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Abstract

Robust tensor CP decomposition involves decomposing a tensor into low rank and sparse components.
We propose a novel non-convex iterative algorithm with guaranteed recovery. It alternates between low-
rank CP decomposition through gradient ascent (a variant of the tensor power method), and hard
thresholding of the residual. We prove convergence to the globally optimal solution under natural inco-
herence conditions on the low rank component, and bounded level of sparse perturbations. We compare
our method with natural baselines, viz., which apply robust matrix PCA either to the flattened tensor,
or to the matrix slices of the tensor. Our method can provably handle a far greater level of perturbation
when the sparse tensor is block-structured. Thus, we establish that tensor methods can tolerate a higher
level of gross corruptions compared to matrix methods.

1 Introduction

In this paper, we develop a robust tensor decomposition method, which recovers a low rank tensor subject
to gross corruptions. Given an input tensor T = L∗ + S∗, we aim to recover both L∗ and S∗, where L∗ is a
low rank tensor and S∗ is a sparse tensor

T = L∗ + S∗, L∗ =

r∑

i=1

σ∗
i ui ⊗ ui ⊗ ui (1)

and T, L∗, S∗ ∈ R
n×n×n. The above form of L∗ is known as the Candecomp/Parafac or the CP-form. We

assume that L∗ is a rank-r orthogonal tensor, i.e., 〈ui, uj〉 = 1 if i = j and 0 otherwise. The above problem
arises in numerous applications such as image and video denoising [17], multi-task learning, and robust
learning of latent variable models (LVMs) with grossly-corrupted moments, for details see Section 1.2.

The matrix version of (1), viz., decomposing a matrix into sparse and low rank matrices, is known as
robust principal component analysis (PCA). It has been studied extensively [6, 8, 15, 22]. Both convex [6, 8]
as well as non-convex [22] methods have been proposed with provable recovery.

One can attempt to solve the robust tensor problem in (1) using matrix methods. In other words, robust
matrix PCA can be applied either to each matrix slice of the tensor, or to the matrix obtained by flattening
the tensor. However, such matrix methods ignore the tensor algebraic constraints or the CP rank constraints,
which differ from the matrix rank constraints. There are however a number of challenges to incorporating
the tensor CP rank constraints. Enforcing a given tensor rank is NP-hard [14], unlike the matrix case, where
low rank projections can be computed efficiently. Moreover, finding the best convex relaxation of the tensor
CP rank is also NP-hard [14], unlike the matrix case, where the convex relaxation of the rank, viz., the
nuclear norm, can be computed efficiently.
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1.1 Summary of Results
Proposed method: We propose a non-convex iterative method, termed RTD, that maintains low rank
and sparse estimates L̂, Ŝ, which are alternately updated. The low rank estimate L̂ is updated through the
eigenvector computation of T − Ŝ, and the sparse estimate is updated through (hard) thresholding of the
residual T − L̂.

Tensor Eigenvector Computation: Computing eigenvectors of T − Ŝ is challenging as the tensor can
have arbitrary “noise” added to an orthogonal tensor and hence the techniques of [2] do not apply as they
only guarantee an approximation to the eigenvectors up to the “noise” level. Results similar to the shifted
power method of [19] should apply for our problem, but their results hold in an arbitrarily small centered
at the true eigenvectors, and the size of the ball is typically not well-defined. In this work, we provide a
simple variant of the tensor power method based on gradient ascent of a regularized variational form of the
eigenvalue problem of a tensor. We show that our method converges to the true eigenvectors at a linear rate
when initialized within a reasonably small ball around eigenvectors. See Theorem 2 for details.

Guaranteed recovery: As a main result, we prove convergence to the global optimum {L∗, S∗} for RTD
under an incoherence assumption on L∗, and a bounded sparsity level for S∗. These conditions are similar
to the conditions required for the success of matrix robust PCA. We also prove fast linear convergence rate
for RTD, i.e. we obtain an additive ǫ-approximation in O(log(1/ǫ)) iterations.

Superiority over matrix robust PCA: We compare our RTD method with matrix robust PCA, carried
out either on matrix slices of the tensor, or on the flattened tensor. We prove our RTD method is superior
and can handle higher sparsity levels in the noise tensor S∗, when it is block structured. Intuitively, each
block of noise represents correlated noise which persists for a subset of slices in the tensor. For example, in a
video if there is an occlusion then the occlusion remains fixed in a small number of frames. In the scenario of
moment-based estimation, S∗ represents gross corruptions of the moments of some multivariate distribution,
and we can assume that it occurs over a small subset of variables.

We prove that our tensor methods can handle a much higher level of block sparse perturbations, when
the overlap between the blocks is controlled (e.g. random block sparsity). For example, for a rank-1 tensor,
our method can handle O(n17/12) corrupted entries per fiber of the tensor (i.e. row/column of a slice of the
tensor). In contrast, matrix robust PCA methods only allows for O(n) corrupted entries, and this bound is
tight [22]. We prove that even better gains are obtained for RTD when the rank r of L∗ increases, and we
provide precise results in this paper. Thus, our RTD achieves best of both the worlds: better accuracy and
faster running times.

We conduct extensive simulations to empirically validate the performance of our method and compare it
to various matrix robust PCA methods. Our synthetic experiments show that our tensor method is 2-3 times
more accurate, and about 8-14 times faster, compared to matrix decomposition methods. On the real-world
Curtain dataset, for the activity detection, our tensor method obtains better recovery with a 10% speedup.

Overview of techniques: At a high level, the proposed method RTD is a tensor analogue of the non-
convex matrix robust PCA method in [22]. However, both the algorithm (RTD) and the analysis of RTD is
significantly challenging due to two key reasons: a) there can be significantly more structure in the tensor
problem that needs to be exploited carefully using structure in the noise,b) unlike matrices, tensors can have
an exponential number of eigenvectors [7].

We would like to stress that we need to establish convergence to the globally optimal solution {L∗, S∗},
and not just to a local optimum, despite the non-convexity of the decomposition problem. Intuitively, if we
are in the basin of attraction of the global optimum, it is natural to expect that the estimates {L̂, Ŝ} under
RTD are progressively refined, and get closer to the true solution {L∗, S∗}. However, characterizing this
basin, and the conditions needed to ensure we “land” in this basin is non-trivial and novel.

As mentioned above, our method alternates between finding low rank estimate L̂ on the residual T − Ŝ
and viceversa. The main steps in our proof are as follows: (i) For updating the low rank estimate, we
propose a modified tensor power method, and prove that it converges to one of the eigenvectors of T − Ŝ. In
addition, the recovered eigenvectors are “close” to the components of L∗. (ii) When the sparse estimate Ŝ
is updated through hard thresholding, we prove that the support of Ŝ is contained within that of S∗. (iii)
We make strict progress in each epoch, where L̂ and Ŝ are alternately updated.
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In order to prove the first part, we establish that the proposed method performs gradient ascent on a
regularized variational form of the eigenvector problem. We then establish that the regularized objective
satisfies local strong convexity and smoothness. We also establish that by having a polynomial number
of initializations, we can recover vectors that are “reasonably” close to eigenvectors of T − Ŝ. Using the
above two facts, we establish a linear convergence to the true eigenvectors of T − Ŝ, which are close to the
components of L∗.

For step (ii) and (iii), we show that using an intuitive block structure in the noise, we can bound the
affect of noise on the eigenvectors of the true low-rank tensor L∗ and show that the proposed iterative scheme
refines the estimates of L∗ and converge to L∗ at a linear rate.

1.2 Applications

In addition to the standard applications of robust tensor decomposition to video denoising [17], we propose
two applications in probabilistic learning.

Learning latent variable models using grossly corrupted moments: Using tensor decomposition
for learning LVMs has been intensely studied in the last few years, e.g. [1, 2, 18]. The idea is to learn the
models through CP decomposition of higher order moment tensors.While the above works assume access
to empirical moments, we can extend the framework to that of robust estimation, where the moments
are subject to gross corruptions. In this case, gross corruptions on the moments can occur either due to
adversarial manipulations or systematic bias in estimating moments of some subset of variables.

Multi-task learning of linear Bayesian networks: Let z(i) ∼ N (0,Σ(i)). The samples for the ith

Bayesian network are generated as x(i) = Uh(i) + z(i), and E[x(i)x
⊤
(i)] = U diag(w(i))U

⊤ + Σ(i), where h(i)
is the hidden variable for the ith network. If the Bayesian networks are related, we can share parameters
among them. In the above framework, we share parameters U , which map the hidden variables to observed
ones. Assuming that all the covariances Σ(i) are sparse, when they are stacked together, they form a sparse

tensor. Similarly U diag(w(i))U
⊤ stacked constitutes a low rank tensor. Thus, we can consider the samples

jointly, and learn the parameters by performing robust tensor decomposition.

1.3 Related Work
Robust matrix decomposition: In the matrix setting, the above problem of decomposition into sparse
and low rank parts is popularly known as robust PCA, and has been studied in a number of works ([8],[6]).
The popular method is based on convex relaxation, where the low rank penalty is replaced by nuclear norm
and the sparsity is replaced by the ℓ1 norm. However, this technique is not applicable in the tensor setting,
when we consider the CP rank. There is no convex surrogate available for the CP rank.

Recently a non convex method for robust PCA is proposed in [22]. It involves alternating steps of PCA
and thresholding of the residual. Our proposed tensor method can be seen as a tensor analogue of the method
in [22]. However, the analysis is very different, since the optimization landscape for tensor decomposition
differs significantly from that of the matrix.

Convex Robust Tucker decomposition: Previous works which employ convex surrogates for tensor
problems employ a different notion of rank, known as the Tucker rank or the multi-rank, e.g. [10, 12, 16, 20,
25]. However, the notion of a multi-rank is based on ranks of the matricization or flattening of the tensor,
and thus, this method does not exploit the tensor algebraic constraints. The problem of robust tensor PCA
is specifically tackled in [11, 13]. In [11], convex and non-convex methods are proposed based on Tucker rank,
but there are no guarantees on if it yields the original tensors L∗ and S∗ in (1). In [13], they prove success
under restricted eigenvalue conditions. However, these conditions are opaque and it is not clear regarding
the level of sparsity that can be handled.

Sum of squares: Barak et al [5] recently consider CP-tensor completion using algorithms based on the
sum of squares hierarchy. However, these algorithms are expensive. In contrast, in this paper, we consider
simple iterative methods based on the power method that are efficient and scalable for large datasets. It is
however unclear if the sum of squares algorithm improves the result for the block sparse model considered
here.
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Algorithm 1 (L̂, Ŝ) = RTD (T, δ, r, β): Tensor Robust PCA

1: Input: Tensor T ∈ R
n×n×n, convergence criterion δ, target rank r, thresholding scale parameter β.

Pl(A) denote estimated rank-l approximation of tensor A, and let σl(A) denote the estimated lth largest
eigenvalue using Procedure 1. HTζ(A) denotes hard-thresholding, i.e. Hζ(A))ijk = Aijk if |Aijk| ≥ ζ
and 0 otherwise.

2: Set initial threshold ζ0 ← βσ1(T ) and estimates S(0) = Hζ0(T − L(0)).
3: for Stage l = 1 to r do
4: for t = 0 to τ = 10 log

(
nβ
∥∥T − S(0)

∥∥
2
/δ
)
do

5: L(t+1) = Pl(T − S(t)).
6: S(t+1) = Hζ(T − L(t+1)).

7: ζt+1=β(σl+1(T−S(t+1)) +
(
1
2

)t
σl(T − S(t+1))).

8: If βσl+1(L
(t+1)) < δ

2n , then return L(τ), S(τ), else reset S(0) = S(τ)

9: Return: L̂ = L(τ), Ŝ = S(τ)

Robust tensor decomposition: Shah et al [23] consider robust tensor decomposition method using
a randomized convex relaxation formulation. Under their random sparsity model, their algorithm provides
guaranteed recovery as long as the number of non-zeros per fibre is O(

√
n). This is in contrast to our method

which potentially tolerates upto O(n17/12) non-zero sparse corruptions per fibre.

2 Proposed Algorithm

Notations: Let [n] := {1, 2, . . . , n}, and ‖v‖ denote the ℓ2 norm of vector v. For a matrix or a tensor M ,
‖M‖ refers to spectral norm and ‖M‖∞ refers to maximum absolute entry.

Tensor preliminaries: A real third order tensor T ∈ R
n×n×n is a three-way array. The different

dimensions of the tensor are referred to as modes. In addition, fibers are higher order analogues of matrix
rows and columns. A fiber is obtained by fixing all but one of the indices of the tensor. For example, for a
third order tensor T ∈ R

n×n×n, the mode-1 fiber is given by T (:, j, l). Similarly, slices are obtained by fixing
all but two of the indices of the tensor. For example, for the third order tensor T , the slices along third
mode are given by T (:, :, l). A flattening of tensor T along mode k is a matrix M whose columns correspond
to mode-k fibres of T .

We view a tensor T ∈ R
n×n×n as a multilinear form. In particular, for vectors u, v, w ∈ R

n, let

T (I, v, w) :=
∑

j,l∈[n]

vjwlT (:, j, l) ∈ R
n, (2)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a multilinear
combination of the tensor entries.

A tensor T ∈ R
n×n×n has a CP rank at most r if it can be written as the sum of r rank-1 tensors as

T =
∑

i∈[r]

σ∗
i ui ⊗ ui ⊗ ui, ui ∈ R

n, ‖ui‖ = 1, (3)

where notation ⊗ represents the outer product. We sometimes abbreviate a⊗ a⊗ a as a⊗3. Without loss of
generality, σ∗

i > 0, since −σ∗
i u

⊗3
i = σ∗

i (−ui)⊗3.

RTD method: We propose non-convex algorithm RTD for robust tensor decomposition, described in
Algorithm 1. The algorithm proceeds in stages, l = 1, . . . , r, where r is the target rank of the low rank
estimate. In lth stage, we consider alternating steps of low rank projection Pl(·) and hard thresholding of the

residual, H(·). For computing Pl(L̃), that denotes the l leading eigenpairs of L̃, we execute gradient ascent

on a function f(v) = L̃(v, v, v) − λ‖v‖4 with multiple restarts and deflation (see Procedure 1).
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Procedure 1 {L̂l, (ûj , λj)j∈[l]} = Pl(T ): GradAscent (Gradient Ascent method)

1: Input: Symmetric tensor T ∈ R
n×n×n, target rank l, exact rank r, N1 number of initializations or

restarts, N2 number of power iterations for each initialization. Let T1 ← T.
2: for j = 1, . . . , r do
3: for i = 1, . . . , N1 do

4: θ ∼ N (0, In). Compute top singular vector u of Tj(I, I, θ). Initialize v
(1)
i ← u. Let λ = Tj(u, u, u).

5: repeat

6: v
(t+1)
i ← Tj(I, v

(t)
i , v

(t)
i )/‖Tj(I, v(t)i , v

(t)
i )‖2 {Run power method to land in spectral ball}

7: λ
(t+1)
i ← Tj(v

(t+1)
i , v

(t+1)
i , v

(t+1)
i )

8: until t = N2

9: Pick the best: reset i← argmaxi∈[N1] Tj(v
(t+1)
i , v

(t+1)
i , v

(t+1)
i ) and λi = λ

(t+1)
i and vi = v

(t+1)
i .

10: Deflate: Tj ← Tj − λivi ⊗ vi ⊗ vi.
11: for j = 1, . . . , r do
12: repeat

13: Gradient Ascent iteration: v
(t+1)
j ← v

(t)
j + 1

4λ(1+λ/
√
n)
·
(

T (I, v
(t)
j , v

(t)
j )− λ‖v

(t)
j ‖

2v
(t)
j

)

.

14: until convergence (linear rate, refer Lemma 3).

15: Set ûj = v
(t+1)
j , λj = T (v

(t+1)
j , v

(t+1)
j , v

(t+1)
j )

16: return Estimated top l out of all the top r eigenpairs (ûj , λj)j∈[l], and low rank estimate L̂l =∑
i∈[l] λiûj ⊗ ûj ⊗ ûj.

Computational complexity: In RTD, at the lth stage, the l-eigenpairs are computed using Procedure 1,
whose complexity is O(n3lN1N2). The hard thresholding operation Hζ(T −L(t+1)) requires O(n3) time. We

have O
(
log
(

n‖T‖
δ

))
iterations for each stage of the RTD algorithm and there are r stages. By Theorem 2,

it suffices to have N1 = Õ
(
n1+c

)
and N2 = Õ (1), and where Õ(·) represents O(·) up to polylogarithmic

factors and c is a small constant. Hence, the overall computational complexity of RTD is Õ
(
n4+cr2

)
.

3 Theoretical Guarantees

In this section, we provide guarantees for the RTD proposed in the previous section for RTD in (1). Even
though we consider a symmetric L∗ and S∗ in (1), we can extend the results to asymmetric tensors, by
embedding them into symmetric tensors, on lines of [24].

In general, it is impossible to have a unique recovery of low-rank and sparse components. Instead, we
assume the following conditions to guarantee uniqueness:

(L) L∗ is a rank-r orthogonal tensor in (1), i.e., 〈ui, uj〉 = δi,j , where δi,j = 1 iff i = j and 0 o.w. L∗ is
µ-incoherent, i.e., ‖ui‖∞ ≤ µ

n1/2 and σ∗
i > 0, ∀1 ≤ i ≤ r.

The above conditions of having an incoherent low rank tensor L∗ are similar to the conditions for robust
matrix PCA. For tensors, the assumption of an orthogonal decomposition is limiting, since there exist tensors
whose CP decomposition is non-orthogonal [2]. We later discuss how our analysis can be extended to non-
orthogonal tensors. We now list the conditions for sparse tensor S∗.

The tensor S∗ is block sparse, where each block has at most d non-zero entries along any fibre and the
number of blocks is B. Let Ψ be the support tensor that has the same sparsity pattern as S∗, but with
unit entries, i.e. Ψi,j,k = 1 iff. S∗

i,j,k 6= 0 for all i, j, k ∈ [n]. We now make assumptions on sparsity pattern
of Ψ. Let η be the maximum fraction of overlap between any two block fibres ψi and ψj . In other words,
maxi6=j〈ψi, ψj〉 < ηd. (S) Let d be the sparsity level along any fibre of a block and let B be the number of
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blocks. We require

Ψ =
B∑

i=1

ψi ⊗ ψi ⊗ ψi, ‖ψi‖0 ≤ d, ψi(j) = 0 or 1

∀i ∈ [B], j ∈ [n], (4)

d = O(n/rµ3)2/3, B = O(min(n2/3r1/3, η−1.5)). (5)

We assume a block sparsity model for S∗ above. Under this model, the support tensor Ψ which encodes
sparsity pattern, has rank B, but not the sparse tensor S∗ since the entries are allowed to be arbitrary. We
also note that we set d to be n2/3 for ease of exposition and show one concrete example where our method
significantly outperforms matrix robust PCA methods.

As discussed in the introduction, it may be advantageous to consider tensor methods for robust decom-
position only when sparsity across the different matrix slices are aligned/structured in some manner, and a
block sparse model is a natural structure to consider. We later demonstrate the precise nature of superiority
of tensor methods under block sparse perturbations.

For the above mentioned sparsity structure, we set β = 4µ3r/n3/2 in our algorithm. Under the above
conditions, our proposed algorithm RTD establishes convergence to the globally optimal solution.

Theorem 1 (Convergence to global optimum for RTD). Let L∗, S∗ satisfy (L) and (S), and β = 4 µ3r
n3/2 .

The outputs L̂ (and its parameters ûi and λ̂i) and Ŝ of Algorithm 1 satisfy w.h.p.:

‖ûi − ui‖∞ ≤ δ/µ2rn1/2σ∗
min,

|λ̂i − σ∗
i | ≤ δ, ∀i ∈ [n],

∥∥∥L̂− L∗
∥∥∥
F
≤ δ, ‖Ŝ − S∗‖∞ ≤ δ/n3/2,

and supp Ŝ ⊆ suppS∗.

Comparison with matrix methods: We now compare with the matrix methods for recovering the
sparse and low rank tensor components in (1). Robust matrix PCA can be performed either on all the
matrix slices of the input tensor Mi := T (I, I, ei), for i ∈ [n], or on the flattened tensor T (see the definition
in Section 2). We can either use convex relaxation methods [6, 8, 15] or non-convex methods [22] for robust
matrix PCA.

Recall that η measures the fraction of overlapping entries between any two different block fibres, i.e.
maxi6=j〈ψi, ψj〉 < ηd, where ψi are the fibres of the block components of tensor Ψ in (4) which encodes the
sparsity pattern of S∗ with 0-1 entries. A short proof is given in Appendix B.1.

Corollary 1 (Superiority of tensor methods). The proposed tensor method RTD can handle perturbations S∗

at a higher sparsity level compared to performing matrix robust PCA on either matrix slices or the flattened
tensor using guaranteed methods in [15, 22] when the (normalized) overlap between different blocks satisfies
η = O(r/n)2/9.

Simplifications under random block sparsity: We now obtain transparent results for a random block
sparsity model, where the components ψi in (4) for the support tensor Ψ are drawn uniformly among all d-

sparse vectors. In this case, the incoherence η simplifies as η
w.h.p
= O( dn ) when d >

√
n and η

w.h.p
= O (1/

√
n),

o.w. Thus, the condition on B in (5) simplifies as B = O(min(n2/3r1/3, (n/d)1.5)) when d >
√
n and

B = O(min(n2/3r1/3, n0.75)) o.w. Recall that as before, we require sparsity level of a fibre in any block as
d = O(n/rµ3)2/3. For simplicity, we assume that µ = O(1) for the remaining section.

We now explicitly compute the sparsity level of S∗ allowed by our method and compare it to the level
allowed by matrix based robust PCA.
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Figure 1: (a) Error comparison of different methods with deterministic sparsity, rank 5, varying d. (b) Error
comparison of different methods with deterministic sparsity, rank 25, varying d. (c) Error comparison of different
methods with block sparsity, rank 5, varying d. (d) Error comparison of different methods with block sparsity, rank
25, varying d. Error = ‖L∗ −L‖F /‖L

∗‖F . The curve labeled ‘T-RPCA-W(slice)’ refers to considering recovered low
rank part from a random slice of the tensor T by using matrix non-convex RPCA method as the whiten matrix,
‘T-RPCA-W(true)’ is using true second order moment in whitening, ‘M-RPCA(slice)’ treats each slice of the input
tensor as a non-convex matrix-RPCA(M-RPCA) problem, ‘M-RPCA(flat)’ reshapes the tensor along one mode and
treat the resultant as a matrix RPCA problem. All four sub-figures share same curve descriptions.
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Figure 2: (a) Running time comparison of different methods with deterministic sparsity, rank 5, varying d. (b)
Running time comparison of different methods with deterministic sparsity, rank 25, varying d. (c) Running time
comparison of different methods with block sparsity, rank 5, varying d. (d) Running time comparison of different
methods with block sparsity, rank 25, varying d. Curve descriptions are same as in Figure 1.

Corollary 2 (Superiority of tensor methods under random sparsity). Let DRTD be the number of non-zeros
in S∗ (‖S∗‖0) allowed by RTD under the analysis of Theorem 1 and let Dmatrix be the allowed ‖S∗‖0 using
the standard matrix robust PCA analysis. Also, let S∗ be sampled from the random block sparse model.
Then, the following holds:

DRTD

Dmatrix
=





Ω
(
n1/6r4/3

)
, for r < n0.25, (6)

Ω
(
n5/12r1/3

)
, o.w. (7)

Unstructured sparse perturbations S∗: If we do not assume block sparsity in (S), but instead assume
unstructured sparsity at level D, i.e. the number of non zeros along any fibre of S∗ is at most D, then the

matrix methods are superior. In this case, for success of RTD, we require that D = O
(√

n
rµ3

)
which is worse

than the requirement of matrix methods D = O( n
rµ2 ). Our analysis suggests that if there is no structure

in sparse patterns, then matrix methods are superior. This is possibly due to the fact that finding a low
rank tensor decomposition requires more stringent conditions on the noise level. Meanwhile, when there is
no block structure, the tensor algebraic constraints do not add significantly new information. However, in
the experiments, we find that our tensor method RTD is superior to matrix methods even in this case, in
terms of both accuracy and running times.

3.1 Analysis of Procedure 1

Our proof of Theorem 1 depends critically on an assumption that Procedure 1 indeed obtains the top-r
eigen-pairs. We now concretely prove this claim. Let L̃ be a symmetric tensor which is a perturbed version
of an orthogonal tensor L∗, L̃ = L∗ + E ∈ R

n×n×n, L∗ =
∑

i∈[r] σ
∗
i u

⊗3
i , where σ∗

1 ≥ σ∗
2 . . . σ

∗
r > 0 and

{u1, u2, . . . , ur} form an orthonormal basis.
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Recall that N1 is the number of initializations to seed the power method, N2 is the number of power
iterations, and δ is the convergence criterion. For any ξ ∈ (0, 1), and l ≤ r, assume the following

‖E‖ ≤ O(σ∗
l /
√
n), N1 = O(n1+c log(1/ξ)),

N2 ≥ Ω(log (k) + log log(σ∗
max/‖E‖)),

where c is a small constant. We now state the main result for recovery of components of L∗ when Procedure 1
is applied to L̃.

Theorem 2 (Gradient Ascent method). Let L̃ = L∗ + E be as defined above with ‖E‖ ≤ O(σ∗
r/
√
n).

Then, applying Procedure 1 with deflations on L̃ with target rank l ≤ r, yields l eigen-pairs of L̃, given by
(λ1, û1), (λ2, û2), . . . , (λl, ûl), up to arbitrary small error δ > 0 and with probability at least 1− ξ. Moreover,
there exists a permutation π on [l] such that: ∀j ∈ [l],

|σ∗
π(j) − λj | ≤ O (‖E‖+ δ) ,

‖uπ(j) − ûj‖ ≤ O((‖E‖/σ∗
π(j)) + δ).

While [2, Thm. 5.1] considers power method, here we consider the power method followed by a gradient
ascent procedure. With both methods, we obtain outputs (λi, ûi) which are “close” to the original eigen-
pairs of (σ∗

i , ui) of L∗. However, the crucial difference is that Procedure 1 outputs (λi, ûi) correspond to
specific eigen-pairs of input tensor L̃, while the outputs of the usual power method have no such property
and only guarantees accuracy upto O(‖E‖2) error. We critically require the eigen property of the outputs
in order to guarantee contraction of error in RTD between alternating steps of low rank decomposition and
thresholding.

The analysis of Procedure 1 has two phases. In the first phase, we prove that with N1 initializations and
N2 power iterations, we get close to true eigenpairs of L∗, i.e. (σ∗

i , ui) for i ∈ [l]. After this, in the second

phase, we prove convergence to eigenpairs of L̃.
The proof for the first phase is on lines of proof in [2], but with improved requirement on error tensor

E in (8). This is due to the use of SVD initializations rather than random initializations to seed the power
method, and its analysis is given in [3].

Proof of the second phase follows using two observations: a) Procedure 1 is just a simple gradient ascent

of the following program: f(v) = L̃(v, v, v) − 3
4λ‖v‖42, b) with-in a small distance to the eigenvectors of L̃,

f(v) is strongly concave and as well as strongly smooth with appropriate parameters. See below lemma for a
detailed proof of the above claim. Hence, using our initialization guarantee from the phase-one, Procedure 1
converges to a δ approximation to eigen-pair of L̃ in time O(log(1/δ)) and hence, Theorem 2 holds.

Lemma 3. Let f(v) = L̃(v, v, v) − 3
4λ‖v‖42. Then, f is σ∗

i (1 − 300σ∗

r√
n

)-strongly concave and σ∗
i (1 +

300σ∗

r√
n

)

strongly smooth at all points (v, λ) s.t. ‖v− ui‖ ≤ 10√
n
and |λ− σ∗

i | ≤ 10σ∗

r√
n
, for some 1 ≤ i ≤ r. Procedure 1

converges to an eigenvector of L̃ at a linear rate.

Proof. Consider the gradient and Hessian of f w.r.t. v:

∇f = 3L̃(I, v, v) − 3λ‖v‖2v, (8)

H = 6L̃(I, I, v) − 6λvv⊤ − 3λ‖v‖2I. (9)

We first note that the stationary points of f indeed correspond to eigenvectors of L̃ with eigenvalues λ‖v‖2.
Moreover, when |λ− σ∗

i | ≤ 10σ∗

r√
n

and ‖v − ui‖ ≤ 10√
n
, we have:

‖H − (−3σ∗
i I)‖2 ≤ 30

σ∗
r√
n
+ 180

σ∗
r√
n
.

Recall that L̃ = L∗ + E, where L∗ is an orthogonal tensor and ‖E‖2 ≤ σ∗
r/
√
n. Hence, there exists one

eigenvector in each of the above mentioned set, i.e., set of (v, λ) s.t. |λ − σ∗
i | ≤ 10σ∗

r√
n

and ‖v − ui‖ ≤ 10√
n
.

Hence, the standard gradient ascent procedure on f would lead to convergence to an eigenvector of L̃. �
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(a) (b) (c)

Figure 3: Foreground filtering or activity detection in the Curtain video dataset. (a): Original image frame.
(b): Foreground filtered (sparse part estimated) using tensor method; time taken is 5.1s. (c): Foreground
filtered (sparse part estimated) using matrix method; time taken is 5.7s.

Extending to non-orthogonal low rank tensors: In (L), we assume that the low rank tensor L∗

in (1) is orthogonal. We can also extend to non-orthogonal tensors L∗, whose components ui are linearly
independent. Here, there exists an invertible transformation W known as whitening that orthogonalizes the
tensors [2]. We can incorporate whitening in Procedure 1 to find low rank tensor decomposition, within the
iterations of RTD.

4 Experiments

We now present an empirical study of our method. The goal of this study is three-fold: a) establish that
our method indeed recovers the low-rank and sparse parts correctly, without significant parameter tuning,
b) demonstrate that whitening during low rank decomposition gives computational advantages, c) show that
our tensor methods are superior to matrix based RPCA methods in practice.

Our pseudo-code (Algorithm 1) prescribes the threshold ζ in Step 5, which depends on the knowledge of
the singular values of the low rank component L∗. Instead, in the experiments, we set the threshold at the
(t + 1) step of lth stage as ζ = µσl+1(T − S(t))/n3/2. We found that the above thresholding, in the tensor
case as well, provides exact recovery while speeding up the computation significantly.

Synthetic datasets: The low-rank part L∗ =
∑

i∈[k] λiu
⊗3
i is generated from a factor matrix U ∈ R

n×k

whose entries are i.i.d. samples from N (0, 1). For deterministic sparsity setting, supp(S∗) is generated by
setting each entry of [n]× [n]× [n] to be non-zeros with probability d/n and each non-zero value S∗

ijk is drawn

i.i.d. from the uniform distribution over [r/(2n3/2), r/n3/2]. For block sparsity setting, we randomly select
B numbers of [n]× [1] vectors vi, i = 1...B in which each entry is chosen to be non-zero with probability d/n.
The value of non-zero entry is assigned similar to the one in deterministic sparsity case. Each of this vector
will form a subtensor(v⊗3

i ) and those subtensors form the whole S. For increasing incoherence of L∗, we
randomly zero-out rows of U and then re-normalize them. For the CP-decomposition, we use the alternating
least squares (ALS) method available in the tensor toolbox [4]. Note that we use the ALS procedure in
practice since we found that empirically, ALS performs quite well and is convenient to use. For whitening,
we use two different whitening matrices: a) the true second order moment from the true low-rank part, b)
the recovered low rank part from a random slice of the tensor T by using matrix non-convex RPCA method.
We compare our RTD with matrix non-convex RPCA in two ways: a) treat each slice of the input tensor as
a matrix RPCA problem, b) reshape the tensor along one mode and treat the resultant as a matrix RPCA
problem.

We vary sparsity of S∗ and rank of L∗ for RTD with a fixed tensor size. We investigate performance of our
method, both with and without whitening, and compare with the state-of-the-art matrix non-convex RPCA
algorithm. Our results for synthetic datasets is averaged over 5 runs. In Figure 1, we report relative error
(‖L∗−L‖F/‖L∗‖F ) by each of the methods allowing maximum number of iterations up to 100. Comparing (a)
and (b) in Figure 1, we can see that with block sparsity, RTD is better than matrix based non-convex RPCA
method when d is less than 20. If we use whitening, the advantage of RTD is more significant. But when
rank becomes higher, the whitening method is not helpful. In Figure 2, we illustrate the computational time

9



of each methods. We can see that whitening simplifies the problem and give us computational advantage.
Besides, the running time for the one using tensor method is similar to the one using matrix method when
we reshape the tensor as one matrix. Doing matrix slices increases the running time.

Real-world dataset: To demonstrate the advantage of our method, we apply our method to activity
detection or foreground filtering [21]. The goal of this task is to detect activities from a video coverage, which
is a set of image frames that form a tensor. In our robust decomposition framework, the moving objects
correspond sparse (foreground) perturbations which we wish to filter out. The static ambient background is
of lesser interest since nothing changes.

We selected one of datasets, namely the Curtain video dataset wherein a person walks in and out of the
room between the frame numbers 23731 and 23963. We compare our tensor method with the state-of-the-art
matrix method in [22] on the set of 233 frames where the activity happens. In our tensor method, we preserve
the multi-modal nature of videos and consider the set of image frames without vectorizing them. For the
matrix method, we follow the setup of [22] by reshaping each image frame into a vector and stacking them
together. We set the convergence criterion to 10−3 and run both the methods. Our tensor method yields a
10% speedup and obtains a better visual recovery for the same convergence accuracy as shown in Figure 3.

5 Conclusion

We proposed a non-convex alternating method for decomposing a tensor into low rank and sparse parts.
We established convergence to the globally optimal solution under natural conditions such as incoherence
of the low rank part and bounded sparsity levels for the sparse part. We prove that our proposed tensor
method can handle perturbations at a much higher sparsity level compared to robust matrix methods. Our
simulations show superior performance of our tensor method, both in terms of accuracy and computational
time. Some future directions are analyzing: (1) our method with whitening (2) the setting where grossly
corrupted samples arrive in streaming manner.
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A Bounds for block sparse tensors

One of the main bounds to control is the spectral norm of the sparse perturbation tensor S. The success of
the power iterations and the improvement in accuracy of recovery over iterative steps of RTD requires this
bound.

Lemma 4 (Spectral norm bounds for block sparse tensors). Let M ∈ R
n×n×n satisfy the block sparsity

assumption (S). Then
‖M‖2 = O(d1.5‖M‖∞). (10)

Proof. Let Ψ ∈ R
n×n×n be a tensor that encodes the sparsity of M i.e. Ψi,j,k = 1 iff S∗

i,j,k 6= 0 for all
i, j, k ∈ [n]. We have that

‖M‖ = max
u:‖u‖=1

∑

i,j,k

Mi,j,ku(i)u(j)u(k)

= max
u:‖u‖=1

∑

i,j,k

Mi,j,kΨi,j,ku(i)u(j)u(k)

≤ max
u:‖u‖=1

∑

i,j,k

|Mi,j,kΨi,j,ku(i)u(j)u(k)|

≤ ‖M‖∞ max
u:‖u‖=1

∑

i,j,k

|Ψi,j,ku(i)u(j)u(k)| = ‖M‖∞‖Ψ‖,

where the last inequality is from Perron Frobenius theorem for non-negative tensors [9]. Note that Ψ is
non-negative by definition. Now we bound ‖Ψ‖ on lines of [3, Lemma 4]. Recall that ∀i ∈ [B], j ∈ [n],

Ψ =

B∑

i=1

ψi ⊗ ψi ⊗ ψi, ‖ψi‖0 ≤ d, ψi(j) = 0 or 1.

By definition ‖ψi‖2 =
√
d. Define normalized vectors ψ̃i := ψi/‖ψi‖. We have

Ψ = d1.5
B∑

i=1

ψ̃i ⊗ ψ̃i ⊗ ψ̃i

Define matrix ψ̃ := [ψ̃1|ψ̃2, . . . ψ̃B ]. Note that ψ̃⊤ψ̃ ∈ R
B×B is a matrix with unit diagonal entries and

absolute values of off-diagonal entries bounded by η, by assumption. From Gershgorin Disk Theorem, every
subset of L columns in ψ̃ has singular values within 1± o(1), where L < 1

η . Moreover, from Gershgorin Disk

Theorem, ‖ψ̃‖ < √1 +Bη.
For any unit vector u, let S be the set of L indices that are largest in ψ̃⊤u. By the argument above

we know ‖(ψ̃S)
⊤u‖ ≤ ‖ψ̃S‖‖u‖ ≤ 1 + o(1). In particular, the smallest entry in ψ̃⊤

S u is at most 2/
√
L. By

construction of S this implies for all i not in S, |ψ̃⊤
i u| is at most 2/

√
L. Now we can write the ℓ3 norm of

ψ̃⊤u as

‖ψ̃⊤u‖33 =
∑

i∈S

|ψ̃⊤
i u|3 +

∑

i6∈S

|ψ̃⊤
i u|3

≤
∑

i∈S

|ψ̃⊤
i u|2 + (2/

√
L)3−2

∑

i6∈S

|ψ̃⊤
i u|2

≤ 1 + 2
√
η‖ψ̃‖2 ≤ 1 + 2Bη1.5.

Here the first inequality uses that every entry outside S is small, and last inequality uses the bound argued
on ‖(ψ̃S)

⊤u‖, the spectral norm bound is assumed on ASc . Since B = O(η−1.5), we have the result. �

Another important bound required is ∞-norm of certain contractions of the (normalized) sparse tensor
and its powers, which we denote by M below. We use a loose bound based on spectral norm and we require
‖M‖ < 1/

√
n. However, this constraint will also be needed for the power iterations to succeed and is not an

additional requirement. Thus, the loose bound below will suffice for our results to hold.
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Lemma 5 (Infinity norm bounds). Let M ∈ R
n×n×n satisfy the block sparsity assumption (S). Let u, v

satisfy the assumption ‖u‖∞, ‖v‖∞ ≤ µ
n1/2 . Then, we have

1. ‖M(u, v, I)‖∞ ≤ κµ
n1/2 ‖M‖∞, where κ := Bd2µ√

n
.

2. ‖[M(u, v, I)]p‖∞ ≤ κµ‖M‖∞‖M‖p−1 for p > 1.

3.
∑

p≥1 ‖[M(u, I, I)]pv‖∞ ≤ κµ√
n
‖M‖∞ · ‖M‖

1−‖M‖ when ‖M‖ < 1/
√
n.

Proof. We have from norm conversion

‖M(u, v, I)‖∞ ≤ ‖u‖∞ · ‖v‖∞max
j
‖M(I, I, ej)‖1 (11)

≤ µ2

n
·Bd2‖M‖∞, (12)

where ℓ1 norm (i.e. sum of absolute values of entries) of a slice M(I, I, ej) is Bd2, since the number of
non-zero entries in one block in a slice is d2.

Let Z =M(u, I, I) ∈ R
n×n. Now, ‖M(u, I, I)pv‖∞ = ‖Zpv‖∞ = ‖Zp−1a‖∞ where a = Zv. Now,

‖Zp−1a‖∞ = max
j
|eTj Zp−1a| ≤ ‖Zp−1‖2‖a‖2 ≤ ‖Z‖p−1

2 ‖a‖2 ≤ ‖M‖p−1
√
n‖a‖∞ ≤ κµ‖M‖∞‖M‖p−1.

Hence,
∑

p≥1 ‖[M(u, I, I)]pv‖∞ ≤ κµ‖M‖∞ · ‖M‖2

1−‖M‖2
. �

B Proof of Theorem 1

Lemma 6. Let L∗, S∗ be symmetric and satisfy the assumptions of Theorem 1 and let S(t) be the tth iterate
of the lth stage of Algorithm 1. Let σ∗

1 , . . . , σ
∗
r be the eigenvalues of L∗, such that σ∗

1 ≥ · · · ≥ σ∗
r ≥ 0 and

λ1, · · · , λr be the eigenvalues of T −S(t) such that λ1 ≥ · · · ≥ λr ≥ 0. Recall that E(t) := S∗−S(t). Suppose
further that

1. ‖E(t)‖∞ ≤ 8µ3k
n3/2

(
σ∗
l+1 +

(
1
2

)t−1
σ∗
l

)
, and

2. suppE(t) ⊆ suppS∗.

Then, for some constant c ∈ [0, 1), we have

(1− c)
(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)
≤
(
λl+1 +

(
1

2

)t

λl

)
≤ (1 + c)

(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)
. (13)

Proof. Note that T − S(t) = L∗ + E(t). Now,

∣∣λl+1 − σ∗
l+1

∣∣ ≤ 8
∥∥∥E(t)

∥∥∥
2
≤ 8d3/2‖E(t)‖∞ ≤

8µ3rγt
n3/2

d3/2,

where γt :=
(
σ∗
l+1 +

(
1
2

)t−1
σ∗
l

)
. That is,

∣∣λl+1 − σ∗
l+1

∣∣ ≤ 8µ3r
(
d
n

)3/2
γt. Similarly, |λl − σ∗

l | ≤ 8µ3r
(
d
n

)3/2
γt.

So we have:
∣∣∣∣∣

(
λl+1 +

(
1

2

)t

λl

)
−
(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)∣∣∣∣∣ ≤ 8µ3r

(
d

n

)3/2

γt

(
1 +

(
1

2

)t
)

≤ 16µ3r

(
d

n

)3/2

γt

≤ c
(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)
,

where the last inequality follows from the bound d ≤
(

n
c′µ3k

)2/3
for some constant c′. �
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Lemma 7. Assume the notation of Lemma 6. Also, let L(t), S(t) be the tth iterates of rth stage of Algorithm 1
and L(t+1), S(t+1) be the (t+1)th iterates of the same stage. Also, recall that E(t) := S∗−S(t) and E(t+1) :=
S∗ − S(t+1).

Suppose further that

1. ‖E(t)‖∞ ≤ 8µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t−1
σ∗
l

)
, and

2. suppE(t) ⊆ suppS∗.

3. ‖E(t)‖2 < Cσ∗

l√
n
, where C < 1/2 is a sufficiently small constant.

Then, we have:

‖L(t+1) − L∗‖∞ ≤ 2
µ3r

n3/2

(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)

Proof. Let L(t+1) =
∑l

i=1 λiu
(t+1)
i be the eigen decomposition obtained using the tensor power method on

(T −S(t)) at the (t+1)th step of the lth stage. Also, recall that T −S(t) = L∗+E(t) where L∗ =
∑r

j=1 σ
∗
ju

⊗3
j .

Define E(t) := S∗ − S(t). Define Ei := E(t)(u
(t+1)
i , I, I). Let ‖E(t)‖2 := ǫ.

Consider the eigenvalue equation (T − S(t))(u
(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i :

L∗(u(t+1)
i , u

(t+1)
i , I) + E(t)(u

(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i

r∑

j=1

σ∗
i

〈
u
(t+1)
i , uj

〉2
uj + E(t)(u

(t+1)
i , u

(t+1)
i , I) = λiu

(t+1)
i

[λiI − E(t)(u
(t+1)
i , I, I)]u

(t+1)
i =

r∑

j=1

σ∗
i

〈
u
(t+1)
i , uj

〉2
uj

u
(t+1)
i =


I +

∑

p≥1

(
Ei

λi

)p



r∑

j=1

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
uj

Now,

‖L(t+1) − L∗‖∞ ≤

∥∥∥∥∥∥

∑

i∈[l]

λi(u
(t+1)
i )⊗3 −

∑

i∈[l]

σ∗
i ui

⊗3

∥∥∥∥∥∥
∞

+

∥∥∥∥∥

r∑

i=l+1

σ∗
i ui

⊗3

∥∥∥∥∥
∞

≤
∑

i∈[l]

∥∥∥λi(u(t+1)
i )⊗3 − σ∗

i ui
⊗3
∥∥∥
∞

+
r∑

i=l+1

∥∥σ∗
i ui

⊗3
∥∥
∞

For a fixed i, using λi ≤ σ∗
i + ǫ [2] and using Lemma 11, we obtain

∥∥∥λi(u(t+1)
i )⊗3 − σ∗

i ui
⊗3
∥∥∥
∞
≤
∥∥∥(σ∗

i + ǫ)(u
(t+1)
i )⊗3 − σ∗

i ui
⊗3
∥∥∥
∞

≤
∥∥∥σ∗

i (u
(t+1)
i )⊗3 − σ∗

i ui
⊗3
∥∥∥
∞

+ ǫ
∥∥∥(u(t+1)

i )⊗3
∥∥∥
∞

≤ σ∗
i

∥∥∥(u(t+1)
i )⊗3 − ui⊗3

∥∥∥
∞

+ ǫ
∥∥∥(u(t+1)

i )⊗3
∥∥∥
∞

≤ σ∗
i [3‖u(t+1)

i − ui‖∞‖ui‖2∞ + 3‖u(t+1)
i − ui‖2∞‖ui‖∞ + ‖u(t+1)

i − ui‖3∞]

+ ǫ‖(u(t+1)
i )⊗3‖∞

≤ 7σ∗
i ‖u(t+1)

i − ui‖∞‖ui‖2∞ + ǫ‖(u(t+1)
i )‖3∞
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Now,

∥∥∥u(t+1)
i − ui

∥∥∥
∞

=

∥∥∥∥∥∥
(

r∑

j=1

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
uj − ui) +

r∑

j=1,p≥1

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
(Ei)puj

∥∥∥∥∥∥
∞

≤
∥∥∥∥(1−

σ∗
i

λi

〈
u
(t+1)
i , ui

〉2
)ui

∥∥∥∥
∞

+

∥∥∥∥∥∥

∑

j 6=i

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
uj

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥

∑

p≥1

σ∗
i

λi

〈
u
(t+1)
i , ui

〉2(Ei

λi

)p

ui

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥

∑

p,j 6=i

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2(Ei

λi

)p

uj

∥∥∥∥∥∥
∞

For the first term, we have

∥∥∥∥(1−
σ∗
i

λi

〈
u
(t+1)
i , ui

〉2
)ui

∥∥∥∥
∞
≤
(
1− σ∗

i

σ∗
i + ǫ

(
1−

(
ǫ

σ∗
i

)2
))
‖ui‖∞ ≤

(
1−

(
1− ǫ

σ∗
i

))
µ

n1/2

≤ µ

σ∗
i n

1/2
ǫ ≤ Cµσ∗

l

σ∗
i n

where we substitute for ǫ in the last step.
For the second term, we have

∥∥∥∥∥∥

∑

j 6=i

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
uj

∥∥∥∥∥∥
∞

≤ σ∗
i

σ∗
i − ǫ

(
ǫ

σ∗
i

)2

‖ui‖∞ ≤ 2

(
ǫ

σ∗
i

)2
µ

n1/2
,

which is a lower order term.
Next,

∥∥∥∥∥∥

∑

p≥1

σ∗
i

λi

〈
u
(t+1)
i , ui

〉2(Ei

λi

)p

ui

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥

∑

p≥1

σ∗
i

λi

(
Ei

λi

)p

ui

∥∥∥∥∥∥
∞

≤
∑

p≥1

σ∗
i

λi

∥∥∥∥
(
Ei

λi

)p

ui

∥∥∥∥
∞

≤ σ∗
i

λi
· µ√

n
· ‖E

(t)‖2
√
n/λi

1− ‖E(t)‖2
√
n/λi

≤ 2

(1− C)
κtµ

λi
√
n
‖E(t)‖∞

from Lemma 5, and the assumption on spectral norm of ‖E(t)‖2, where

κt :=
Bd2µ√

n
.

For the remaining terms, we have
∥∥∥∥∥∥

∑

p,j 6=i

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2(Ei

λi

)p

uj

∥∥∥∥∥∥
∞

≤
∑

j 6=i

σ∗
i

λi

〈
u
(t+1)
i , uj

〉2
∥∥∥∥∥∥

∑

p≥1

(
Ei

λi

)p

u1

∥∥∥∥∥∥
∞

≤ σ∗
i

λi

∥∥∥∥∥∥

∑

p≥1

(
Ei

λi

)p

u1

∥∥∥∥∥∥
∞

(
ǫ

σ∗
i

)2

,

which is a lower order term.
Combining the above and recalling ǫ≪ σ∗

i , ∀i ∈ [l]

∥∥∥u(t+1)
i − ui

∥∥∥
∞
≤ 8

(1− C)
κtµ

λi
√
n
‖E(t)‖∞.

Also, from Lemma 1
|λi − σ∗

i | ≤ 8‖E(t)‖2 ≤ 8ǫ
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Thus, from the above two equations, we obtain the bound for the parameters (eigenvectors and eigenvalues)

of the low-rank tensor
∥∥∥u(t+1)

i − ui
∥∥∥
∞

and ‖λi − σ∗
i ‖∞. We combine the individual parameter recovery

bounds as:
∥∥∥∥∥∥

∑

i∈[l]

λi(u
(t+1)
i )⊗3 −

∑

i∈[l]

σ∗
i ui

⊗3

∥∥∥∥∥∥
∞

≤ r[7σ∗
i ‖u(t+1)

i − ui‖∞‖ui‖2∞ + ǫ‖(u(t+1)
i )‖3∞]

≤ 224

1− C
κtµ

3r

n1.5
‖E(t)‖∞ (14)

and the other term
r∑

i=l+1

‖σ∗
i u

⊗3
i ‖∞ ≤ σ∗

l+1

rµ3

n1.5
.

Combining bound in (14) with the above, we have

‖L(t+1) − L∗‖∞ ≤
rµ3

n1.5

(
224

1− Cκt‖E
(t)‖∞ + σ∗

l+1

)
<

1

4
‖E(t)‖∞.

where the last inequality comes from the fact that rµ3

n1.5σ
∗
l+1 ≤ ‖E(t)‖∞

8 and the assumption that C < 1/2,
and we can choose B and d s.t.

448rµ3

n1.5
κt <

1

8
.

This is possible from assumption (S). �

The following lemma bounds the support of E(t+1) and ‖E(t+1)‖∞, using an assumption on ‖L(t+1) −
L∗‖∞.

Lemma 8. Assume the notation of Lemma 7. Suppose

‖L(t+1) − L∗‖∞ ≤ 2
µ3r

n3/2

(
σ∗
l+1 +

(
1

2

)t−1

σ∗
l

)
.

Then, we have:

1. suppE(t+1) ⊆ suppS∗.

2. ‖E(t+1)‖∞ ≤ 7 µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t
σ∗
l

)
, and

Proof. We first prove the first conclusion. Recall that,

S(t+1) = Hζ(T − L(t+1)) = Hζ(L
∗ − L(t+1) + S∗),

where ζ = 4 µ3r
n3/2

(
λl+1 +

(
1
2

)t
λl

)
is as defined in Algorithm 1 and λ1, · · · , λn are the eigenvalues of T −S(t)

such that λ1 ≥ · · · ≥ λn.
If S∗

abc = 0 then E
(t+1)
ijk = 1∣

∣

∣
L∗

abc−L
(t+1)
abc

∣

∣

∣
>ζ
· (L∗

abc − L
(t+1)
abc ). The first part of the lemma now follows by

using the assumption that ‖L(t+1) − L∗‖∞ ≤ 2 µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t
σ∗
l

) (ζ1)

≤ 4 µ3r
n3/2

(
λl+1 +

(
1
2

)t
λl

)
= ζ, where

(ζ1) follows from Lemma 6.
We now prove the second conclusion. We consider the following two cases:

1.
∣∣∣Tabc − L(t+1)

abc

∣∣∣ > ζ: Here, S
(t+1)
abc = S∗

abc + L∗
abc − L

(t+1)
abc . Hence, |S(t+1)

abc − S∗
abc| ≤ |L∗

abc − L
(t+1)
abc | ≤

2 µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t
σ∗
l

)
.

2.
∣∣∣Tabc − L(t+1)

abc

∣∣∣ ≤ ζ: In this case, S
(t+1)
abc = 0 and

∣∣∣S∗
abc + L∗

abc − L
(t+1)
abc

∣∣∣ ≤ ζ. So we have,
∣∣∣E(t+1)

abc

∣∣∣ =

|S∗
abc| ≤ ζ+

∣∣∣L∗
abc − L

(t+1)
abc

∣∣∣ ≤ 7 µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t
σ∗
l

)
. The last inequality above follows from Lemma 6.
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This proves the lemma. �

Theorem 9. Let L∗, S∗ be symmetric and satisfy (L) and (S), and β = 4 µ3r
n3/2 . The outputs L̂ (and its

parameters ûi and λ̂i) and Ŝ of Algorithm 1 satisfy w.h.p.:

‖ûi − ui‖∞ ≤
δ

µ2rn1/2σ∗
min

, |λ̂i − σ∗
i | ≤ δ, ∀i ∈ [n],

∥∥∥L̂− L∗
∥∥∥
F
≤ δ, ‖Ŝ − S∗‖∞ ≤

δ

n3/2
, and supp Ŝ ⊆ suppS∗.

Proof. Recall that in the lth stage, the update L(t+1) is given by: L(t+1) = Pl(T − S(t)) and S(t+1) is given
by: S(t+1) = Hζ(T − L(t+1)). Also, recall that E(t) := S∗ − S(t) and E(t+1) := S∗ − S(t+1).

We prove the lemma by induction on both l and t. For the base case (l = 1 and t = −1), we first
note that the first inequality on ‖L(0) − L∗‖∞ is trivially satisfied. Due to the thresholding step (step 3 in
Algorithm 1) and the incoherence assumption on L∗, we have:

‖E(0)‖∞ ≤
8µ3r

n3/2
(σ∗

2 + 2σ∗
1) , and

suppE(0) ⊆ suppS∗.

So the base case of induction is satisfied.
We first do the inductive step over t (for a fixed r). By inductive hypothesis we assume that: a)

‖E(t)‖∞ ≤ 8µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t−1
σ∗
l

)
, b) suppE(t) ⊆ suppS∗. Then by Lemma 7, we have:

‖L(t+1) − L∗‖∞ ≤
2µ3r

n3/2

(
σ∗
l+1 +

(
1

2

)t

σ∗
l

)
.

Lemma 8 now tells us that

1. ‖E(t+1)‖∞ ≤ 8µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)t
σ∗
l

)
, and

2. suppE(t+1) ⊆ suppS∗.

This finishes the induction over t. Note that we show a stronger bound than necessary on ‖E(t+1)‖∞.
We now do the induction over l. Suppose the hypothesis holds for stage l. Let T denote the number of

iterations in each stage. We first obtain a lower bound on T . Since

∥∥∥T − S(0)
∥∥∥
2
≥ ‖L∗‖2 −

∥∥∥E(0)
∥∥∥
2
≥ σ∗

1 − d3/2‖E(0)‖∞ ≥
3

4
σ∗
1 ,

we see that T ≥ 10 log
(
3µ3rσ∗

1/δ
)
. So, at the end of stage r, we have:

1. ‖E(T )‖∞ ≤ 7µ3r
n3/2

(
σ∗
l+1 +

(
1
2

)T
σ∗
l

)
≤ 7µ3rσ∗

l+1

n3/2 + δ
10n , and

2. suppE(T ) ⊆ suppS∗.

Recall,
∣∣σr+1

(
T − S(T )

)
− σ∗

r+1

∣∣ ≤
∥∥E(T )

∥∥
2
≤ d

n

(
µ3r

∣∣σ∗
r+1

∣∣+ δ
)
. We will now consider two cases:

1. Algorithm 1 terminates: This means that βσr+1

(
T − S(T )

)
< δ

2n3/2 which then implies that σ∗
r+1 <

δ
6µ3r . So we have:

‖L̂− L∗‖∞ = ‖L(T ) − L∗‖∞ ≤
2µ3r

n3/2

(
σ∗
r+1 +

(
1

2

)T

σ∗
r

)
≤ δ

5n3/2
.

This proves the statement about L̂ and its parameters (eigenvalues and eigenvectors). A similar

argument proves the claim on ‖Ŝ − S∗‖∞. The claim on supp Ŝ follows since suppE(T ) ⊆ suppS∗.
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2. Algorithm 1 continues to stage (r + 1): This means that βσr+1

(
L(T )

)
≥ δ

2n3/2 which then implies

that σ∗
r+1 >

δ
8µ3r . So we have:

‖E(T )‖∞ ≤
8µ3r

n3/2

(
σ∗
r+1 +

(
1

2

)T

σ∗
r

)

≤ 8µ3r

n3/2

(
σ∗
l+1 +

δ

10µ3rn3/2

)

≤ 8µ3r

n3/2

(
σ∗
l+1 +

8σ∗
l+1

10n

)

≤ 8µ3r

n3/2

(
σ∗
l+2 + 2σ∗

l+1

)
.

Similarly for ‖L(T ) − L∗‖∞.

This finishes the proof. �

B.1 Short proof of Corollary 1

The state of art guarantees for robust matrix PCA requires that the overall sparsity along any row or column
of the input matrix be D = O( n

rµ2 ) (when the input matrix is Rn×n).

Under (S), the total sparsity along any row or column ofMi is given by D := dB. Now, Theorem 1 holds
when the sparsity condition in (5) is satisfied. That is, RTD succeeds when

D = O(d ·B) = O

(
min

(
n4/3

r1/3µ2
,
n2/3

r2/3µ2
(
n

r
)1/3

))
= O

(
n

rµ2

)
.

Hence, RTD can handle larger amount of corruption than the matrix methods and the gain becomes more
significant for smaller η.

B.2 Some auxiliary lemmas

We recall Theorem 5.1 from [2]. Let ǫ = 8‖E(t)‖2 where E(t) := S∗ − S(t).

Lemma 10. Let L(t+1) =
∑k

i=1 λiu
(t+1)
i be the eigen decomposition obtained using Algorithm 1 on (T−S(t)).

Then,

1. If ‖u(t+1)
i − ui‖2 ≤ ǫ

σ∗

min
, then dist(u

(t+1)
i , ui) ≤ ǫ

σ∗

min
.

2.
∑

j 6=i

〈
u
(t+1)
i , uj

〉2
≤
(

ǫ
σ∗

min

)2
.

3. ‖u(t+1)
i ‖∞ ≤ µ

n1/2 + ǫ
σ∗

min
.

4. |σ∗
i | − ǫ ≤ |λi| ≤ |σ∗

i |+ ǫ.

Proof. 1. Let z ⊥ u and ‖z‖2 = 1.

u
(t+1)
i =

〈
u
(t+1)
i , ui

〉
ui + dist(u

(t+1)
i , ui)z

‖u(t+1)
i − ui‖22 = (

〈
u
(t+1)
i , ui

〉
− 1)2‖ui‖22 + dist(u

(t+1)
i , ui)‖z‖22 + 0

≥ (dist(u
(t+1)
i , ui))

2

Then using Theorem 5.1 from [2], we obtain the result. Next, since 〈u(t+1)
i , ui〉2+dist(u

(t+1)
i , ui)

2 = 1,

we have 〈u(t+1)
i , ui〉2 ≥ 1−

(
ǫ

σ∗

min

)2
.
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2. Note that

u
(t+1)
i =

k∑

j=1

〈
u
(t+1)
i , uj

〉
uj + dist(u

(t+1)
i , U)z

where z ⊥ U such that ‖z‖2 = 1. Using ‖u(t+1)
i ‖2 = 1 and the Pythagoras theorem, we get

1−
〈
u
(t+1)
i , ui

〉2
=
∑

j 6=i

〈
u
(t+1)
i , uj

〉2
+ dist(u

(t+1)
i , U)2.1 ≥

∑

j 6=i

〈
u
(t+1)
i , uj

〉2

Using part 1 of Lemma 10, we get
∑

j 6=i

〈
u
(t+1)
i , uj

〉2
≤
(

ǫ
σ∗

min

)2
.

3. We have

u
(t+1)
i =

〈
u
(t+1)
i , ui

〉
ui + dist(u

(t+1)
i , ui)z

‖u(t+1)
i ‖∞ ≤ |

〈
u
(t+1)
i , ui

〉
|‖ui‖∞ + | dist(u(t+1)

i , ui)|‖z‖∞ ≤ 1.
µ

n1/2
+

ǫ

σ∗
min

4. This follows from Theorem 5.1 from [2], i.e., ∀i, ||λi| − |σ∗
i || ≤ ǫ.

�

Lemma 11. Let a = b+ǫ.
−→
1 where a, b are any 2 vectors and ǫ > 0. Then, ‖a⊗3−b⊗3‖∞ ≤ ‖a−b‖∞.‖b‖2∞+

O(ǫ2).

Proof. We have

‖a⊗3 − b⊗3‖∞ = ‖(b+ ǫ
−→
1 )⊗3 − b⊗3‖∞

Let (i, j, k) be the maximum element. Therefore,

‖(b+ ǫ
−→
1 )⊗3 − b⊗3‖∞ = (bi + ǫ)(bj + ǫ)(bk + ǫ)− bibjbk

= ǫ(bibj + bjbk + bkbi) + ǫ2(bi + bj + bk) + ǫ3

With bi ≤ c ∀i for some c > 0 and ǫ = ‖a− b‖∞, we have ‖a⊗3 − b⊗3‖∞ ≤ 3ǫc2 +O(ǫ2) �

C Symmetric embedding of an asymmetric tensor

We use the symmetric embedding sym(L) of a tensor L as defined in Section 2.3 of [24]. We focus on third
order tensors which have low CP-rank. We have three properties to derive that is relevant to us:

1. Symmetry: From Lemma 2.2 of [24] we see that sym(L) for any tensor is symmetric.

2. CP-Rank: From Equation 6.5 of [24] we see that CP-rank(sym(L)) ≤ 6.CP-rank(L). Since this is a
constant, we see that the symmetric embedding is also a low-rank tensor.

3. Incoherece: Theorem 4.7 of [24] says that if u1, u2 and u3 are unit modal singular vectors of T , then
the vector ũ = 3−1/2[u1;u2;u3] is a unit eigenvector of sym(T ). Without loss of generality, assume
that T is of size n1 × n2 × n3 with n1 ≤ n2 ≤ n3. In this case, we have

‖ũ‖∞ ≤
µ

(3n1)1/2
(15)

and

‖ũ‖∞ ≤
µ̃

(n1 + n2 + n3)1/2
(16)

for µ̃ = cµ for some constant c to be calculated. Equating the right hand sides of Equations (15)
and (16), we obtain c = [(n1 + n2 + n3)/(3n1)]

1/2. When Θ(n1) = Θ(n2) = Θ(n3), we see that the
eigenvectors ũ of sym(T ) as specified above have the incoherence-preserving property.
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D Proof of Theorem 2

Let L̃ be a symmetric tensor which is a perturbed version of an orthogonal tensor L∗, L̃ = L∗ + E ∈
R

n×n×n, L∗ =
∑

i∈[r] σ
∗
i u

⊗3
i , where σ∗

1 ≥ σ∗
2 . . . σ

∗
r > 0 and {u1, u2, . . . , ur} form an orthonormal basis.

The analysis proceeds iteratively. First, we prove convergence to eigenpair of L̃, which is close to top
eigenpair (σ∗

1 , u1) of L
∗. We then argue that the same holds on the deflated tensor, when the perturbation

E satisfies (8). from This finishes the proof of Theorem 2.

To prove convergence for the first stage, i.e. convergence to eigenpair of L̃, which is close to top eigenpair
(σ∗

1 , u1) of L
∗, we analyze two phases of the shifted power iteration. In the first phase, we prove that with

N1 initializations and N2 power iterations, we get close to true top eigenpair of L∗, i.e. (σ∗
1 , u1). After this,

in the second phase, we prove convergence to an eigenpair of L̃.
The proof of the second phase is outlined in the main text. Here, we now provide proof for the first

phase.

D.1 Analysis of first phase of shifted power iteration

In this section, we prove that the output of shifted power method is close to original eigenpairs of the
(unperturbed) orthogonal tensor, i.e. Theorem 2 holds, except for the property that the output corresponds
to the eigenpairs of the perturbed tensor. We adapt the proof of tensor power iteration from [2] but here,
since we consider the shifted power method, we need to modify it. We adopt the notation of [2] in this
section.

Recall the update rule used in the shifted power method. Let θt =
∑k

i=1 θi,tvi ∈ R
k be the unit vector

at time t. Then

θt+1 =
k∑

i=1

θi,t+1vi := (T̃ (I, θt, θt) + αθt)/‖(T̃ (I, θt, θt) + αθt)‖.

In this subsection, we assume that T̃ has the form

T̃ =

k∑

i=1

λ̃iv
⊗3
i + Ẽ (17)

where {v1, v2, . . . , vk} is an orthonormal basis, and, without loss of generality,

λ̃1|θ1,t| = max
i∈[k]

λ̃i|θi,t| > 0.

Also, define
λ̃min := min{λ̃i : i ∈ [k], λ̃i > 0}, λ̃max := max{λ̃i : i ∈ [k]}.

We assume the error Ẽ is a symmetric tensor such that, for some constant p > 1,

‖Ẽ(I, u, u)‖ ≤ ǫ̃, ∀u ∈ Sk−1; (18)

‖Ẽ(I, u, u)‖ ≤ ǫ̃/p, ∀u ∈ Sk−1 s.t. (u⊤v1)
2 ≥ 1− (3ǫ̃/λ̃1)

2. (19)

In the next two propositions (Propositions D.1 and D.2) and Lemmas D.1, we analyze the power method
iterations using T̃ at some arbitrary iterate θt using only the property (18) of Ẽ. But throughout, the
quantity ǫ̃ can be replaced by ǫ̃/p if θt satisfies (θ

⊤

t v1)
2 ≥ 1− (3ǫ̃/λ̃1)

2 as per property (19).
Define

Rτ :=

(
θ21,τ

1− θ21,τ

)1/2

, ri,τ :=
λ̃1θ1,τ

λ̃i|θi,τ |
,

γτ := 1− 1

mini6=1 |ri,τ |
, δτ :=

ǫ̃

λ̃1θ21,τ
, κ :=

λ̃max

λ̃1

(20)

for τ ∈ {t, t+ 1}.
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Proposition D.1.

min
i6=1
|ri,t| ≥

Rt

κ
, γt ≥ 1− κ

Rt
, θ21,t =

R2
t

1 +R2
t

.

Proposition D.2.

ri,t+1 ≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t +
α

λ̃iθi,t

, i ∈ [k], (21)

Rt+1 ≥= Rt ·
1− δt + α

λ̃1|θ1,t|

1− γt +
(
δt +

α(1−θ1,t)1/2

λ̃1θ2
1,t

)
Rt

≥
1− δt + α

λ̃1|θ1,t|
κ
R2

t
+ δt +

α(1−θ1,t)1/2

λ̃1θ2
1,t

. (22)

Proof. Let θ̌t+1 := T̃ (I, θt, θt)+αθt, so θt+1 = θ̌t+1/‖θ̌t+1‖. Since θ̌i,t+1 = T̃ (vi, θt, θt) = T (vi, θt, θt)+αθt+
E(vi, θt, θt), we have

θ̌i,t+1 = λ̃iθ
2
i,t + E(vi, θt, θt) + αθ⊤t vi, i ∈ [k].

By definition, we have θi,t = θ⊤t vi. Using the triangle inequality and the fact ‖E(vi, θt, θt)‖ ≤ ǫ̃, we have

θ̌i,t+1 ≥ λ̃iθ2i,t − ǫ̃+ αθi,t ≥ |θi,t| ·
(
λ̃i|θi,t| − ǫ̃/|θi,t|+ α

)
(23)

and
|θ̌i,t+1| ≤ |λ̃iθ2i,t|+ ǫ̃+ αθi,t ≤ |θi,t| ·

(
λ̃i|θi,t|+ ǫ̃/|θi,t|+ α

)
(24)

for all i ∈ [k]. Combining (23) and (24) gives

ri,t+1 =
λ̃1θ1,t+1

λ̃i|θi,t+1|
=

λ̃1θ̌1,t+1

λ̃i|θ̌i,t+1|
≥ r2i,t·

1− δt + α
λ̃1θ1,t

1 + ǫ̃
λ̃iθ2

i,t

+ α
λ̃iθi,t

= r2i,t·
1− δt + α

λ̃1θ1,t

1 + (λ̃i/λ̃1)δtr2i,t +
α

λ̃iθi,t

≥ r2i,t·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t +
α

λ̃iθi,t

.

Moreover, by the triangle inequality and Hölder’s inequality,

( n∑

i=2

[θ̌i,t+1]
2

)1/2

=

( n∑

i=2

(
λ̃iθ

2
i,t + E(vi, θt, θt) + αθi,t

)2)1/2

≤
( n∑

i=2

λ̃2i θ
4
i,t

)1/2

+

( n∑

i=2

E(vi, θt, θt)
2

)1/2

+

( k∑

i=2

α2θ2i,t

)1/2

≤ max
i6=1

λ̃i|θi,t|
( n∑

i=2

θ2i,t

)1/2

+ ǫ̃+

(
α2

k∑

i=2

θ2i,t

)1/2

= (1 − θ21,t)1/2 ·
(
max
i6=1

λ̃i|θi,t|+ ǫ̃/(1− θ21,t)1/2 + α
)
. (25)

Combining (23) and (25) gives

|θ1,t+1|
(1− θ21,t+1)

1/2
=

|θ̌1,t+1|
(∑n

i=2[θ̌i,t+1]2
)1/2 ≥

|θ1,t|
(1− θ21,t)1/2

· λ̃1|θ1,t| − ǫ̃/|θ1,t|+ α

maxi6=1 λ̃i|θi,t|+ ǫ̃/(1− θ21,t)1/2 + α
.

In terms of Rt+1, Rt, γt, and δt, this reads

Rt+1 ≥
1− δt + α

λ̃1|θ1,t|

(1 − γt)
(

1−θ2
1,t

θ2
1,t

)1/2
+ δt +

α(1−θ1,t)1/2

λ̃1θ2
1,t

= Rt ·
1− δt + α

λ̃1|θ1,t|

1− γt +
(
δt +

α(1−θ2
1,t)

1/2

λ̃1θ2
1,t

)
Rt

=
1− δt + α

λ̃1|θ1,t|

1−γt

Rt
+

(
δt +

α(1−θ2
1,t)

1/2

λ̃1θ2
1,t

) ≥
1− δt + α

λ̃1|θ1,t|
κ
R2

t
+ δt +

α(1−θ2
1,t)

1/2

λ̃1θ2
1,t

where the last inequality follows from Proposition D.1. �
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Lemma D.1. Fix any ρ > 1. Assume

0 ≤ δt < min
{ 1

2(1 + 2κρ2)
,
1− 1/ρ

1 + κρ

}

and γt > 2(1 + 2κρ2)δt.

1. If r2i,t ≤ 2ρ2, then ri,t+1 ≥ |ri,t|
(
1 + γt

2

)
.

Proof. By (21) from Proposition D.2,

ri,t+1 ≥ r2i,t ·
1− δt + α

λ̃1θ1,t

1 + κδtr2i,t +
α

λ̃iθi,t

≥ |ri,t| ·
1

1− γt
·

1− δt + α
λ̃1θ1,t

1 + 2κρ2δt +
α

λ̃iθi,t

≥ |ri,t|
(
1 +

γt
2

)

where the last inequality is seen as follows: Let

ξ = 2.
1− δt + α

λ̃1θ1,t

1 + 2κρ2δt +
α

λ̃iθi,t

Then, we have γ2t + γt − 2 + ξ ≥ 0. The positive root is −1+(9−4ξ)1/2

2 . Since γt ≥ 0, we have (9− 4ξ)1/2 ≥ 1,
so we assume ξ ≤ 2 for the inequality to hold, i.e., α

λ̃1θ1,t
− α

λ̃iθi,t
≤ (1 + 2κρ2)δt. �

The rest of the proof is along the similar lines of [2], except that we use SVD initialization instead of
random initialization. The proof of SVD initialization is given in [3].
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