linearize on the assumption that the particles are close to one another, so that

G(u(k)) = G(u(j) + u(k) − u(j)) ≈ G(u(j)) +DG(u(j))(u(k) − u(j))

G(u(l)) = G(u(j) + u(l) − u(j)) ≈ G(u(j)) +DG(u(j))(u(l) − u(j)).

Here DG is the Fréchet derivative of G. With this approximation, we obtain

u̇(j) ≈ − 1

J2

J∑
k=1

J∑
l=1

〈DG∗(u(j))(G(u(j))− y), u(k) − u(l)〉Γ(u(k) − ū)

= − 1

J

J∑
k=1

〈DG∗(u(j))(G(u(j))− y), u(k) − ū〉Γ(u(k) − ū)

= −C(u)∇uΦ(u(j), y)

where

Φ(u; y) =
1

2
‖y − G(u)‖2

Γ.

This is again just gradient descent with a projection onto the subspace A. These

arguments also motivate the interesting variants on EKI proposed in [25]; indeed the

paper [25] inspired the organization of the linearization calculations above.

In summary, the EKI is a methodology which behaves like gradient descent, but

achieves this without computing gradients. Instead it uses an ensemble and is hence

inherently parallelizable. In the context of machine learning this opens up the possibility

of avoiding explicit backpropagation, and doing so in a manner which is well-adapted

to emerging computer architectures.
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4.3.1. Cross-Entropy Loss The previous considerations demonstrate that EKI as

typically used is closely related to minimizing an `2 loss function via gradient descent.

Here we propose a simple modification to the method allowing it to minimize any loss

function instead of only the squared-error; our primary motivation is the case of cross-

entropy loss.

Let L(y′, y) be any loss function, this may, for example, be the cross entropy

L(y′, y) = − 1

N
〈y, log y′〉YN .

Now consider the dynamic

u̇(j) = −Cuw(u)∇y′L(G(u(j)), y)

= − 1

J

J∑
k=1

〈G(u(k))− Ḡ,∇y′L(G(u(j)), y)〉 u(k).
(13)

If L(y′, y) = 1
2
‖y − y′‖2

Γ then ∇y′L(G(u(j)), y) = Γ−1(G(u(j))− y) recovering the original

dynamic. Note that since we’ve defined the loss through the auxiliary variable y′ which

is meant to stand-in for the output of our model, the method remains derivative-free

with respect to the model parameter u, but does not allow for adding regularization

directly into the loss. However regularization could be added directly into the dynamic;

we leave such considerations for future work.

An interpretation of the original method is that it aims to make the norm of

the residual y − G(u(j)) small. Our modified version replaces this residual with

∇y′L(G(u(j)), y), but when L is the cross entropy this is in fact the same (in the `1

sense). We make this precise in the following proposition.

Proposition 1. Let G : U → (Pm0 )N and suppose y = [ek1 , . . . , ekN ]T where ekj is the kj-th

standard basis vector of Rm. Then u∗ ∈ U is a solution to

arg min
u∈U

‖y − G(u)‖`1

if and only if u∗ is a solution to

arg min
u∈U

‖∇y′L(G(u), y)‖`1

where L(y′, y) = −〈y, log y′〉`2 is the cross-entropy loss.

Proof. Without loss of generality, we may assume N = 1 and thus let y = ek be the k-th

standard basis vector of Rm. Suppose that u∗ is a solution to arg minu∈U ‖y − G(u)‖`1 .
Then for any u ∈ U , we have∑

j 6=k

G(u∗)j + (1− G(u∗)k) ≤
∑
j 6=k

G(u)j + (1− G(u)k).

Adding 0 = G(u∗)k−G(u∗)k to the l.h.s. and 0 = G(u)k−G(u)k to the r.h.s. and noting

that ‖G(u)‖`1 = 1 for all u ∈ U since Im(G) = Pm0 we obtain

2(1− G(u∗)k) ≤ 2(1− G(u)k)
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which implies
1

G(u∗)k
≤ 1

G(u)k

as required since ‖∇y′L(G(u), y)‖`1 = 1/G(u)k. The other direction follows similarly.

4.3.2. Momentum Continuing in the spirit of optimization, we may also add Nesterov

momentum to the EKI method. This is a simple modification to the dynamic (13),

ü(j) +
3

t
u̇(j) = −Cuw(u)∇y′L(G(u(j)); y)

u(j)(0) = u
(j)
0 , u̇(j)(0) = 0.

(14)

While we present momentum EKI in this form, in practice, we follow the standard

in machine learning by fixing a momentum factor λ ∈ (0, 1) and discretizing (13)

using the method shown in subsection 4.2.1. In standard stochastic gradient decent,

it has been observed that this discretization converges more quickly and possibly to a

better local minima than the forward Euler discretization [75]. Numerically, we discover

a similar speed up for EKI. However, the memory cost doubles as we need to keep

track of an ensemble of positions and momenta. Some experiments in the next section

demonstrate the speed-up effect. We leave analysis and possible applications to other

inverse problems of the momentum method as presented in (14) for future work.

4.3.3. Discrete Scheme Finally we present our modified EKI method in the

implementable, discrete time setting and discuss some variants on this basic scheme

which are particularly useful for machine learning problems. In implementation, it is

useful to consider the concatenation of particles u = [u(1), . . . , u(J)] which may be viewed

as a function u : [0,∞)→ UJ . Then (13) becomes

u̇ = −D(u)u

where for each fixed u the operator D(u) : UJ → UJ is a linear operator. Suppose

U = RP then we may exploit symmetry and represent D(u) by a J × J matrix instead

of a JP ×JP matrix. To this end, suppose the ensemble members are stacked row-wise

that is u ∈ RJ×P then D(u) has the simple representation

(D(u))kj = 〈G(u(k))− Ḡ,∇y′L(G(u(j)), y)〉

which is readily verified by (13). We then discretize via an adaptive forward Euler

scheme to obtain

uk+1 = uk − hkD(uk)uk.

Choosing the correct time-step has an immense impact on practical performance. We

have found that the choice

hk =
h0

‖D(uk)‖F + ε
,
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where ‖·‖F denotes the Frobenius norm, works well in practice [16]. We aim to make h0

as large as possible without loosing stability of the dynamic. The intuition behind this

choice has to do with the fact that thatD(u) measures how close the propagated particles

are to each other (left part of the inner-product) and how close they are to the data

(right part of the inner-product). When either or both of these are small, we may take

larger steps, and still retain numerical stability, by choosing hk inversely proportional

to ‖D(u)‖F ; the parameter ε is added to avoid floating point issues when ‖D(u)‖F
is near machine precision. As k → ∞, we typically match the data with increasing

accuracy and, simultaneously, the propagated particles achieve consensus and collapse

on one another; as a consequence ‖D(uk)‖F → 0 which means we take larger and larger

steps. Note that this is in contrast to the Robbins-Monro implementation of stochastic

gradient descent where the sequence of time-steps are chosen to decay monotonically to

zero.

Similarly, the momentum discretization of (13) is

uk+1 = vk − hkD(vk)vk

vk+1 = uk+1 + λ(uk+1 − uk)

with λ ∈ (0, 1) fixed, u0 = v0 where hk = h0/(‖D(vk)‖F + ε) as before and v represent

the particle momenta.

We now present a list of numerically successful heuristics that we employ when

solving practical problems.

(I) Initialization: To construct the initial ensemble, we draw an i.i.d. sequence

{u(j)
0 }Jj=1 with u

(1)
0 ∼ µ0 where µ0 is selected according to the construction discussed

for initialization of the neural network model in the section outlining SGD.

(II) Mini-batching: We borrow from SGD the idea of mini-batching where we use

only a subset of the data to compute each step of the discretized scheme, picking

randomly without replacement. As in the classical SGD context, we call a cycle

through the full dataset an epoch.

(III) Prediction: In principle, any one of the particles u(j) can be used as the parameters

of the trained model. However, as analysis of Figure 7 below shows, the spread in

their performance is quite small; furthermore even though the system is nonlinear,

the mean particle ū achieves an equally good performance as the individual

particles. Thus, for computational simplicity, we choose to use the mean particle

as our final parameter estimate. This choice further motivates one of the ways in

which we randomize.

(IV) Randomization: The EKI property that all particles remain in the subspace

spanned by the initial ensemble is not desirable when J � dimU . We break this

property by introducing noise into the system. We have found two numerically

successful ways of accomplishing this.

i. At each step of the discrete scheme, add noise to each particle,

u
(j)
k 7→ u

(j)
k + η

(j)
k
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where {η(j)
k }Jj=1 is an i.i.d. sequence with η

(1)
k ∼ µk. We define µk to be a

scaled version of µ0 by scaling its covariance operator namely Ck =
√
hkC0,

where hk is the time step as previously defined. Note that as the particles start

to collapse, hk increases, hence we add more noise to counteract this. In the

momentum case, we perform the same mapping but on the particle momenta

instead

v
(j)
k 7→ v

(j)
k + η

(j)
k .

ii. At the end of each epoch, randomize the particles around their mean,

u
(j)
kT 7→ ūkT + η

(j)
kT

where T is the number of steps needed to complete a cycle through the entire

dataset and {η(j)
kT }Jj=1 is an i.i.d. sequence with η

(1)
kT ∼ µ0. Note that because

this randomization is only done after a full epoch, it is not clear how the

noise should be scaled and thus we simply use the prior. This may not be

the optimal thing to do, but we have found great numerical success with this

strategy. Figure 8 shows the spread of the ratio of the parameters to the

the noise ‖ūkT‖/‖η(j)
kT ‖. We see that relatively less noise is added as training

continues. It may be possible to achieve better results by increasing the noise

with time as to combat collapse. However, we do not perform such experiments.

Furthermore we have found that this does not work well in the momentum case;

hence all randomization for the momentum scheme is done according to the

first point.

(V) Expanding Ensemble: Numerical experiments show that using a small number

of particles tends to have very good initial performance (one to two epochs) that

quickly saturates. On the other hand, using a large number of particles does not

do well to begin with but greatly outperforms small particle ensembles in the long

run. Thus we use the idea of an expanding ensemble where we gradually add in new

particles. This is done in the context of point (ii.) of the randomization section.

Namely, at the end of an epoch, we compute the ensemble mean and create a new

larger ensemble by randomizing around it.

Lastly we mention that, in many inverse problem applications, it is good practice

to randomize the data for each particle at each step [44] namely map

y 7→ y + ξ
(j)

k

where {ξ(j)
k }Jj=1 is an i.i.d. sequence with ξ

(1)
k ∼ π. However we have found that this does

not work well for classification problems. This may be because the given classifications

are correct and there is no actual noise in the data. Or it may be that we simply have

not found a suitable measure from which to draw noise. We have not experimented in

the case where the labels are noisy and leave this for future work.
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5. Numerical Experiments

In the following set of experiments, we demonstrate the wide applicability of EKI on

several machine learning tasks. All forward models we consider are some type of neural

network, except for the semi-supervised learning case where we consider the construction

in Example 2.2. We benchmark EKI against SGD and momentum SGD and do not

consider any other first-order adaptive methods. Recent work has shown that their

value is only marginal and the solutions they find may not generalize as well [85].

Furthermore we do not employ batch normalization as it is not clear how it should be

incorporated with EKI methods. However, when batch normalization is necessary, we

instead use the SELU nonlinearity, finding the performance to be essentially identical

to batch normalization on problems where we have been able to compare.

The next five subsections are organized as follows. Subsection 5.1 contains the

conclusions drawn from the experiments. In subsection 5.2, we describe the five

data sets used in all of our experiments as well as the metrics used to evaluate the

methods. Subsection 5.3 gives implementation details and assigns methods using

different techniques their own name. In subsections 5.4, 5.5, and 5.6 we show the

supervised, semi-supervised, and online learning experiments respectively. Since most

of our experiments are supervised, we split subsection 5.4 based on the type of model

used namely dense neural networks, convolutional neural networks, and recurrent neural

networks respectively.

5.1. Conclusions From Numerical Experiments

The conclusions of our experiments are as follows:

• On supervised classification problems with a feed-forward neural network, EKI

performs just as well as SGD even when the number of unknown parameters is very

large (up to half a million) and the number of ensemble members is considerably

smaller (by two orders of magnitude). Furthermore EKI seems more numerically

stable than SGD, as seen in the smaller amount of oscillation in the test accuracy,

and requires less hyper-parameter tuning. In fact, the only parameter we vary in

our experiments is the number of ensemble members, and we do this simply to

demonstrate its effect. However due to the large number of forward passes required

at each EKI iteration, we have found the method to be significantly slower. This

issue can be mitigated if each of the forward computations is parallelized across

multiple processing units, as it often is in many industrial applications [33, 59, 58].

We leave such computational considerations for future work, as our current goal is

simply to establish proof of concept. These experiments can be found in the first

two subsections of section 5.4.

• On supervised classification problems with a recurrent neural network, EKI

significantly outperforms SGD. This is likely due to the steep barriers that occur

on the loss surface of recurrent networks [60, 4] which EKI may be able to avoid
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Figure 3: The five data sets used in numerical experiments. From left to right, the first

are 25 samples from MNIST and SVHN respectively. The third shows the spectrum of

graph Lalpacian for the Voting Records data set. The last two are the full time-series

for the daily minimum temperatures in Melbourne and the monthly number of sunspots

from Zürich respectively.

due to its noisy Jacobian estimates. These experiments can be found in the last

subsection of section 5.4.

• On the semi-supervised learning problem we consider, EKI does not perform as

well as state of the art (MCMC) [7], but performs better than the naive solution.

However, even with a large number of ensemble members, EKI is much faster

and computationally cheaper than MCMC, allowing applications to large scale

problems. These experiments can be found in section 5.5.

• On online regression problems tackled with a recurrent neural network, EKI

converges significantly faster and to a better solution than SGD with O(1) ensemble

members. While the problems we consider are only simple, univariate time-series,

the results demonstrate great promise for harder problems. It has long been

known that recurrent neural networks are very hard to optimize with gradient-

based techniques [60], so we are very hopeful that EKI can improve on current

state of the art. Again, we leave such domain specific applications to future work.

These experiments can be found in section 5.6.

5.2. Data Sets

We consider three data sets where the problem at hand is classification and two data sets

where it is regression. For classification, two of the data sets are comprised of images

and the third of voting histories. Our goal is to classify the image based on its content

or classify the voting record based on party affiliation. For regression, both datasets are

univariate time-series and our goal is to predict an unobserved part of the series. Figure

3 shows samples from each of the data sets.

As outlined in section 2, the goal of learning is to find a model which generalizes

well to unobserved data. Thus, to evaluate this criterion, we split all data sets into a

training and a testing portion. The training portion is used when we let our ODE(s)

evolve in time as described in section 4. The testing portion is used only to evaluate

the model. In other contexts, the training set is further split to create a validation set,

but, since we perform no hyper-parameter tuning, we omit this step. For classification,

the metric we use is called test accuracy. This is the total number of correctly classified
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examples divided by the total number of examples in the test set. For regression, the

metric we use is called test error. This is the average (across the test set) squared

`2-norm of the difference between the true value and our prediction.

5.2.1. Classification The first data set we consider is MNIST [47]. It contains 70,000

images of hand-written digits. All examples are 28 × 28 grayscale images and each is

given a classification in {0, . . . , 9} depending on what digit appears in the image. Thus

we consider X = R28×28 ∼= R784 and Y = P10. Each of the labels yj is a standard basis

vector of R10 with the position of the 1 indicating the digit. We use 60,000 of the images

for training and 10,000 for testing. Since grayscale values range from 0 to 255, all images

are fist normalized to the range [0, 1] by point-wise dividing by 255. Treating all training

images as a sequence of 60000 · 784 numbers, their mean and standard deviation are

computed. Each image (including the test set) is then again normalized via point-wise

subtraction by the mean and point-wise division by the standard deviation. This data

normalization technique is standard in machine learning.

The second image data set we consider is called SVHN [57]. It contains 99,289

natural images of cropped house numbers taken from Google Street View. All examples

are 32 × 32 RGB images and each is given a classification in {0, . . . , 9} depending on

what digit appears in the image. Thus we consider X = R3×32×32 ∼= R3072 and Y = P10

with the labels again being basis vectors of R10. We use 73,257 of the images for training

and 26,032 for testing. All values are first normalized to be in the range [0, 1]. We then

perform the same normalization as in MNIST, but this time per channel. That is, for

all training images, we treat each color channel as a sequence of 73257 · 1024 numbers,

compute the mean and standard deviation then normalize each channel as before.

The last data set for classification we consider contains the voting record of the 435

U.S. House of Representatives members; see [6] and references therein. The votes were

recorded in 1984 from the 98th United States Congress, 2nd session. Each record is tied

to a particular representative and is a vector in X = R16 with each entry being +1, −1,

or 0 indicating a vote for, against, or abstain respectively. The labels live in Y = R
and are +1 or −1 indicating Democrat or Republican respectively. We use this data set

only for semi-supervised learning and thus pick the amount of observed labels |Z ′| = 5

with 2 Republicans and 3 Democrats. No normalization is performed. When computing

the test accuracy, we do so over the entire data sets namely we do not remove the 5

observed records.

5.2.2. Regression The first data set we consider for regression is a time series of the

daily minimum temperatures (in Celsius) in Melbourne, Australia from January 1st

1981 to December 31st 1990 [19]. It contains 3650 total observations of which we use

the first 3001 for training (up to March 22nd 1989) and the rest for testing. We consider

X = Y = R by letting (in the training set) the data be the first 3000 observations and

the labels be the 2nd to 3001st observations i.e. a one-step-ahead split. The same is done

for the testing set. The minimum and maximum values xmin, xmax over the training set
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are computed and all data is transformed via

xj 7→
xj − xmin

xmax − xmin

.

This ensures the training set is in the range [0, 1] and the testing set will also be close

to that range.

The second data set for regression is a time series containing the number of observed

sunspots from Zürich, Switzerland during each month from January 1749 to December

1983 [1]. It contains 2820 observations of which we use the first 2301 for training (up to

September 1915) and the rest for testing. The data is treated in exactly the same way

as the temperatures data set.

5.3. Implementation Details

Having outlined many different strategies for performing EKI , we give methods using

different techniques their own name so they are easily distinguishable. We refer to the

techniques listed in section 4.3.3. All methods are initialized in the same way (with

the prior constructed based on the model) and all use mini-batching. We refer to the

forward Euler discretization of equation (13) as EKI and the momentum discretization,

presented in section 4.2.1, of equation (13) as MEKI. When randomizing around the

mean at the end of each epoch, we refer to the method as EKI(R). When randomizing

the momenta at each step, we refer to the method as MEKI(R). Similarly, we call

momentum SGD, MSGD. All methods use the time step described in section 4.3.3 with

hyper-parameters h0 = 2 and ε = 0.5 fixed. For any classification problem (except

the Voting Records data set), all methods use the cross-entropy loss whose gradient is

implemented with a slight correction for numerical stability. Namely, in the case of a

single data point, we implement

(∇y′L(G(u), y))k = − yk
(G(u))k + δ

where the constant δ := 0.005 is fixed for all our numerical experiments. Otherwise

the mean squared-error loss is used. All implementations are done using the PyTorch

framework [61] on a single machine with an NVIDIA GTX 1080 Ti GPU.

5.4. Supervised Learning

5.4.1. Dense Neural Networks In this section, we benchmark all of our proposed

methods on the MNIST problem using four dense neural networks of increasing

complexity. The four network architectures are outlined in Figure 4. This will allow us

to compare the methods and pick a front runner for later experiments.

We fix the ensemble size of all methods to J = 2000 and the batch size to 600. SGD

uses a learning rate of 0.1 and all momentum methods use the constant λ = 0.9. Figure

5 shows the final test accuracies for all methods while Figure 6 shows the accuracies

at the end of each epoch. Due to memory constrains, we do not implement MEKI for
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Dense Neural Networks

Name Architecture Parameters

DNN 1 784-10 7,850

DNN 2 784-100-10 79,510

DNN 3 784-300-100-10 266,610

DNN 4 784-500-300-100-10 573,910

Figure 4: Architectures of the four dense neural networks considered. All networks use

a softmax thresholding and a ReLU nonlinearity.

DNN 1 DNN 2 DNN 3 DNN 4

SGD 0.9199 0.9735 0.9798 0.9818

MSGD 0.9257 0.9807 0.9830 0.9840

EKI ū 0.9092

u(j∗) 0.9114

ū 0.9398

u(j∗) 0.9416

ū 0.9424

u(j∗) 0.9432

ū 0.9404

u(j∗) 0.9418

MEKI ū 0.9094

u(j∗) 0.9107

ū 0.9320

u(j∗) 0.9332

n/a n/a

EKI(R) ū 0.9252

u(j∗) 0.9260

ū 0.9721

u(j∗) 0.9695

ū 0.9738

u(j∗) 0.9716

ū 0.9741

u(j∗) 0.9691

MEKI(R) ū 0.9142

u(j∗) 0.9162

ū 0.9509

u(j∗) 0.9511

n/a n/a

Figure 5: Final test accuracies of six training methods on four dense neural networks,

solving the MNIST classification problem. Each bold number is the maximum across

the column. For each EKI method we report the accuracy of the mean particle ū and

of the best performing particle in the ensemble u(j∗).

DNN-(3,4). In general momentum SGD performs best, but EKI(R) trails closely. The

momentum EKI methods have good initial performance but saturate. We make this

clearer in a later experiment. Overall, we see that for networks with a relatively small

number of parameters all EKI methods are comparable to SGD. However with a large

number of parameters, randomization is needed. This effect is particularly dominant

when the ensemble size is relatively small; as we later show, larger ensemble sizes can

perform significantly better.

Figure 7 shows the test accuracies for each of the particles when using EKI on

DNN-(1,2). We see that, the mean particle achieves roughly the average of the spread,

as previously discussed. Our choice to use it as the final parameter estimate is simply for

convenience. One may use all the particles in a carefully weighted scheme as an ensemble

of networks and possibly achieve better results. Having many parameter estimates may

also be advantageous when trying to avoid adversarial examples [22]. We leave these

considerations to future work.

To better illustrate the effect of the ensemble size, we compare all EKI methods on



EKI: A Derivative-Free Technique For Machine Learning Tasks 30

(a) DNN 1 (b) DNN 2

(c) DNN 3 (d) DNN 4

Figure 6: Test accuracies per epoch of six training methods on four dense neural

networks, solving the MNIST classification problem. For each EKI method the accuracy

of the mean particle ū is shown.

DNN 2 with an ensemble size of J = 6000. The accuracies are shown in Figure 9. We

again observe that the momentum methods perform very well initially, but fall off with

more training. This effect could be related to the specific time discretization method we

use, but needs to be studied further theoretically and we leave this for future work. Note

that with a larger ensemble, EKI is now comparable to SGD pointing out that remaining

in the subspace spanned by the initial ensemble is a bottle neck for this method. On

the other hand, when we randomize, the ensemble size is no longer so relevant. EKI(R)

performs almost identically with 2,000 and with 6,000 ensemble members. Finding it to

be the best method for these tasks, all experiments hereafter, unless stated otherwise,

use EKI(R).

5.4.2. Convolutional Neural Networks For our experiments with CNN(s), we employ

both MNIST and SVHN. Since MNIST is a fairly easy data set, we can use a simple

architecture and still achieve almost perfect accuracy. We name the model CNN-MNIST
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(a) DNN 1 (b) DNN 2

Figure 7: Particle accuracies of EKI on DNN-(1,2) compared to the accuracy of the

mean particle ū.

(a) DNN 1 (b) DNN 2

Figure 8: Spread of the noise ratio for EKI(R) on DNN-(1,2). At the end of every epoch,

when the noise is added, the upper bound is computed as ‖ū‖2/maxj ‖η(j)‖2. The lower

bound is computed analogously.

and its specifics are given in the first column of Figure 10. SGD uses a learning rate

of 0.05 while momentum SGD uses 0.01 and a momentum factor of 0.9. EKI(R) has

a fixed ensemble size of J = 2000. Figure 11 shows the results of training. We note

that since CNN-MNIST uses ReLU and no batch normalization, SGD struggles to find a

good descent direction in the first few epochs. EKI(R), on the other hand, does not have

this issue and exhibits a smooth test accuracy curve that is consistent with all other

experiments. In only 30 epochs, we are able to achieve almost perfect classification with

EKI(R) slightly outperforming the SGD-based methods.

Recent work suggests that the effectiveness of batch normalization does not come

from dealing with the internal covariate shift, but, in fact, comes from smoothing the

loss surface [67]. The noisy gradient estimates in EKI can be interpreted as doing
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First Final

EKI 0.8661 0.9611

MEKI 0.9447 0.9471

EKI(R) 0.8652 0.9745

MEKI(R) 0.9373 0.9696

Figure 9: Comparison of the test accuracies of four EKI methods on DNN 2 with

ensemble size J = 6000.

the same thing and is perhaps the reason we see smoother test accuracy curves. The

contemporaneous work of Haber et al [25] further supports this point of view.

Next we experiment on the SVHN data set with three CNN(s) of increasing

complexity. The architectures we use are inspired by those in [52], and are referred to as

Fit-Nets because each layer is shallow (has a relatively small number of parameters), but

the whole architecture is deep, reaching up to sixteen layers. The details for the models

dubbed CNN-(1,2,3) are given in Figure 10. Such models are known to be difficult

to train; for this reason, the papers [64, 52] present special initialization strategies to

deal with the model complexities. We find that when using the SELU nonlinearity and

no batch normalization, simple Xavier initialization works just as well. The results of

training are presented in Figure 11. We benchmark only against momentum SGD as

all previous experiments show it performs better than vanilla SGD. The method uses

a learning rate of 0.01 and a momentum factor of 0.9. EKI(R) starts with J = 200

ensemble members and expands by 200 at end the of each epoch until reaching a final

ensemble of J = 5000. For CNN-3, memory constraints allowed us to only expand

up a final size of J = 2800. All methods use a batch size of 500. We see that, in

all three cases, EKI(R) and momentum SGD perform almost identically with EKI(R)

slightly outperforming on CNN-(1,2), but falling off on CNN-3. This is likely due to the

fact that CNN-3 has a large number of parameters and we were not able to provide a

large enough ensemble size. This issue can be dealt with via parallelization by splitting

the ensemble among the memory banks of separate processing units. We leave this

consideration to future work.

5.4.3. Recurrent Neural Networks For the classification task using a recurrent neural

network, we return to the MNIST data set. Since recurrent networks work on time series

data, we split each image along its rows, making a 28-dimensional time sequence with

28 entries, considering time going down from the top to the bottom of the image. More

complex strategies have been explored in [84]. We use a two-layer recurrent network
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Convolutional Neural Networks

CNN-MNIST CNN-1 CNN-2 CNN-3

Conv 16x3x3 Conv 16x3x3 Conv 16x3x3 Conv 16x3x3

Conv 16x3x3 Conv 16x3x3 Conv 16x3x3 Conv 16x3x3

Conv 16x3x3 Conv 32x3x3

Conv 32x3x3

Conv 32x3x3

MaxPool 4x4 (s = 2) MaxPool 2x2 MaxPool 2x2 MaxPool 2x2

Conv 16x3x3 Conv 16x3x3 Conv 32x3x3 Conv 48x3x3

Conv 16x3x3 Conv 16x3x3 Conv 32x3x3 Conv 48x3x3

Conv 32x3x3 Conv 48x3x3

Conv 48x3x3

Conv 48x3x3

MaxPool 4x4 (s = 2) MaxPool 2x2 MaxPool 2x2 MaxPool 2x2

Conv 12x3x3 Conv 32x3x3 Conv 48x3x3 Conv 64x3x3

Conv 12x3x3 Conv 32x3x3 Conv 48x3x3 Conv 64x3x3

Conv 64x3x3 Conv 96x3x3

Conv 96x3x3

Conv 96x3x3

MaxPool 2x2 MaxPool 8x8 MaxPool 8x8 MaxPool 8x8

FC-10 FC-500 FC-500 FC-500

FC-10 FC-10 FC-10

Figure 10: Architectures of 4 Convolutional Neural Networks with 6, 7, 10, 16 layers

respectively from left to right. All convolutions use a padding of 1, making them

dimension preserving since all kernel sizes are 3x3. CNN-MNIST is evaluated on the

MNIST dataset and uses the ReLU nonlinearity. CNN-(1,2,3) are evaluated on the

SVHN dataset and use the SELU nonlinearity. The convention s = 2 refers to the

stride of the max-pooling operation namely α = β = 2. All networks use a softmax

thresholding.

with 32 hidden units and a tanh nonlinearity, namely, in the notation of section 3.2,

Fθ(z, q) = σ
(
W

(2)
h σ

(
W

(1)
h z + b

(1)
h +W (1)

x q + b(1)
x

)
+ b

(2)
h +W (2)

x q + b(2)
x

)
where σ = tanh and W

(1)
h ,W

(2)
h ∈ R32×32, W

(1)
x ,W

(2)
x ∈ R32×28. We look at only the

last output of the network and thus only parametrize the last affine map A28. Softmax

thresholding is applied. The initial hidden state is always taken to be 0.

We train with a batch size of 600 and SGD uses a learning rate of 0.05. EKI(R)

starts with an ensemble size of J = 1000 and expands by 1,000 at the end of every epoch

until J = 4000 is reached. Figure 12 shows the result of training. EKI(R) performs

significantly better than SGD and appears more reliable, overall, for this task.
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(a) CNN-MNIST (b) CNN-1

(c) CNN-2 (d) CNN-3

CNN-MNIST CNN-1 CNN-2 CNN-3

First Final First Final First Final First Final

SGD 0.1936 0.9878 n/a n/a n/a n/a n/a n/a

MSGD 0.1911 0.9880 0.3263 0.9150 0.2734 0.9324 0.1959 0.9414

EKI(R) 0.5708 0.9912 0.3100 0.9249 0.2874 0.9353 0.2668 0.9299

Figure 11: Comparison of the test accuracies of SGD and EKI(R) on four convolutional

neural networks. SGD(M) refers to momentum SGD. CNN-MNIST is trained on the

MNIST data set, while CNN-(1,2,3) are trained on the SVHN data set.

5.5. Semi-supervised Learning

We proceed as in the construction of Example 2.2, using the Voting Records data set.

For the affinity measure we pick [86, 7]

η(x, y) = exp

(
−‖x− y‖

2
2

2(1.25)2

)
and construct the graph Laplacian L(x). Its spectrum is shown in Figure 3. Further we

let τ = 0 and α = 1, hence the prior covariance C = (L(x))−1 is defined only on the
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First Final

SGD 0.2825 0.9391

EKI(R) 0.4810 0.9566

Figure 12: Comparison of the test accuracies of EKI(R) and SGD on the MNIST data

set with a two layer recurrent neural network.

subspace orthogonal to the first eigenvector of L(x). The most naive clustering algorithm

that uses a graph Laplacian simply thresholds the eigenvector of L(x) that corresponds

to the smalled non-zero eigenvalue (called the Fiedler vector) [83]. Its accuracy is shown

in Figure 13. We found the best performing EKI method for this problem to simply

be the vanilla version of the method i.e. no randomization or momentum. We use

J = 1000 ensemble members drawn from the prior and the mean squared-error loss.

Its performance is only slightly better than the Fiedler vector as the particles quickly

collapse to something close to the Fiedler vector. This is likely due to the fact that the

initial ensemble is an i.i.d. sequence drawn from the prior hence EKI converges to a

solution in the subspace orthogonal to the first eigenvector of L(x) which is close to the

Fiedler vector, especially if the weights and other attendant hyper-parameters have been

chosen so that the Fielder vector already classifies the labeled nodes correctly. On the

other hand, the MCMC method detailed in [7] can explore outside of this subspace and

achieve much better results. We note, however, that EKI is significantly cheaper and

faster than MCMC and thus could be applied to much larger problems where MCMC

is not computationally feasible.

5.6. Online Learning

Finally we consider two online learning problems using a recurrent neural network. We

employ two univariate time-series data sets: minimum daily temperatures in Melbourne,

and the monthly number of sunspots observed from Zürich. For both, we use a single

layer recurrent network with 32 hidden units and the tanh nonlinearity. The output is

not thresholded i.e. S = id. At the initial time, we set the hidden state to 0 then use

the hidden state computed in the previous step to initialize for the current step. This is

an online problem as our algorithm only sees one data-label pair at a time. For OGD,

we use a learning rate of 0.001 while, for EKI, we use J = 12 ensemble members. Figure

14 shows the results of training as well as how well each of the trained model fits the test
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Accuracy

Fiedler vector 0.8828

MCMC (pCN) 0.9252

EKI 0.8920

Figure 13: Comparison of the test accuracies of two semi-supervised learning algorithms

to EKI on the Voting Records data set.

Melbourne Temperatures Zürich Sunspots

First Final First Final

OGD 2.653× 10−2 8.954× 10−3 4.939× 10−2 6.480× 10−3

EKI 8.086× 10−3 7.448× 10−3 8.671× 10−3 6.006× 10−3

Figure 14: Comparison of OGD and EKI on two online learning tasks with a recurrent

neural network. The top row shows the minimum daily temperatures in Melbourne data

set, while the bottom shows the number of sunspots observed each month from Zürich

data set.

data. Notice that EKI converges much more quickly and to a slightly better solution

than OGD in both cases. Furthermore, the model learned by EKI is able to better

capture small scale oscillations. These are very promising results for the application of

EKI to harder RNN problems.
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6. Conclusion and Future Directions

We have demonstrated that many machine learning problems can easily fit into the

unified framework of Bayesian inverse problems. Within this framework, we apply

Ensemble Kalman Inversion methods, for which we suggest suitable modifications,

to tackle such tasks. Our numerical experiments suggest a wide applicability and

competitiveness against the state-of-the-art for our schemes. The following directions

for future search arise naturally from our work:

• Theoretical analysis of the momentum and general loss EKI methods as well as

their possible application to physical inverse problems.

• GPU parallelization of EKI methods and its application to large scale machine

learning tasks.

• Application of EKI methods to more difficult recurrent neural network problems as

well as problems in reinforcement learning.

• Use of the entire ensemble of particle estimates to improve accuracy and possibly

combat adversarial examples.
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