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Abstract—In this paper, we study the effect of a single link on elements are sorted in ascending order of their indices. For
the capacity of a network of error-free bit pipes. More precisely, g vectorX € R”, let Xt = max (0, X), where0 is a zero-

we study the change in network capacity that results when we \5,yed vector of lengt, and themax operator is applied
remove a single link of capacityd. In a recent result, we proved .
component-wise.

that if all the sources are directly available to a single supr-
source node, then removing a link of capacity cannot change the
capacity region of the network by more thang in each dimension. [ll. SYSTEM MODEL
In this paper, we extend this result to the case of multi-soure C . .
o ’ : ; : onsider an acyclic error-free network’ denoted by a
multi-sink networks for some special network topologies. . .
P polog directed graplz = (V, £) with nodes) and edgeg C Vx V.
|. PROBLEM STATEMENT Each edge: = (v1,v2) € £ represents an error-free channel

Consid icati bl defined b o g;)m Node v; to Nodevs. We useC,. > 0 to denote that
onsider a communication problem defined by a networlg - 1. capacity. For each nodes V, Tn(v) = {(v1,v) :

acolle.ction of sources, and a collection of §inks. The nqltwq v1,v) € £} andOut(v) = {(v,v1) : (v,v) € €} denote the
is a directed graph with nodes representing communicati of incoming and outgoing edges for Nodeespectively.

devices and edges representing error-free, point-tojgoim- -~ 4 o _ {1,2,...,k} denote the set of sources available in
munication channels with finite capacities. The sources %eF network 7ar71d Iét
20 ,

independent data streams, and each is available to precis Sy
one node in the network. Each sink is a node in the network aio =V,
that desires some subset of the data streams; the desirset SWpecify the source availability. Thus for eashe S, a(s)

may differ from one sink to the next. The capacity of thgescripes the unique node where sousde available. Like-

network, also called the “network coding capacity,” deisesi yjise, for eachy € V), let o(v) C S denote the set of sources
the set of achievable rates for every possible combinatfon gyserved by Node, i.e.,

sources and sinks. Solving for the capacity is a challenging

open problem. In this paper, we investigate a simpler qoesti o) ={s: a(s) =v}.
what is the effect of a single link on the network coding

capacity of such a network? Specifically, we wish to unde%—'na”y' foreachy € V, let 5(v) C S denote the set of sources
stand whether decreasing the capacity of a single edgem &t Nodev is interested in recovering.

C. > §to C,—& can change the capacity region of the network A network code of block length and rateR = (R;)ses
by more thary in each dimension. over such a network is described as follows. Each souireesS

_ R,
In [1], we posed this question and proved that if all sourc&€nerates some messagg € M, = {1,2,...,2"% }. For

_ nCe i i
are available at one node, then changing the capacity of&che € &, letWe = {1,2,...,2"%}. The coding operations

single link by § reduces each achievable rate vector by &€rformed by each node can be categorized as follows

mostd in each dimension. In this paper, we extend this result 1) Encoding functions:

to a family of multi-source, multi-sink networks. For eachv € V ande € Out(v), the encoding function
corresponding to Edge is a mapping

ge: [ Max J[ We =W

s€o(v) e’€In(v)
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II. NOTATION

Throughout the paper, finite sets are denoted by scriptsette
such asX and). The size of a finite sed is denoted by
|A]. Random variables are denoted by upper case letters sucB) Decoding functions:
as X andY. We represent the alphabet of random variable  For eachv € V ands € (v), the decoding function for

X by X. Bold letters, for exampl& = (X,,...,X,,) and sources at Nodew is a mapping
x = (w1,...,2,) represent vectors. The length of a vector .
is implied in the context, and ité™® element is denoted by 9o * H M x H We = M.

X,. For a setF C {1,2,...,n}, xr = (2;);cr, Where the s'€o(v) e€ln(v)
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Arate vectoR = (R;)scs is said to be achievable on network V. RESULTS
N, if for any e > 0, there exists a block lengtihlarge enough
and a coding scheme of block lengthoperating at rateR Before stating our main result in Sectibn V-E, we briefly

such that for aly € V ands € B(v) review some cases where the impact, in terms of network
. capacity, of reducing’, is already known or straightforward
P(M®) # M,) <e, to characterize.

where M1{") denotes the reconstruction of messae at
Nodew. For sourcesS, availability mappingx(-), and demand
mappings(-), let R(NV, S, a, 3) denote the set of achievable For a variety of demand types, including multicast, multi-
rates on Network\/. source multicast, single-source with non-overlapping aeas,

In the discussion that follows, we us€ to describe the and single-source with non-overlapping demands and a mul-
original network and\” to describe the new network thatticast demand, network coding capacity can be fully char-
results when we reduce the capacity of a single, fixed edaeterized by the corresponding cut-set bournds [14]. Reduc-
ecéfromC,>dtoC, =C,—0.If C. =0, thenedgee ing C. to C. — ¢ for a single edgee € & reduces the

A. Demand Types with Tight Cut-Set Bounds

is removed from\ to obtain . capacity of every cut by at most Therefore, if(S, a, )
describes any such demand type, dRde R(N,S,a, 3),
IV. PRIOR WORK then(R—4§-1)" € RN, S, a, 8), whereA” is the modified

network, as described in Sectign]lll, andis the all-ones
Network codes are communication schemes in which evagyctor.

node is allowed to perform arbitrary functions on its inpiats

creating its outputs. The idea was first proposed by Ahlswede . ,

Cai, Li, and Yeung in 2000]2]. They proved that Ford ang' Links Connected to Terminal Nodes

Fulkerson’s famous max-flow min-cut theorem for unicast net consider a terminal node, € V: then Nodew, has no

works [3], also holds in multicast networks. (Here a “untcagytgoing edges@ut(v,) = (). Let p = |In(v,)| denote the
network” refers to a network with a single source and a singlgimper of edges incoming to,, and let Wy, W, ..., W,
sink node, while a “multicast network” refers to a networkiwi genote the messages carried by these links. Further, assume

one source and multiple sink nodes, each requiring all dajt the link corresponding to the messagje has capacity.
available at the source.) While it is always possible to@ohi For anys € 3(v,)

the capacity in a unicast network using only routing at the
relay nodes, Ahlswede et al. showed that there exist nework I(My; W, ..., W,)
where coding is required to achieve the multicast capacity.
Linear coding operations suffice for achieving the capaoity LMo W1, W, Wp) = I(Ma; Wr|[Wa, ..., W)
a multicast network by[]4]. While both the capacity region = (Mg W1, Wa, ..., W) — H(Wh)
and the structure of capacity-achieving codes are known for > I(Mg; Wy, Ws, ..., W,) — nd.
multicast demands, neither the capacity nor a low-complexi
family of codes sufficient for achieving the capacity is kmowThis proves that removing this link reduces the capacitynfro
for most demand types. Linear codes are insufficient feburces to nodev by at mostd. Since Nodev has only
achieving the capacity under general demands_ by [5]. incoming edges, this change does not affect the capactties a
Computing the capacity region of an error-free networdny other nodes in the network. As a result, applying, for
can be cast as a convex optimization problem with a lineaachs € o(v), an outer code with rat&, — § and codewords
cost function over the space obrmalized entropic vectors drawn uniformly at random yields expected error probapilit
with some other linear constraints| [6][7]. This characta+i approaching 0 as the coding dimension grows without bound.
tion reveals that network information theory problems oveérhis proves the existence of a good collection of codes.
noiseless networks could be solved if we could explicitifherefore, R = (Rs : s € §) € R(N,S,a,3), implies
characterize the set of entropy vectors. While there has heeR’ = (R, : s € S) € R(N, S, «, ), whereR, = R, for all
lot of effort in recent years geared towards developing géebets € S\ o(v) and R, = (R, — §)" for all s € o(v).
understanding of the set of entropy vectors (¢.If. [8], [@D][
[, [IE] [13)), to date the problem remains Ia}rgely uveal. C. Super Source Node
In this paper, we study the problem from a different perspec-
tive. Instead of trying to find the capacity region of a nethyor  For the case where all the sources are available toiger
we focus on the effect of a single link on that capacity regiosource node (o(v,) = S for somew, € V, as shown in
Precisely, we try to understand the effect on network capacFig. [d), we showed in[J1] that changing the capacity of any
of changing the capacity on a single edge £ fromC. > ¢ link e € £ from C. > § to C. = C. — § changes the
to C, = C, — ¢4, which effectively changes just one lineametwork capacity region by at moétin each dimension (i.e.,
constraint in the problem as described above. R e R(WN,S,a,3) implies(R—6-1)t € RN, S, o, B).



e Unfortunately, as noted in Sectibn]lV, linear network codes
! are not sufficient for achieving the capacity of general rerro
My free networks. Thus, the given strategy proves only that
reducing the capacity of a link by changes the set of rates
achievable using linear coding by at mésh each dimension.
0 If rate R is achievable using linear coding o¥f, then rate
\ ) (R —§-1)" is achievable using linear coding ov’.

M,
My

S

M,

Fig. 1. All sources available directly at a super source nage E. Main Result

Consider the:-unicast network\" shown in Fig[ 2(3). Here,
a(s) = vs and B(vi4s) = {s} for all s € S; that is, each
D. Linear Network Coding messages € S is a unicast from node, to nodevj,.
Consider a linear network code of block lengthand rate In a blocklengths code, M, € {1,2,...,2"%} denotes
R = (R,)scs operating on networkV. Let e € £ be a fixed the source message for Souree and M, represents the
link of capacityC, = § inside this network. In this case, wereconstruction ofM; at sink nodevs. When we remove
treat both source messages and the messages traversing &gctink e of capacityC. = ¢ from V, we obtain the network
link in the network as binary vectors. Since the code is lineaV’ shown in Fig[2(8).
the messagél. sent across link can be written as a linear
combination of the source messaded; }.cs. Precisely, My —— 'S

; - 0
We = ZAS,6M57 (1) MQH .< NQ T M2

M

s€ES .
where for eachs € S, A,. denotes a binary matrix of My .| % a % I

dimensionnC, x nR, and all additions in[{1) are binary
additions. Let M, denote the set of messages that yield (a) Network A/
messagél, = 0 on link e using the given linear code, i.e., .

My — — M,
A ~
Mo = {(M;)ses : ;SAS-,eMS =0}. My — N >. .< No T M,
S .
If we restrict our attention to this subset of messages, themk' 7:% i
we can run the given linear code in the absence of edge k
e since the value ofiV, for all such messages is fixed (b) Network '’

and known. Unfortunately, choosing messages frbtg may
require coordination among the source nodes. We therefore
choose messages from a subsei\df, that requires no such

coordination. Namely, we transmit only messages ftbty,,
where My is defined as Theorem 1. For any R € R(V, S, a, B),

Fig. 2. A multiple unicast network with special structure

Moo £ {(1\/[5)368 : As,e]\/fs =0 forall s e 8} (R —0- 1)+ € R(N',S,a,ﬁ).

By sending only messagé$i/,).cs € Mgy, we guarantee  Proof: Fix R = (Ry, Ry, ..., Ry) € RN, S, a, ). We
that W, = 0; since Moy = [[,.s{M, : A, M, = 0}, the first consider the case whergin{ Ry, ..., R;} > 6. Given a
source nodes can transmit only messages frefy, without code of blocklength, for eachs € S, let P 2 P(M, #
coordination. The resulting rate {&/n)log |{M, : A,M, = M;) denote the error probability in reconstructing sousce
0}| > (R, — )" for eachs € S. Thus we can apply the codeat sink vy. For anyp € [0,1], let h(p) = —plog(p) —
from A on the network\/’ to achieve reliable communication(1 — p)log(1 — p) be the binary entropy function. Sinde
atrate(R—46-1)*. is achievable onV, for anye > 0 andn large enough there

The given argument demonstrates that removing a singgists a ratéR code of blocklengtm such thatmax{ "2 -
link of capacityC, = ¢ changes the rate achievable with lineas € S} < ¢ andmax{h(Pe(f;)) i s € 8} < e Given anye > 0,
coding by at most in each dimension. The same argumeriix such a code. We next use this family of codes to prove
can be used to show that reducing the capacity of some®dgbe existence of a multiple access code for communicating
with C, > 6 to C! = C. — § reduces the rate achievable witithe sources from nodes;, ..., v, to nodea and a broadcast
linear coding by at most in each dimension. This can becode for transmitting all sourcesc S from Nodea to nodes
seen by treating a link of capacity. > § as a pair of parallel vy1,...,vs, respectively, both at rateR — § - 1. In the
links of capacitiesC, — § and ¢, respectively, and applying arguments that follows, we usé&,, W,, and W, to denote

the previous argument. the message sent through the lialof capacityC. = ¢, the



k

inputs of Nodeu, and the outputs of Node, respectively (see _ H(M) + Z H(M,| M, M)

Fig.[2(a)). po
Consider thek-user multiple access channel with inputs r
M = (M, Ms,..., M) and outputW,;. The capacity re- < H(M)+ZH(M |]\Z/)
gion of this k-user MAC is the set of rate vectons = - g e
(r1,729,...,71) Satisfying @) k
¢ H(N (n (n)
S < (M Wi Mo, Q). < HOM)+ 5 (h(PE) +nRoF)
se A ®) B 3
for all A C S and some < H(M) + ke +ne R (3)

s=1
ptg)p\my|q)p\mz|q) ...p{Mk|q).
(@l |g)p(mz|a) (mila) where(a) and(b) follow from the Fano’s inequality [15], and

Define our initial assumption, respectively. Hence, frdm (3),
Tmac = (I(My; W), I(Ma, W), ..., I(My; W5)), . k
- , H(M) > H(M) — ke —ne »_ R,

under the distribution imposed by the code fixed above. In =

the argument that follows, we first show that,.. falls in the

k
capacity region of the MAC and then prove thaf,. satisfies =(1- 6)”2 R, — ke. 4)
the desired rate constraint. s—1
Since the message¥, ..., M, are independent, for any On the other hand. we have

setsA C S and A° =S\ A, R .
H(lee) = H(M7 We) - H(We)

mac,s — I Ms; Wi ~
2T = 2 AW > HND) - H(W,)
=) [H(M,) ~ H(M]|W,)] > H(M) — né. (5)
sEA Therefore, combinind{4) andl(5), it follows that
=H(Ma)— > H(M,W)) :
seEA ~
< H(My) — H(MAIW,) HMIWS) 2 (1= n ) Ro—ke—nd. (©)

< H(My) — H(M4|Wj, Mye)

Since HM|W.) = 3, oy, HM|W. = w,)p(w,), there
= I(M; W;| M 4e). A

exists someav, € W, such that
Thus,r,,. falls in the capacity region of the MAC. X k
We next bound each term in,... For eachs € S, HMW, = we) > (1 - e)nZRS —ke—né.  (7)

s=1
H(M3|Wl) < H(M87 Welwi)

— H(M[W., W) + H(W.[W,) Fixing the messag®/, to a value ofw, that satisfies[{7), we

get ak-user deterministic broadcast channel (BC)I [15] with

< nRPM + h(P™) + nd input W, and outputs(M, ..., M;). Appendix A summa-
_ . rizes prior results on the capacity region for this BC, which
by Fano’s inequality[T5]. Hence, achieves reliable transmission at all rates (r1,72,...,7%)
I(My;W;) = H(M,) — H(M,|W;) for which
> n(Rs — ) — nRge — ¢, (2) er < H(M4|W, = w.),
seA

since max{ P, h(P{")} < ¢ by assumption. Recall that _ _
¢ > 0 is arbitrary; thus[{(R) implies th&R —d-1) is achievable for all A C S. We now prove that this set of rates includes
on the described MAC. the rater,. = n(R — ¢ - 1). For anyA C S, we have

We next deliver these messages to their intended receivers
using the broadcast channel (BC) from Nodédo the sinks R
Vg1, - - ., v2k. Again, we apply the previously chosen code, > HM|W, = we). (8)
operating the code in the_absence of eddey sendmg_only ButH(MAc|We — w.) < 3, 4. nR.. Hence, combinind{?)
source messages for which the message across edgea €
. and [8),
fixed valuew, to be chosen next.

Note that ) k
R R H(Ma|W. =we) >nY Re—nY  Ree— ke —nd.
H(M) = HM) + H(M|M) seA p

H (MW, = we) + H(Mae|We = w,)



Thus, sinces is arbitrary,n(R — ¢ - 1) is achievable on the Since the capacity region of a BC depends only on the
given BC. This implies that the messages received by nodeeceivers’ conditional marginal distributions [15[_(A-im-
at rater,,,,. can be delivered to their intended receivers, whigblies that aK-user DBC can be described By functions
concludes the proof for the case wheke > ¢ forall s € S.  (fi,..., fr),

Finally, note that if there are some sources with < 6, fs: X = Vs,
then we can use the same argument by sending constant

messages for all such sources in both the MAC and the B ch FhatYs - fS(X? for s € S- .
‘While the capacity region for general BCs remains un-

solved, the capacity region offauser DBC is known and can

A special case of the network shown in Fig._2(a) is showll, 1ascribed by the union of the set of rat@, R, .., Ry)

in Fig.[3. Theoreni]1 immediately applies.

satisfying
. <
M14> 4>M1 ZRS — H(YA)7
M 0 R seA
y— I
_ M o N2 Mo gor any A C {1,...,k}, for someP(X) [16], [17] .
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