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Abstract—In this paper, we study the effect of a single link on
the capacity of a network of error-free bit pipes. More precisely,
we study the change in network capacity that results when we
remove a single link of capacityδ. In a recent result, we proved
that if all the sources are directly available to a single super-
source node, then removing a link of capacityδ cannot change the
capacity region of the network by more thanδ in each dimension.
In this paper, we extend this result to the case of multi-source,
multi-sink networks for some special network topologies.

I. PROBLEM STATEMENT

Consider a communication problem defined by a network,
a collection of sources, and a collection of sinks. The network
is a directed graph with nodes representing communication
devices and edges representing error-free, point-to-point com-
munication channels with finite capacities. The sources are
independent data streams, and each is available to precisely
one node in the network. Each sink is a node in the network
that desires some subset of the data streams; the desired subset
may differ from one sink to the next. The capacity of the
network, also called the “network coding capacity,” describes
the set of achievable rates for every possible combination of
sources and sinks. Solving for the capacity is a challenging
open problem. In this paper, we investigate a simpler question:
what is the effect of a single link on the network coding
capacity of such a network? Specifically, we wish to under-
stand whether decreasing the capacity of a single edgee from
Ce ≥ δ toCe−δ can change the capacity region of the network
by more thanδ in each dimension.

In [1], we posed this question and proved that if all sources
are available at one node, then changing the capacity of a
single link by δ reduces each achievable rate vector by at
mostδ in each dimension. In this paper, we extend this result
to a family of multi-source, multi-sink networks.

II. N OTATION

Throughout the paper, finite sets are denoted by script letters
such asX and Y. The size of a finite setA is denoted by
|A|. Random variables are denoted by upper case letters such
as X and Y . We represent the alphabet of random variable
X by X . Bold letters, for exampleX = (X1, . . . , Xn) and
x = (x1, . . . , xn) represent vectors. The length of a vector
is implied in the context, and itsℓth element is denoted by
Xℓ. For a setF ⊆ {1, 2, . . . , n}, xF = (xi)i∈F , where the

elements are sorted in ascending order of their indices. For
a vectorX ∈ Rn, let X+ = max(0,X), where0 is a zero-
valued vector of lengthn, and themax operator is applied
component-wise.

III. SYSTEM MODEL

Consider an acyclic error-free networkN denoted by a
directed graphG = (V , E) with nodesV and edgesE ⊆ V×V .
Each edgee = (v1, v2) ∈ E represents an error-free channel
from Node v1 to Node v2. We useCe > 0 to denote that
channel’s capacity. For each nodev ∈ V , In(v) = {(v1, v) :
(v1, v) ∈ E} andOut(v) = {(v, v1) : (v, v1) ∈ E} denote the
set of incoming and outgoing edges for Nodev respectively.

Let S = {1, 2, . . . , k} denote the set of sources available in
the network, and let

α : S → V ,

specify the source availability. Thus for eachs ∈ S, α(s)
describes the unique node where sources is available. Like-
wise, for eachv ∈ V , let σ(v) ⊆ S denote the set of sources
observed by Nodev, i.e.,

σ(v) = {s : α(s) = v}.

Finally, for eachv ∈ V , let β(v) ⊆ S denote the set of sources
that Nodev is interested in recovering.

A network code of block lengthn and rateR = (Rs)s∈S

over such a network is described as follows. Each sources ∈ S
generates some messageMs ∈ Ms = {1, 2, . . . , 2nRs}. For
eache ∈ E , letWe = {1, 2, . . . , 2nCe}. The coding operations
performed by each node can be categorized as follows

1) Encoding functions:
For eachv ∈ V ande ∈ Out(v), the encoding function
corresponding to Edgee is a mapping

ge :
∏

s∈σ(v)

Ms ×
∏

e′∈In(v)

We′ → We.

2) Decoding functions:
For eachv ∈ V ands ∈ β(v), the decoding function for
sources at Nodev is a mapping

gsv :
∏

s′∈σ(v)

Ms′ ×
∏

e∈In(v)

We → Ms.
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A rate vectorR = (Rs)s∈S is said to be achievable on network
N , if for any ǫ > 0, there exists a block lengthn large enough
and a coding scheme of block lengthn operating at rateR
such that for allv ∈ V ands ∈ β(v)

P(M̂ (v)
s 6= Ms) ≤ ǫ,

where M̂
(v)
s denotes the reconstruction of messageMs at

Nodev. For sourcesS, availability mappingα(·), and demand
mappingβ(·), let R(N ,S, α, β) denote the set of achievable
rates on NetworkN .

In the discussion that follows, we useN to describe the
original network andN ′ to describe the new network that
results when we reduce the capacity of a single, fixed edge
e ∈ E from Ce ≥ δ to C′

e = Ce − δ. If Ce = δ, then edgee
is removed fromN to obtainN ′.

IV. PRIOR WORK

Network codes are communication schemes in which every
node is allowed to perform arbitrary functions on its inputsin
creating its outputs. The idea was first proposed by Ahlswede,
Cai, Li, and Yeung in 2000 [2]. They proved that Ford and
Fulkerson’s famous max-flow min-cut theorem for unicast net-
works [3], also holds in multicast networks. (Here a “unicast
network” refers to a network with a single source and a single
sink node, while a “multicast network” refers to a network with
one source and multiple sink nodes, each requiring all data
available at the source.) While it is always possible to achieve
the capacity in a unicast network using only routing at the
relay nodes, Ahlswede et al. showed that there exist networks
where coding is required to achieve the multicast capacity.
Linear coding operations suffice for achieving the capacityof
a multicast network by [4]. While both the capacity region
and the structure of capacity-achieving codes are known for
multicast demands, neither the capacity nor a low-complexity
family of codes sufficient for achieving the capacity is known
for most demand types. Linear codes are insufficient for
achieving the capacity under general demands by [5].

Computing the capacity region of an error-free network
can be cast as a convex optimization problem with a linear
cost function over the space ofnormalized entropic vectors
with some other linear constraints [6][7]. This characteriza-
tion reveals that network information theory problems over
noiseless networks could be solved if we could explicitly
characterize the set of entropy vectors. While there has been a
lot of effort in recent years geared towards developing a better
understanding of the set of entropy vectors (c.f. [8], [9], [10],
[11], [12], [13]), to date the problem remains largely unsolved.

In this paper, we study the problem from a different perspec-
tive. Instead of trying to find the capacity region of a network,
we focus on the effect of a single link on that capacity region.
Precisely, we try to understand the effect on network capacity
of changing the capacity on a single edgee ∈ E from Ce ≥ δ
to C′

e = Ce − δ, which effectively changes just one linear
constraint in the problem as described above.

V. RESULTS

Before stating our main result in Section V-E, we briefly
review some cases where the impact, in terms of network
capacity, of reducingCe is already known or straightforward
to characterize.

A. Demand Types with Tight Cut-Set Bounds

For a variety of demand types, including multicast, multi-
source multicast, single-source with non-overlapping demands,
and single-source with non-overlapping demands and a mul-
ticast demand, network coding capacity can be fully char-
acterized by the corresponding cut-set bounds [14]. Reduc-
ing Ce to Ce − δ for a single edgee ∈ E reduces the
capacity of every cut by at mostδ. Therefore, if (S, α, β)
describes any such demand type, andR ∈ R(N ,S, α, β),
then(R− δ ·1)+ ∈ R(N ′,S, α, β), whereN ′ is the modified
network, as described in Section III, and1 is the all-ones
vector.

B. Links Connected to Terminal Nodes

Consider a terminal nodevo ∈ V ; then Nodevo has no
outgoing edges (Out(vo) = ∅). Let p = | In(vo)| denote the
number of edges incoming tovo, and letW1,W2, . . . ,Wp

denote the messages carried by these links. Further, assume
that the link corresponding to the messageW1 has capacityδ.
For anys ∈ β(vo),

I(Ms;W2, . . . ,Wp)

= I(Ms;W1,W2, . . . ,Wp)− I(Ms;W1|W2, . . . ,Wp)

≥ I(Ms;W1,W2, . . . ,Wp)−H(W1)

≥ I(Ms;W1,W2, . . . ,Wp)− nδ.

This proves that removing this link reduces the capacity from
sources to nodev by at mostδ. Since Nodev has only
incoming edges, this change does not affect the capacities at
any other nodes in the network. As a result, applying, for
eachs ∈ σ(v), an outer code with rateRs − δ and codewords
drawn uniformly at random yields expected error probability
approaching 0 as the coding dimension grows without bound.
This proves the existence of a good collection of codes.
Therefore,R = (Rs : s ∈ S) ∈ R(N ,S, α, β), implies
R

′ = (R′
s : s ∈ S) ∈ R(N ′,S, α, β), whereR′

s = Rs for all
s ∈ S \ σ(v) andR′

s = (Rs − δ)+ for all s ∈ σ(v).

C. Super Source Node

For the case where all the sources are available to asuper
source node (σ(vo) = S for some vo ∈ V , as shown in
Fig. 1), we showed in [1] that changing the capacity of any
link e ∈ E from Ce ≥ δ to C′

e = Ce − δ changes the
network capacity region by at mostδ in each dimension (i.e.,
R ∈ R(N ,S, α, β) implies (R− δ · 1)+ ∈ R(N ′,S, α, β).
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Fig. 1. All sources available directly at a super source nodevo

D. Linear Network Coding

Consider a linear network code of block lengthn and rate
R = (Rs)s∈S operating on networkN . Let e ∈ E be a fixed
link of capacityCe = δ inside this network. In this case, we
treat both source messages and the messages traversing each
link in the network as binary vectors. Since the code is linear,
the messageWe sent across linke can be written as a linear
combination of the source messages{Ms}s∈S . Precisely,

We =
∑

s∈S

As,eMs, (1)

where for eachs ∈ S, As,e denotes a binary matrix of
dimensionnCe × nRs and all additions in (1) are binary
additions. LetM0 denote the set of messages that yield
messageWe = 0 on link e using the given linear code, i.e.,

M0 , {(Ms)s∈S :
∑

s∈S

As,eMs = 0}.

If we restrict our attention to this subset of messages, then
we can run the given linear code in the absence of edge
e since the value ofWe for all such messages is fixed
and known. Unfortunately, choosing messages fromM0 may
require coordination among the source nodes. We therefore
choose messages from a subset ofM0 that requires no such
coordination. Namely, we transmit only messages fromM00,
whereM00 is defined as

M00 , {(Ms)s∈S : As,eMs = 0 for all s ∈ S}.

By sending only messages(Ms)s∈S ∈ M00, we guarantee
that We = 0; sinceM00 =

∏
s∈S

{Ms : AsMs = 0}, the
source nodes can transmit only messages fromM00 without
coordination. The resulting rate is(1/n) log |{Ms : AsMs =
0}| ≥ (Rs − δ)+ for eachs ∈ S. Thus we can apply the code
from N on the networkN ′ to achieve reliable communication
at rate(R− δ · 1)+.

The given argument demonstrates that removing a single
link of capacityCe = δ changes the rate achievable with linear
coding by at mostδ in each dimension. The same argument
can be used to show that reducing the capacity of some edgee
with Ce > δ to C′

e = Ce − δ reduces the rate achievable with
linear coding by at mostδ in each dimension. This can be
seen by treating a link of capacityCe > δ as a pair of parallel
links of capacitiesCe − δ and δ, respectively, and applying
the previous argument.

Unfortunately, as noted in Section IV, linear network codes
are not sufficient for achieving the capacity of general error-
free networks. Thus, the given strategy proves only that
reducing the capacity of a link byδ changes the set of rates
achievable using linear coding by at mostδ in each dimension.
If rate R is achievable using linear coding onN , then rate
(R− δ · 1)+ is achievable using linear coding onN ′.

E. Main Result

Consider thek-unicast networkN shown in Fig. 2(a). Here,
α(s) = vs and β(vk+s) = {s} for all s ∈ S; that is, each
messages ∈ S is a unicast from nodevs to node vk+s.
In a blocklength-n code, Ms ∈ {1, 2, . . . , 2nRs} denotes
the source message for Sources, and M̂s represents the
reconstruction ofMs at sink nodevk+s. When we remove
the link e of capacityCe = δ from N , we obtain the network
N ′ shown in Fig. 2(b).
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Fig. 2. A multiple unicast network with special structure

Theorem 1. For any R ∈ R(N ,S, α, β),

(R− δ · 1)+ ∈ R(N ′,S, α, β).

Proof: Fix R = (R1, R2, . . . , Rk) ∈ R(N ,S, α, β). We
first consider the case wheremin{R1, . . . , Rk} ≥ δ. Given a
code of blocklengthn, for eachs ∈ S, let P (n)

e,s , P(Ms 6=
M̂s) denote the error probability in reconstructing sources
at sink vk+s. For any p ∈ [0, 1], let h(p) = −p log(p) −
(1 − p) log(1 − p) be the binary entropy function. SinceR
is achievable onN , for any ǫ > 0 andn large enough there
exists a rate-R code of blocklengthn such thatmax{P

(n)
e,s :

s ∈ S} ≤ ǫ andmax{h(P
(n)
e,s ) : s ∈ S} ≤ ǫ. Given anyǫ > 0,

fix such a code. We next use this family of codes to prove
the existence of a multiple access code for communicating
the sources from nodesv1, . . . , vk to nodea and a broadcast
code for transmitting all sourcess ∈ S from Nodea to nodes
vk+1, . . . , v2k, respectively, both at ratesR − δ · 1. In the
arguments that follows, we useWe, Wi, andWo to denote
the message sent through the linke of capacityCe = δ, the



inputs of Nodea, and the outputs of Nodea, respectively (see
Fig. 2(a)).

Consider thek-user multiple access channel with inputs
M = (M1,M2, . . . ,Mk) and outputWi. The capacity re-
gion of this k-user MAC is the set of rate vectorsr =
(r1, r2, . . . , rk) satisfying

∑

s∈A

rs ≤ I(MA;Wi|MAc , Q),

for all A ⊆ S and some

p(q)p(m1|q)p(m2|q) . . . p(mk|q).

Define

rmac , (I(M1;Wi), I(M2,Wi), . . . , I(Mk;Wi)),

under the distribution imposed by the code fixed above. In
the argument that follows, we first show thatrmac falls in the
capacity region of the MAC and then prove thatrmac satisfies
the desired rate constraint.

Since the messagesM1, . . . ,Mk are independent, for any
setsA ⊆ S andAc = S \ A,

∑

s∈A

rmac,s =
∑

s∈A

I(Ms;Wi)

=
∑

s∈A

[H(Ms)−H(Ms|Wi)]

= H(MA)−
∑

s∈A

H(Ms|Wi)

≤ H(MA)−H(MA|Wi)

≤ H(MA)−H(MA|Wi,MAc)

= I(MA;Wi|MAc).

Thus,rmac falls in the capacity region of the MAC.
We next bound each term inrmac. For eachs ∈ S,

H(Ms|Wi) ≤ H(Ms,We|Wi)

= H(Ms|We,Wi) +H(We|Wi)

≤ nRsP
(n)
e,s + h(P (n)

e,s ) + nδ

by Fano’s inequality [15]. Hence,

I(Ms;Wi) = H(Ms)−H(Ms|Wi)

≥ n(Rs − δ)− nRsǫ− ǫ, (2)

since max{P
(n)
e,s , h(P

(n)
e,s )} ≤ ǫ by assumption. Recall that

ǫ > 0 is arbitrary; thus (2) implies that(R−δ ·1) is achievable
on the described MAC.

We next deliver these messages to their intended receivers
using the broadcast channel (BC) from Nodea to the sinks
vk+1, . . . , v2k. Again, we apply the previously chosen code,
operating the code in the absence of edgee by sending only
source messages for which the message across edgee is a
fixed valuewe to be chosen next.

Note that

H(M) = H(M̂) +H(M|M̂)

= H(M̂) +
k∑

s=1

H(Ms|M
s−1, M̂)

≤ H(M̂) +

k∑

s=1

H(Ms|M̂s)

(a)

≤ H(M̂) +

k∑

s=1

(h(P (n)
e,s ) + nRsP

(n)
e,s )

(b)

≤ H(M̂) + kǫ+ nǫ

k∑

s=1

Rs. (3)

where(a) and(b) follow from the Fano’s inequality [15], and
our initial assumption, respectively. Hence, from (3),

H(M̂) ≥ H(M)− kǫ− nǫ

k∑

s=1

Rs

= (1− ǫ)n
k∑

s=1

Rs − kǫ. (4)

On the other hand, we have

H(M̂|We) = H(M̂,We)−H(We)

≥ H(M̂)−H(We)

≥ H(M̂)− nδ. (5)

Therefore, combining (4) and (5), it follows that

H(M̂|We) ≥ (1− ǫ)n

k∑

s=1

Rs − kǫ− nδ. (6)

SinceH(M̂|We) =
∑

we∈We

H(M̂|We = we)p(we), there
exists somewe ∈ We such that

H(M̂|We = we) ≥ (1− ǫ)n
k∑

s=1

Rs − kǫ− nδ. (7)

Fixing the messageWe to a value ofwe that satisfies (7), we
get ak-user deterministic broadcast channel (BC) [15] with
input Wo and outputs(M̂1, . . . , M̂k). Appendix A summa-
rizes prior results on the capacity region for this BC, which
achieves reliable transmission at all ratesr = (r1, r2, . . . , rk)
for which

∑

s∈A

rs ≤ H(M̂A|We = we),

for all A ⊆ S. We now prove that this set of rates includes
the raterbc = n(R− δ · 1). For anyA ⊆ S, we have

H(M̂A|We = we) +H(M̂Ac |We = we)

≥ H(M̂|We = we). (8)

But H(M̂Ac |We = we) ≤
∑

s∈Ac nRs. Hence, combining (7)
and (8),

H(M̂A|We = we) ≥ n
∑

s∈A

Rs − n

k∑

s=1

Rsǫ− kǫ− nδ.



Thus, sinceǫ is arbitrary,n(R − δ · 1) is achievable on the
given BC. This implies that the messages received by nodea
at ratermac can be delivered to their intended receivers, which
concludes the proof for the case whereRs > δ for all s ∈ S.

Finally, note that if there are some sources withRs ≤ δ,
then we can use the same argument by sending constant
messages for all such sources in both the MAC and the BC.

A special case of the network shown in Fig. 2(a) is shown
in Fig. 3. Theorem 1 immediately applies.

PSfrag replacements

δ

C
N1

N2

M1

M2

Mk

M̂1

M̂2

M̂k

...
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Note that Theorem 1 can also be used to derive an outer
bound on the capacity region of thek-unicast networkN
shown in Fig. 2(a). LetR1 , R(N1,S, α1, β1) and R2 ,

R(N2,S, α2, β2) denote the capacity regions of the networks
N1 andN2 shown in Fig. 2(b), withα1(s) = vs, α2(s) = a
andβ2(vs+k) = s, for s ∈ S. Moreover,β1(a) = S, β1(v) =
∅ for v ∈ V\a, andβ2(v) = ∅ for v ∈ V\{vk+1, . . . , v2k}.
Note that R1 and R2 correspond to a multicast network
and a single source network with non-overlapping demands,
respectively. Hence, as mentioned before, in both cases the
capacity regions are computable and are fully characterized
by the cut-set bounds [14].

Corollary 1. Let Ro , {R+ δ · 1 : R ∈ R1 ∩R2}. Then,

R(N ,S, α, β) ⊆ Ro.

VI. CONCLUSION

In this paper we study the effect of a single link on
the network coding capacity of a network of error-free bit
pipes. For some special topologies of multi-source multi-sink
networks, we prove that our result from [1] continues to hold;
that is, reducing the capacity of a link byδ changes the
capacity region by at mostδ in each dimension. The question
of whether or not this result holds for all networks remains an
open area for future research.

APPENDIX A
DETERMINISTIC BROADCAST CHANNEL

A k-user deterministic broadcast channels (DBC) with input
x ∈ X and outputs{Ys ∈ Ys}s∈S is a k-user broadcast
channel such that for anyx ∈ X and (y1, . . . , yk) ∈ Y1 ×
Y2 × . . .× Yk,

P((Y1, . . . , Yk) = (y1, . . . , yk)|X = x) ∈ {0, 1}. (A-1)

Since the capacity region of a BC depends only on the
receivers’ conditional marginal distributions [15], (A-1) im-
plies that aK-user DBC can be described byk functions
(f1, . . . , fk),

fs : X → Ys,

such thatYs = fs(X) for s ∈ S.
While the capacity region for general BCs remains un-

solved, the capacity region of ak-user DBC is known and can
be described by the union of the set of rates(R1, R2, . . . , Rk)
satisfying

∑

s∈A

Rs ≤ H(YA),

for anyA ⊆ {1, . . . , k}, for someP (X) [16], [17] .
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