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THE MULTIVARIATE COVERING LEMMA

AND ITS CONVERSE

PARHAM NOORZAD, MICHELLE EFFROS, AND MICHAEL LANGBERG

Abstract. The multivariate covering lemma states that given a collection of
k codebooks, each of sufficiently large cardinality and independently generated
according to one of the marginals of a joint distribution, one can with prob-
ability arbitrarily close to one choose one codeword from each codebook such
that the resulting k-tuple of codewords is jointly typical with respect to the
joint distribution. Prior proofs of the multivariate covering lemma primarily

employ strong typicality. We give a proof of this lemma for weakly typical sets.
This allows achievability proofs that rely on the covering lemma to go through
for continuous (e.g., Gaussian) channels without the need for quantization.
The covering lemma and its converse are widely used in information theory,
including in rate-distortion theory and in achievability results for multi-user
channels.

1. Introduction

The covering lemma and its extensions play a crucial role in achievability results
in network information theory. Covering lemmas are useful for enabling network
nodes to transmit codewords that “look like” they are generated from a dependent
distribution, whereas in reality, they are carefully selected from sufficiently large
codebooks that are independently generated. This allows nodes to obtain the ben-
efits of both independent and dependent codewords: like independent codewords,
such codewords can be decoded in different locations; like dependent codewords
they have the potential to achieve rates higher than those achieved by independent
codewords. This benefit, however, comes at a cost in rate. Thus the strategy is
useful when the benefit transmitting dependent codewords exceeds its cost.

In the context of the covering lemma, the concept of “looking like” dependent
codewords is captured by the notion of being jointly typical with respect to a
dependent distribution. As there are various ways to define the typical set (here
we specifically focus on weakly typical [2] and strongly typical sets [3]), one may
ask whether a specific version of the covering lemma holds for a given definition of
the typical set. The weakly typical set has two advantages over the strongly typical
set. First, it is easily defined for continuous (e.g., Gaussian) distributions. Second,
the weakly typical set has a simple one-shot counterpart, which allows proofs using
the weakly typical set to be written in the one-shot framework in a simple manner.
On the other hand, some results hold for the strongly typical set that do not hold
for the weakly typical set. Thus it is helpful to review the covering lemma and its
extensions and see for which definition of the typical set each result is currently
known to hold.

The simplest case of the covering lemma is the situation where given a random
vector and an independently generated codebook, a node looks for a codeword in
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the codebook that is jointly typical (with respect to a dependent distribution) with
the given random vector. The result obtained in this case, simply referred to as the
“covering lemma”, appears in the achievability proof of the rate distortion theorem
using weakly typical sets [2]. The second case, called the “mutual covering lemma,”
treats the case where given two independently generated codebooks, a node looks
for a jointly typical pair of codewords, where each codeword is from one of the
codebooks. This result is used in Marton’s inner bound for the two-user broadcast
channel and is proved for strongly typical sets [4, 7]. Recently, by extending the
proof of [2], the authors of [6, 8] prove a one-shot version of the mutual covering
lemma. This proof can be used to show the validity of the mutual covering lemma
for weakly typical sets in the asymptotic setting. The proof in [6, 8], however,
requires stronger independence assumptions on the codebooks than the proof using
strongly typical sets in [3, 4]. Finally, the “multivariate covering lemma” is the
extension of the mutual covering lemma to k independently generated codebooks,
and can be used to obtain an inner bound on the broadcast channel with k users
[3]. As stated in [3], one can show this result holds for strongly typical sets by
extending the proof of the mutual covering lemma [4].

In this work, using the general strategy of El Gamal and Van der Meulen [4]
and some ideas regarding weakly typical sets from Koetter, Effros, and Médard
[5], we give a proof of the multivariate covering lemma for weakly typical sets.
We also provide a converse, a special case of which is usually referred to as the
packing lemma [3]. We remark that while similar to the argument in [4], we use
Chebyshev’s inequality for the direct result (Section 4), it is also possible to use
the Cauchy-Schwarz inequality (see Appendix A), which leads to a more accurate
upper bound.

2. Problem Statement

For every positive integer n, define the set [n] = {1, . . . , n}. Let k be a positive
integer and

p(u0, u1, . . . , uk, uk+1)

be a probability distribution on the set

k+1
∏

j=0

Uj .

For every nonempty S ⊆ [k] define

US =
∏

j∈S

Uj .

For every j ∈ [k], let Mj be a nonnegative integer. For every nonempty S ⊆ [k],
define the set MS as

MS =
∏

j∈S

[Mj].

and let M = M[k]. For every m = (m1, . . . ,mk) ∈ M, let the random vector

(U0, U1(m1), . . . , Uk(mk), Uk+1)

have distribution

p(u0)

k+1
∏

j=1

p(uj|u0),
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where p(u0) and each p(uj|u0) are the conditional marginals of p(u0, . . . , uk+1). In
addition, let F be an arbitrary subset of U0 × U[k+1]. We want to find upper and
lower bounds on the probability

P

{

∀m ∈ M :
(

U0, U1(m1), . . . , Uk(mk), Uk+1

)

/∈ F
}

.

We derive the lower bound (Section 3) using the union bound, which does not
depend on the statistical dependencies of the vectors

(

U0, U1(m1), . . . , Uk(mk), Uk+1

)

for different values of m. For the upper bound (Section 4), which leads to the
multivariate covering lemma, we require a stronger assumption, which we next
describe.

Let m = (mj)j∈[k] and m
′ = (m′

j)j∈[k] be in M. Define the set Sm,m′ as

Sm,m′ =
{

j ∈ [k] : mj = m′
j

}

.

When m and m
′ are clear from context, we denote Sm,m′ with S. In the proof of

the upper bound we require

P

{

∀j ∈ [k] : Uj(mj) = uj and Uj(m
′
j) = u′

j

∣

∣U0 = u0, Uk+1 = uk+1

}

=

k
∏

j=1

p(uj|u0)×
∏

j∈Sc

p(u′
j |u0),

for all u0 and all (uj)j and (u′
j)j such that if j ∈ S, then uj = u′

j (Assumption I).

Note that if there exists a j ∈ S where uj 6= u′
j then the probability on the left

hand side equals zero.
In the corresponding asymptotic problem (Section 5), we apply our bounds to

P

{

∀m :
(

Un
0 , U

n
1 (m1), . . . , U

n
k (mk), U

n
k+1

)

/∈ A
(n)
δ

}

,

where for every m,
(

Un
0 , U

n
1 (m1), . . . , U

n
k (mk), U

n
k+1

)

is simply n i.i.d. copies of the original random vector
(

U0, U1(m1), . . . , Uk(mk), Uk+1

)

,

(Assumption II) and A
(n)
δ is the weakly typical set for the distribution p(u0, u1, . . . , uk, uk+1).

Our main result follows.

Theorem 1 (Multivariate Covering Lemma). Suppose Assumptions (I) and (II)
hold for the joint distribution of

Un
0 ,

{

Un
1 (m1), . . . , U

n
k (mk)

}

m

, Un
k+1.

For the direct part, suppose for all j ∈ [k], Mj ≥ enRj . If for all nonempty S ⊆ [k],
∑

j∈S

Rj >
∑

j∈S

H(Uj |U0)−H(US |U0, Uk+1) + (8k − 2|S|+ 10)δ, (1)

then

lim
n→∞

P

{

∃m :
(

Un
0 , U

n
1 (m1), . . . , U

n
k (mk), U

n
k+1

)

∈ A
(n)
δ

}

= 1. (2)
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For the converse, assume for all j ∈ [k], Mj ≤ enRj . If Equation (2) holds, then
∑

j∈S

Rj ≥
∑

j∈S

H(Uj |U0)−H(US|U0, Uk+1)− 2(|S|+ 1)δ,

for all nonempty S ⊆ [k].

In the direct part of Theorem 1, we can weaken the lower bound on
∑

j∈S Rj

when S = [k]. Specifically, we can replace Equation (1) with

k
∑

j=1

Rj >

k
∑

j=1

H(Uj |U0)−H(U[k]|U0, Uk+1) + 2(k + 1)δ.

for S = [k].

3. The Lower Bound

For every S ⊆ [k], define FS as the projection of F on U0 × US × Uk+1. Then
for every (u0, uS , uk+1) ∈ FS , let F(u0, uS , uk+1) be the set of all uSc such that
(u0, u[k], uk+1) ∈ F . In addition, for every nonempty S ⊆ [k], let αS and βS be
constants such that

αS ≤ log
p(uS |u0, uk+1)
∏

j∈S p(uj |u0)

for all (u0, uS , uk+1) ∈ FS and

βS ≤ log
p(uS |u0, uSc , uk+1)

∏

j∈S p(uj |u0)

for all (u0, uS , uSc , uk+1) ∈ F . Furthermore, let the constant γ satisfy

γ ≥ log
p(u[k]|u0, uk+1)
∏

j∈[k] p(uj |u0)

for all (u0, u[k], uk+1) ∈ F .
For every m = (m1, . . . ,mk) ∈ M, define the random variable Zm as

Zm = 1

{

(

U0, U1(m1), . . . , Uk(mk), Uk+1

)

∈ F
}

and set

Z =
∑

m∈M

Zm.

Our aim is to find a lower bound for P{Z = 0}. Note that for every nonempty
S ⊆ [k],

P
{

∃m : Zm = 1
}

= P

{

∃m :
(

U0, U1(m1), . . . , Uk(mk), Uk+1

)

∈ F
}

≤ P

{

∃m :
(

U0,
(

Uj(mj)
)

j∈S
, Uk+1

)

∈ FS

}

≤ |MS |
∑

FS

p(u0, uk+1)
∏

j∈S

p(uj |u0)

≤ |MS |e
−αS

∑

FS

p(u0, uS , uk+1)

≤ |MS |e
−αS .
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Thus

P{Z = 0} = 1−P
{

∃m : Zm = 1
}

≥ 1− min
|S|6=∅

|MS |e
−αS . (3)

4. The Upper Bound

In deriving our upper bound on P{Z = 0}, we apply conditioning and Cheby-
shev’s inequality. Thus, the factor

1
(

P{F(u0, uk+1)}
)2

appears, where

P{F(u0, uk+1)} = P
{

U[k] ∈ F(u0, uk+1)|U0 = u0, Uk+1 = uk+1

}

=
∑

u[k]∈F(u0,uk+1)

p(u[k]|u0, uk+1)

and F(u0, uk+1) (Section 3) is simply the set of all u[k]’s that satisfy (u0, u[k], uk+1) ∈
F . Thus to get a reasonably accurate upper bound, we require P{F(u0, uk+1)} to
be large. However, as we cannot guarantee this for all (u0, uk+1), we partition the
(u0, uk+1) pairs into “good” and “bad” sets, corresponding to large and small val-
ues of P{F(u0, uk+1)}, respectively. The probability of the good set is large when
P{(U0, U[k], Uk+1) ∈ F} is sufficiently large. To see this, fix ǫ > 0 and following
Appendix III of [5], define the set G ⊆ U0 × Uk+1 as

G =
{

(u0, uk+1) : P{F(u0, uk+1)} ≥ 1− ǫ
}

,

Note that G is the set of all good (u0, uk+1) pairs as defined above. We have

P
{

(U0, U[k], Uk+1) ∈ F
}

=
∑

u0,uk+1

∑

u[k]∈F(u0,uk+1)

p(u0, uk+1)p(u[k]|u0, uk+1)

=
∑

u0,uk+1

p(u0, uk+1)P{F(u0, uk+1)}

≤ (1− ǫ)P{(U0, Uk+1) /∈ G}+P{(U0, Uk+1) ∈ G}

= 1− ǫP{(U0, Uk+1) /∈ G}.

Thus

P{(U0, Uk+1) /∈ G} ≤
1

ǫ
P
{

(U0, U[k], Uk+1) /∈ F
}

. (4)

Our aim is to find an upper bound for P{Z = 0}. To do this, we write

P{Z = 0} =
∑

u0,uk+1

p(u0, uk+1)P{Z = 0|u0, uk+1}

≤
1

ǫ
P
{

(U0, U[k], Uk+1) /∈ F
}

+
∑

(u0,uk+1)∈G

p(u0, uk+1)P{Z = 0|u0, uk+1},

(5)

where the inequality follows from Equation (4). Therefore, to find an upper bound
on P{Z = 0}, it suffices to find an upper bound on P{Z = 0|U0 = u0, , Uk+1 =
uk+1} for all (u0, uk+1) ∈ G. Fix (u0, uk+1) ∈ G. We use Chebyshev’s inequality
to find an upper bound on P{Z = 0|U0 = u0, Uk+1 = uk+1}. Thus we need to
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calculate E[Z|U0 = u0, Uk+1 = uk+1] and E[Z2|U0 = u0, Uk+1 = uk+1]. For a given
m, from the definition of γ (Section 3) it follows

E[Zm|u0, uk+1] = P

{

(

U1(m1), . . . , Uk(mk)
)

∈ F(u0, uk+1)
∣

∣u0, uk+1

}

=
∑

F(u0,uk+1)

p(u1|u0) . . . p(uk|u0)

≥
∑

F(u0,uk+1)

e−γp(u[k]|u0, uk+1)

= e−γ
P{F(u0, uk+1)} ≥ (1 − ǫ)e−γ .

where the last inequality follows from the fact that (u0, uk+1) ∈ G. Thus, by
linearity of expectation,

E[Z|U0 = u0, Uk+1 = uk+1] ≥ |M|e−γ(1− ǫ). (6)

Next, we find an upper bound on E[Z2|U0 = u0, Uk+1 = uk+1]. We have

Z2 =
∑

m

Z2
m

+
∑

m6=m
′

ZmZm
′ = Z +

∑

m6=m
′

ZmZm
′ ,

since Z2
m

= Zm and Z =
∑

m
Zm. Thus

E[Z2|u0, uk+1] = E[Z|u0, uk+1] + E

[

∑

m6=m
′

ZmZm
′

∣

∣u0, uk+1

]

For any pair of distinct m and m
′ with nonempty S = Sm,m′ , we have

E
[

ZmZm
′ |u0, uk+1

]

=
∑

FS(u0,uk+1)

∏

i∈S

p(ui|u0)
(

∑

uSc∈F(u0,uS ,uk+1)

∏

j∈Sc

p(uj |u0)
)2

≤ e−αS−2βSc
∑

FS(u0,uk+1)

p(uS |u0, uk+1)
(

∑

uSc∈F(u0,uS,uk+1)

p(uSc |u0, uS , uk+1)
)2

≤ e−αS−2βSc ,

where FS(u0, uk+1) is the set of all uS that satisfy (u0, uS , uk+1) ∈ FS . On the other
hand, if S = Sm,m′ is empty, then Zm and Z ′

m
are independent given (U0, Uk+1) =

(u0, uk+1), and

E
[

ZmZm
′ |u0, uk+1

]

=
(

E[Zm|u0, uk+1]
)2
.

Thus (assume |M∅| = 1)

E[Z2|u0, uk+1] = E[Z|u0, uk+1] +
∑

S⊂[k]

|MS |
∏

j∈Sc

(

|Mj|
2 − |Mj |

)

E[ZmZm
′ |u0, uk+1]

≤ E[Z|u0, uk+1] +
(

E[Z|u0, uk+1]
)2

+
∑

∅⊂S⊂[k]

|MS ||MSc |2e−αS−2βSc ,

(7)
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where the notation ∅ ⊂ S ⊂ [k] means that S is a nonempty proper subset of [k].
We have

P
{

Z = 0|u0, uk+1

}

≤ P

{

∣

∣Z − E[Z|u0, uk+1]
∣

∣ ≥ E[Z|u0, uk+1]
∣

∣

∣
u0, uk+1

}

(a)

≤
Var(Z|u0, uk+1)
(

E[Z|u0, uk+1]
)2 =

E[Z2|u0, uk+1]
(

E[Z|u0, uk+1]
)2 − 1

(b)

≤
1

1− ǫ
|M|−1eγ +

1

(1− ǫ)2

∑

∅⊂S⊂[k]

|MS |
−1e−αS−2βSc+2γ ,

where (a) follows from Chebyshev’s inequality and (b) follows from Equations (6)
and (7). Now using Equation (5), we get

P{Z = 0} ≤
1

ǫ
P{Fc}+

1

1− ǫ
|M|−1eγ +

1

(1 − ǫ)2

∑

∅⊂S⊂[k]

|MS |
−1e−αS−2βSc+2γ .

(8)

5. The Asymptotic Result

In this section, using our lower and upper bounds, we prove Theorem 1. We first

prove the direct part using our upper bound from Section 4. Set F = A
(n)
δ and for

every j ∈ [k], choose an integer Mj ≥ enRj . Choose a sequence {ǫn}n such that

lim
n→∞

1

ǫn
P
{

(A
(n)
δ )c

}

= 0.

This is simple to do, since P
{

(A
(n)
δ )c

}

decays exponentially in n (see Appendix B).

Fix a nonempty S ⊆ [k]. Notice that if
(

Un
0 , (U

n
j )j∈S , U

n
k+1

)

∈ FS, then

∣

∣

∣
log

p(un
S |u

n
0 , u

n
k+1)

∏

j∈S p(un
j |u

n
0 )

− n
(

∑

j∈S

H(Uj|U0)−H(US |U0, Uk+1)
)∣

∣

∣
≤ 2n(|S|+ 1)δ.

Thus we may choose

αS = n
(

∑

j∈S

H(Uj |U0)−H(US |U0, Uk+1)− 2(|S|+ 1)δ
)

and

γ = n
(

k
∑

j=1

H(Uj |U0)−H(U[k]|U0, Uk+1) + 2(k + 1)δ
)

.

Similarly, for every nonempty S ⊆ [k], we choose βS as

βS = n
(

∑

j∈S

H(Uj |U0)−H(US |U0, USc , Uk+1)− 2(|S|+ 1)δ)
)

,

since for every
(

Un
0 , (U

n
j )j∈S , (U

n
j )j∈Sc

)

∈ F ,

∣

∣

∣
log

p(un
S |u

n
0 , u

n
Sc , un

k+1)
∏

j∈S p(un
j |u

n
0 )

−n
(

∑

j∈S

H(Uj |U0)−H(US |U0, USc , Uk+1)
)
∣

∣

∣
≤ 2n(|S|+1)δ.
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From our upper bound, Equation (8), it now follows that if for all nonempty S ⊂ [k],
∑

j∈S

Rj >
1

n
(2γ − αS − 2βSc)

= 2

k
∑

j=1

H(Uj |U0)− 2H(U[k]|U0, Uk+1)−
∑

j∈S

H(Uj |U0) +H(US |U0, Uk+1)

− 2
∑

j∈Sc

H(Uj |U0) + 2H(USc |U0, US , Uk+1) + (8k − 2|S|+ 10)δ

=
∑

j∈S

H(Uj |U0)−H(US |U0, Uk+1) + (8k − 2|S|+ 10)δ,

and for S = [k],

k
∑

j=1

Rj >
1

n
γ =

k
∑

j=1

H(Uj |U0)−H(U[k]|U0, Uk+1)− 2(k + 1)δ,

then

lim
n→∞

P

{

∃m :
(

Un
0 , U

n
1 (m1), . . . , U

n
k (mk), U

n
k+1

)

∈ A
(n)
δ

}

= 1. (9)

Next we prove the converse. Suppose for each j ∈ [k], Mj ≤ enRj and Equation
(9) holds. Then from our lower bound, Equation (3), it follows

∑

j∈S

Rj ≥
1

n
αS =

∑

j∈S

H(Uj |U0)−H(US |U0, Uk+1)− 2(|S|+ 1)δ,

for all nonempty S ⊆ [k].

Appendix A. Cauchy-Schwarz Inequality

Let Z be any random variable that is nonnegative with probability one and has
positive first and second moments. Then

Z = Z1{Z > 0}

almost surely. Thus

E[Z] = E
[

Z1{Z > 0}
]

≤
√

E[Z2]×P{Z > 0},

where the inequality follows from Cauchy-Schwarz. Hence

P{Z > 0} ≥

(

E[Z]
)2

E[Z2]

and

P{Z = 0} ≤ 1−

(

E[Z]
)2

E[Z2]
.

On the other hand, using Chebyshev’s inequality we get

P{Z = 0} = P
{

|Z − E[Z]| ≥ E[Z]
}

≤
Var(Z)
(

E[Z]
)2 =

E[Z2]
(

E[Z]
)2 − 1.
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Now note that the bound resulting from Cauchy-Schwarz is stronger, since for any
t > 0,

1− t ≤
1

t
− 1.

Appendix B. Large Deviations

The moment generating function of a random variable X is defined as

M(t) = E[etX ]

for all real t for which the expectation on the right hand side is finite. If M is defined
on a neighborhood of 0, say (−t0, t0) for some t0 > 0, then it has a Taylor series
expansion with a positive radius of convergence [1, pp. 278-280]. In particular,

d

dt
M(t)

∣

∣

t=0
= E[X ].

We want to find an upper bound for P{X ≥ a} for some real number a. Choose
t > 0. Using Markov’s inequality, we get

P{X ≥ a} = P{tX ≥ ta}

= P{etX ≥ eta}

≤ e−ta
E[etX ]

= elogM(t)−ta

Since t > 0 was arbitrary, we get

P{X ≥ a} ≤ einft>0(logM(t)−ta).

Define the function f as
f(t) = logM(t)− ta.

Then f(0) = 0 and f ′(0) = E[X ]− a. Thus if a > E[X ],

inf
t>0

(

logM(t)− ta
)

< 0. (10)

If we apply the same inequality to the random variable

1

n

n
∑

i=1

Xi,

where the Xi’s are i.i.d. copies of X , we get

P

{

n
∑

i=1

Xi ≥ na
}

≤ en inft>0(logM(t)−ta). (11)

Now consider a random vector (U1, . . . , Uk) with distribution p(u1, . . . , uk). For
every nonempty S ⊆ [k], let US denote the random vector (Uj)j∈S . Let (Un

1 , . . . , U
n
k )

be n i.i.d. copies of (U1, . . . , Uk). By applying inequality (11) to the random vari-
ables {log 1

p(USi)
}ni=1 and setting a = H(US) + ǫ for some ǫ > 0, we get

P

{

n
∑

i=1

log
1

p(USi)
≥ n(H(US) + ǫ)

}

≤ e−nIS(ǫ), (12)

where IS(ǫ) is given by

IS(ǫ) = inf
t>0

{

t
(

H(US) + ǫ
)

− logE
[

p(US)
−t
]

}
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By the union bound we get

P
{

(Un
1 , . . . , U

n
k ) /∈ A(n)

ǫ (U1, . . . , Uk)
}

≤ 2
∑

∅(S⊆[k]

e−nIS(ǫ)

≤ 2(2k − 1)e−nminS IS(ǫ)

≤ e−nI(ǫ),

where

I(ǫ) = min
S⊆[k]

IS(ǫ) + o
( 1

n

)

.

Finally, note that by Equation (10), each IS(ǫ) is positive, thus so is I(ǫ).
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