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Beating the Perils of Non-Convexity:

Guaranteed Training of Neural Networks using Tensor Methods

Majid Janzamin∗ Hanie Sedghi† Anima Anandkumar‡

Abstract

Training neural networks is a challenging non-convex optimization problem, and backpropa-
gation or gradient descent can get stuck in spurious local optima. We propose a novel algorithm
based on tensor decomposition for guaranteed training of two-layer neural networks. We pro-
vide risk bounds for our proposed method, with a polynomial sample complexity in the relevant
parameters, such as input dimension and number of neurons. While learning arbitrary tar-
get functions is NP-hard, we provide transparent conditions on the function and the input for
learnability. Our training method is based on tensor decomposition, which provably converges
to the global optimum, under a set of mild non-degeneracy conditions. It consists of simple
embarrassingly parallel linear and multi-linear operations, and is competitive with standard
stochastic gradient descent (SGD), in terms of computational complexity. Thus, we propose a
computationally efficient method with guaranteed risk bounds for training neural networks with
one hidden layer.

Keywords: neural networks, risk bound, method-of-moments, tensor decomposition

1 Introduction

Neural networks have revolutionized performance across multiple domains such as computer vision
and speech recognition. They are flexible models trained to approximate any arbitrary target
function, e.g., the label function for classification tasks. They are composed of multiple layers
of neurons or activating functions, which are applied recursively on the input data, in order to
predict the output. While neural networks have been extensively employed in practice, a complete
theoretical understanding is currently lacking.

Training a neural network can be framed as an optimization problem, where the network pa-
rameters are chosen to minimize a given loss function, e.g., the quadratic loss function over the error
in predicting the output. The performance of training algorithms is typically measured through
the notion of risk, which is the expected loss function over unseen test data. A natural question to
ask is the hardness of training a neural network with a bounded risk. The findings are mostly neg-
ative (Rojas, 1996; Š́ıma, 2002; Blum and Rivest, 1993; Bartlett and Ben-David, 1999; Kuhlmann,
2000). Training even a simple network is NP-hard, e.g., a network with a single neuron (Š́ıma,
2002).
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The computational hardness of training is due to the non-convexity of the loss function. In
general, the loss function has many critical points, which include spurious local optima and saddle
points. In addition, we face curse of dimensionality, and the number of critical points grows
exponentially with the input dimension for general non-convex problems (Dauphin et al., 2014).
Popular local search methods such as gradient descent or backpropagation can get stuck in bad local
optima and experience arbitrarily slow convergence. Explicit examples of its failure and the presence
of bad local optima in even simple separable settings have been documented before (Brady et al.,
1989; Gori and Tesi, 1992; Frasconi et al., 1997); see Section 6.1 for a discussion.

Alternative methods for training neural networks have been mostly limited to specific activa-
tion functions (e.g., linear or quadratic), specific target functions (e.g., polynomials) (Andoni et al.,
2014), or assume strong assumptions on the input (e.g., Gaussian or product distribution) (Andoni et al.,
2014), see related work for details. Thus, up until now, there is no unified framework for training
networks with general input, output and activation functions, for which we can provide guaranteed
risk bound.

In this paper, for the first time, we present a guaranteed framework for learning general tar-
get functions using neural networks, and simultaneously overcome computational, statistical, and
approximation challenges. In other words, our method has a low computational and sample com-
plexity, even as the dimension of the optimization grows, and in addition, can also handle approxi-
mation errors, when the target function may not be generated by a given neural network. We prove
a guaranteed risk bound for our proposed method. NP-hardness refers to the computational com-
plexity of training worst-case instances. Instead, we provide transparent conditions on the target
functions and the inputs for tractable learning.

Our training method is based on the method of moments, which involves decomposing the em-
pirical cross moment between output and some function of input. While pairwise moments are
represented using a matrix, higher order moments require tensors, and the learning problem can
be formulated as tensor decomposition. A CP (CanDecomp/Parafac) decomposition of a tensor in-
volves finding a succinct sum of rank-one components that best fit the input tensor. Even though it
is a non-convex problem, the global optimum of tensor decomposition can be achieved using compu-
tationally efficient techniques, under a set of mild non-degeneracy conditions (Anandkumar et al.,
2014a,b,c, 2015; Bhaskara et al., 2013). These methods have been recently employed for learning
a wide range of latent variable models (Anandkumar et al., 2014b, 2013).

Incorporating tensor methods for training neural networks requires addressing a number of non-
trivial questions: What form of moments are informative about network parameters? Earlier works
using tensor methods for learning assume a linear relationship between the hidden and observed
variables. However, neural networks possess non-linear activation functions. How do we adapt
tensor methods for this setting? How do these methods behave in the presence of approximation
and sample perturbations? How can we establish risk bounds? We address these questions shortly.

1.1 Summary of Results

The main contributions are: (a) we propose an efficient algorithm for training neural networks,
termed as Neural Network-LearnIng using Feature Tensors (NN-LIFT), (b) we demonstrate that the
method is embarrassingly parallel and is competitive with standard SGD in terms of computational
complexity, and as a main result, (c) we establish that it has bounded risk, when the number of
training samples scales polynomially in relevant parameters such as input dimension and number
of neurons.
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We analyze training of a two-layer feedforward neural network, where the second layer has
a linear activation function. This is the classical neural network considered in a number of
works (Cybenko, 1989b; Hornik, 1991; Barron, 1994), and a natural starting point for the analysis
of any learning algorithm. Note that training even this two-layer network is non-convex, and finding
a computationally efficient method with guaranteed risk bound has been an open problem up until
now.

At a high level, NN-LIFT estimates the weights of the first layer using tensor CP decomposition.
It then uses these estimates to learn the bias parameter of first layer using a simple Fourier tech-
nique, and finally estimates the parameters of last layer using linear regresion. NN-LIFT consists
of simple linear and multi-linear operations (Anandkumar et al., 2014b,c, 2015), Fourier analysis
and ridge regression analysis, which are parallelizable to large-scale data sets. The computational
complexity is comparable to that of the standard SGD; in fact, the parallel time complexity for
both the methods is in the same order, and our method requires more processors than SGD by a
multiplicative factor that scales linearly in the input dimension.

Generative vs. discriminative models: Generative models incorporate a joint distribution
p(x, y) over both the input x and label y. On the other hand, discriminative models such as neural
networks only incorporate the conditional distribution p(y|x). While training neural networks
for general input x is NP-hard, does knowledge about the input distribution p(x) make

learning tractable?

In this work, we assume knowledge of the input density p(x), which can be any continuous
differentiable function. Unlike many theoretical works, e.g., (Andoni et al., 2014), we do not limit
ourselves to distributions such as product or Gaussian distributions for the input. While unsu-
pervised learning, i.e., estimation of density p(x), is itself a hard problem for general models, in
this work, we investigate how p(x) can be exploited to make training of neural networks tractable.
The knowledge of p(x) is naturally available in the experimental design framework, where the per-
son designing the experiments has the ability to choose the input distribution. Examples include
conducting polling, carrying out drug trials, collecting survey information, and so on.

Utilizing generative models on the input via score functions: We utilize the knowledge
about the input density p(x) (up to normalization)1 to obtain certain (non-linear) transformations
of the input, given by the class of score functions. Score functions are normalized derivatives of
the input pdf; see (8). If the input is a vector (the typical case), the first order score function (i.e.,
the first derivative) is a vector, the second order score is a matrix, and the higher order scores are
tensors. In our NN-LIFT method, we first estimate the cross-moments between the output and the
input score functions, and then decompose it to rank-1 components.

Risk bounds: Risk bound includes both approximation and estimation errors. The approxima-
tion error is the error in fitting the target function to a neural network of given architecture, and
the estimation error is the error in estimating the weights of that neural network using the given
samples.

We first consider the realizable setting where the target function is generated by a two-layer
neural network (with hidden layer of neurons consisting of any general sigmoidal activations), and

1We do not require the knowledge of the normalizing constant or the partition function, which is #P hard to
compute (Wainwright and Jordan, 2008).
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a linear output layer. Note that the approximation error is zero in this setting. Let A1 ∈ R
d×k be

the weight matrix of first layer (connecting the input to the neurons) with k denoting the number
of neurons and d denoting the input dimension. Suppose these weight vectors are non-degenerate,
i.e., the weight matrix A1 (or its tensorization) is full column rank. We assume continuous input
distribution with access to score functions, which are bounded on any set of non-zero measure. We
allow for any general sigmoidal activation functions with non-zero third derivatives in expectation,
and satisfying Lipschitz property. Let smin(·) be the minimum singular value operator, andM3(x) ∈
R
d×d2 denote the matricization of input score function tensor S3(x) ∈ R

d×d×d; see (1) and (8) for
the definitions. For the Gaussian input x ∼ N (0, Id), we have E

[∥∥M3(x)M
⊤
3 (x)

∥∥] = Õ
(
d3
)
. We

have the following learning result in the realizable setting where the target function is generated
by a two layer neural network (with one hidden layer).

Theorem 1 (Informal result for realizable setting). Our method NN-LIFT learns a realizable target
function up to error ǫ when the number of samples is lower bounded as2,

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M

⊤
3 (x)

∥∥∥
]
· s

2
max(A1)

s6min(A1)

)
.

Thus, we can efficiently learn the neural network parameters with polynomial sample complex-
ity using NN-LIFT algorithm. In addition, the method has polynomial computational complexity,
and in fact, its parallel time complexity is the same as stochastic gradient descent (SGD) or back-
propagation. See Theorem 3 for the formal result.

We then extend our results to the non-realizable setting where the target function need not be
generated by a neural network. For our method NN-LIFT to succeed, we require the approximation
error to be sufficiently small under the given network architecture. Note that it is not of practical
interest to consider functions with large approximation errors, since classification performance in
that case is poor (Bartlett, 1998). We state the informal version of the result as follows.

We assume the following: the target function f(x) has a continuous Fourier spectrum and is
sufficiently smooth, i.e., the parameter Cf (see (13) for the definition) is sufficiently small as specified
in (18). This implies that the approximation error of the target function can be controlled, i.e., there
exists a neural network of given size that can fit the target function with bounded approximation
error. Let the input x be bounded as ‖x‖ ≤ r. Our informal result is as follows. See Theorem 5
for the formal result.

Theorem 2 (Informal result for non-realizable setting). The arbitrary target function f(x) is
approximated by the neural network f̂(x) which is learnt using NN-LIFT algorithm such that the
risk bound satisfies w.h.p.

Ex[|f(x)− f̂(x)|2] ≤ O(r2C2
f ) ·

(
1√
k
+ δ1

)2

+O(ǫ2),

where k is the number of neurons in the neural network, and δτ is defined in (16).

In the above bound, we require for the target function f(x) to have bounded first order moment
in the Fourier spectrum; see (18). As an example, we show that this bound is satisfied for the class
of scale and location mixtures of the Gaussian kernel function.

2Here, only the dominant terms in the sample complexity are noted; see (12) for the full details.
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Corollary 1 (Learning mixtures of Gaussian kernels). Let f(x) :=
∫
K(α(x+β))G(dα, dβ), α > 0,

β ∈ R
d, be a location and scale mixture of the Gaussian kernel function K(x) = exp

(
−‖x‖2

2

)
, the

input be Gaussian as x ∼ N (0, σ2xId), and the activations be step functions, then, our algorithm
trains a neural network with risk bounds as in Theorem 2, when

∫
|α| · |G|(dα, dβ) ≤ poly

(
1

d
,
1

k
, ǫ,

1

σx
, exp

(
−1/σ2x

))
.

We observe that when the kernel mixtures correspond to smoother functions (smaller α), the
above bound is more likely to be satisfied. This is intuitive since smoother functions have lower
amount of high frequency content. Also, notice that the above bound has a dependence on the
variance of the Gaussian input σx. We obtain the most relaxed bound (r.h.s. of above bound) for
middle values of σx, i.e., when σx is neither too large nor too small. See Appendix D.1 for more
discussion and the proof of the corollary.

Intuitions behind the conditions for the risk bound: Since there exist worst-case instances
where learning is hard, it is natural to expect that NN-LIFT has guarantees only when certain
conditions are met. We assume that the input has a regular continuous probability density
function (pdf); see (11) for the details. This is a reasonable assumption, since under Boolean
inputs (a special case of discrete input), it reduces to learning parity with noise which is a
hard problem (Kearns and Vazirani, 1994). We assume that the activating functions are suf-
ficiently non-linear, since if they are linear, then the network can be collapsed into a single
layer (Baldi and Hornik, 1989), which is non-identifiable. We precisely characterize how the es-
timation error depends on the non-linearity of the activating function through its third order
derivative.

Another condition for providing the risk bound is non-redundancy of the neurons. If the neurons
are redundant, it is an over-specified network. In the realizable setting, where the target function is
generated by a neural network with the given number of neurons k, we require (tensorizations of)
the weights of first layer to be linearly independent. In the non-realizable setting, we require this to
be satisfied by k vectors randomly drawn from the Fourier magnitude distribution (weighted by the
norm of frequency vector) of the target function f(x). More precisely, the random frequencies are
drawn from probability distribution Λ(ω) := ‖ω‖·|F (ω)|/Cf where F (ω) is the Fourier transform of
arbitrary function f(x), and Cf is the normalization factor; see (26) and corresponding discussions
for more details. This is a mild condition which holds when the distribution is continuous in some
domain. Thus, our conditions for achieving bounded risk are mild and encompass a large class of
target functions and input distributions.

Why tensors are required? We employ the cross-moment tensor which encodes the correlation
between the third order score function and the output. We then decompose the moment tensor
as a sum of rank-1 components to yield the weight vectors of the first layer. We require at least
a third order tensor to learn the neural network weights for the following reasons: while a ma-
trix decomposition is only identifiable up to orthogonal components, tensors can have identifiable
non-orthogonal components. In general, it is not realistic to assume that the weight vectors are
orthogonal, and hence, we require tensors to learn the weight vectors. Moreover, through ten-
sors, we can learn overcomplete networks, where the number of hidden neurons can exceed the
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input/output dimensions. Note that matrix factorization methods are unable to learn overcom-
plete models, since the rank of the matrix cannot exceed its dimensions. Thus, it is critical to
incorporate tensors for training neural networks. A recent set of papers have analyzed the tensor
methods in detail, and established convergence and perturbation guarantees (Anandkumar et al.,
2014a,b,c, 2015; Bhaskara et al., 2013), despite non-convexity of the decomposition problem. Such
strong theoretical guarantees are essential for deriving provable risk bounds for NN-LIFT.

Extensions: Our algorithm NN-LIFT can be extended to more layers, by recursively estimating
the weights layer by layer. In principle, our analysis can be extended by controlling the perturbation
introduced due to layer-by-layer estimation. Establishing precise guarantees is an exciting open
problem.

In this work, we assume knowledge of the generative model for the input. As argued before,
in many settings such as experimental design or polling, the design of the input pdf p(x) is under
the control of the learner. Even if p(x) is not known, a recent flurry of research activity has
shown that a wide class of probabilistic models can be trained consistently using a suite of different
efficient algorithms: convex relaxation methods (Chandrasekaran et al., 2010), spectral and tensor
methods (Anandkumar et al., 2014b), alternating minimization (Agarwal et al., 2014), and they
require only polynomial sample and computational complexity, with respect to the input and hidden
dimensions. These methods can learn a rich class of models which also includes latent or hidden
variable models.

Another aspect not addressed in this work is the issue of regularization for our NN-LIFT
algorithm. In this work, we assume that the number of neurons is chosen appropriately to balance
bias and variance through cross validation. Designing implicit regularization methods such as
dropout (Hinton et al., 2012) or early stopping (Morgan and Bourlard, 1989) for tensor factorization
and analyzing them rigorously is another exciting open research problem.

1.2 Related works

We first review some works regarding the analysis of backpropagation, and then provide some
theoretical results on training neural networks.

Analysis of backpropagation and loss surface of optimization: Baldi and Hornik (1989)
show that if the activations are linear, then backpropagation has a unique local optimum, and
it corresponds to the principal components of the covariance matrix of the training examples.
However, it is known that there exist networks with non-linear activations where backpropagation
fails; for instance, Brady et al. (1989) construct simple cases of linearly separable classes that
backpropagation fails. Note that the simple perceptron algorithm will succeed here due to linear
separability. Gori and Tesi (1992) argue that such examples are artificial and that backpropagation
succeeds in reaching the global optimum for linearly separable classes in practical settings. However,
they show that under non-linear separability, backpropagation can get stuck in local optima. For
a detailed survey, see Frasconi et al. (1997).

Recently, Choromanska et al. (2015) analyze the loss surface of a multi-layer ReLU network by
relating it to a spin glass system. They make several assumptions such as variable independence
for the input, equally likely paths from input to output, redundancy in network parameterization
and uniform distribution for unique weights, which are far from realistic. Under these assumptions,
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the network reduces to a random spin glass model, where it is known that the lowest critical values
of the random loss function form a layered structure, and the number of local minima outside
that band diminishes exponentially with the network size (Auffinger et al., 2013). However, this
does not imply computational efficiency: there is no guarantee that we can find such a good local
optimal point using computationally cheap algorithms, since there are still exponential number of
such points.

Haeffele and Vidal (2015) provide a general framework for characterizing when local optima
become global in deep learning and other scenarios. The idea is that if the network is sufficiently
overspecified (i.e., has enough hidden neurons) such that there exist local optima where some of the
neurons have zero contribution, then such local optima are in fact, global. This provides a simple
and a unified characterization of local optima which are global. However, in general, it is not clear
how to design algorithms that can reach these efficient optimal points.

Previous theoretical works for training neural networks: Analysis of risk for neural net-
works is a classical problem. Approximation error of two layer neural network has been analyzed
in a number of works (Cybenko, 1989b; Hornik, 1991; Barron, 1994). Barron (1994) provides
a bound on the approximation error and combines it with the estimation error to obtain a risk
bound, but for a computationally inefficient method. The sample complexity for neural net-
works have been extensively analyzed in Barron (1994); Bartlett (1998), assuming convergence
to the globally optimal solution, which in general is intractable. See Anthony and Bartlett (2009);
Shalev-Shwartz and Ben-David (2014) for an exposition of classical results on neural networks.

Andoni et al. (2014) learn polynomial target functions using a two-layer neural network under
Gaussian/uniform input distribution. They argue that the weights for the first layer can be selected
randomly, and only the second layer weights, which are linear, need to be fitted optimally. However,
in practice, Gaussian/uniform distributions are never encountered in classification problems. For
general distributions, random weights in the first layer is not sufficient. Under our framework, we
impose only mild non-degeneracy conditions on the weights. Livni et al. (2014) make the observa-
tion that networks with quadratic activation functions can be trained in a computationally efficient
manner in an incremental manner. This is because with quadratic activations, greedily adding one
neuron at a time can be solved efficiently through eigen decomposition. However, the standard sig-
moidal networks require a large depth polynomial network, which is not practical. After we posted
the initial version of this paper, Zhang et al. (2015) extended this framework to improper learning
scenario, where the output predictor need not be a neural network. They show that if the ℓ1 norm
of the incoming weights in each layer is bounded, then learning is efficient. However, for the usual
neural networks with sigmoidal activations, the ℓ1 norm of the weights scales with dimension and
in this case, the algorithm is no longer polynomial time. Arora et al. (2013) provide bounds for
leaning a class of deep representations. They use layer-wise learning where the neural network is
learned layer-by-layer in an unsupervised manner. They assume sparse edges with random bounded
weights, and 0/1 threshold functions in hidden nodes. The difference is here, we are considering
the supervised setting where there is both input and output, and we allow for general sigmoidal
functions at the hidden neurons.

Recently, after posting the initial version of this paper, Hardt et al. (2015) provided an analysis
of stochastic gradient descent and its generalization error in convex and non-convex problems such
as training neural networks. They show that the generalization error can be controlled under mild
conditions. However, their work does not address about reaching a solution with small risk bound
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using SGD, and the SGD in general can get stuck in a spurious local optima. On the other hand,
we show that in addition to having a small generalization error, our method yields a neural network
with a small risk bound. Note that our method is moment-based estimation, and these methods
come with stability bounds that guarantee good generalization error.

Closely related to this paper, Sedghi and Anandkumar (2014) consider learning neural networks
with sparse connectivity. They employ the cross-moment between the (multi-class) label and (first
order) score function of the input. They show that they can provably learn the weights of the first
layer, as long as the weights are sparse enough, and there are enough number of input dimensions
and output classes (at least linear up to log factor in the number of neurons in any layer). In this
paper, we remove these restrictions and allow for the output to be just binary class (and indeed,
our framework applies for multi-class setting as well, since the amount of information increases
with more label classes from the algorithmic perspective), and for the number of neurons to exceed
the input/output dimensions (overcomplete setting). Moreover, we extend beyond the realizable
setting, and do not require the target functions to be generated from the class of neural networks
under consideration.

2 Preliminaries and Problem Formulation

We first introduce some notations and then propose the problem formulation.

2.1 Notation

Let [n] := {1, 2, . . . , n}, and ‖u‖ denote the ℓ2 or Euclidean norm of vector u, and 〈u, v〉 denote
the inner product of vectors u and v. For matrix C ∈ R

d×k, the j-th column is referred by Cj or

cj , j ∈ [k]. Throughout this paper, ∇(m)
x denotes the m-th order derivative operator w.r.t. variable

x. For matrices A,B ∈ R
d×k, the Khatri-Rao product C := A ⊙ B ∈ R

d2×k is defined such that
C(l + (i− 1)d, j) = A(i, j) ·B(l, j), for i, l ∈ [d], j ∈ [k].

Tensor: A real m-th order tensor T ∈ ⊗m
R
d is a member of the outer product of Euclidean

spaces R
d. The different dimensions of the tensor are referred to as modes. For instance, for a

matrix, the first mode refers to columns and the second mode refers to rows.

Tensor matricization: For a third order tensor T ∈ R
d×d×d, the matricized version along first

mode denoted by M ∈ R
d×d2 is defined such that

T (i, j, l) =M(i, l + (j − 1)d), i, j, l ∈ [d]. (1)

Tensor rank: A 3rd order tensor T ∈ R
d×d×d is said to be rank-1 if it can be written in the form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (2)

where ⊗ represents the outer product, and a, b, c ∈ R
d are unit vectors. A tensor T ∈ R

d×d×d is
said to have a CP (Candecomp/Parafac) rank k if it can be (minimally) written as the sum of k
rank-1 tensors

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ R

d. (3)
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Derivative: For function g(x) : Rd → R with vector input x ∈ R
d, the m-th order derivative

w.r.t. variable x is denoted by ∇(m)
x g(x) ∈⊗m

R
d (which is a m-th order tensor) such that

[
∇(m)
x g(x)

]
i1,...,im

:=
∂g(x)

∂xi1∂xi2 · · · ∂xim
, i1, . . . , im ∈ [d]. (4)

When it is clear from the context, we drop the subscript x and write the derivative as ∇(m)g(x).

Fourier transform: For a function f(x) : Rd → R, the multivariate Fourier transform F (ω) :
R
d → R is defined as

F (ω) :=

∫

Rd

f(x)e−j〈ω,x〉dx, (5)

where variable ω ∈ R
d is called the frequency variable, and j denotes the imaginary unit. We also

denote the Fourier pair (f(x), F (ω)) as f(x)
Fourier←−−−→ F (ω).

Function notations: Throughout the paper, we use the following convention to distinguish
different types of functions. We use f(x) (or y) to denote an arbitrary function and exploit f̃(x)
(or ỹ) to denote the output of a realizable neural network. This helps us to differentiate between
them. We also use notation f̂(x) (or ŷ) to denote the estimated (trained) neural networks using
finite number of samples.

2.2 Problem formulation

We now introduce the problem of training a neural network in realizable and non-realizable settings,
and elaborate on the notion of risk bound on how the trained neural network approximates an
arbitrary function. It is known that continuous functions with compact domain can be arbitrarily
well approximated by feedforward neural networks with one hidden layer and sigmoidal nonlinear
functions (Cybenko, 1989a; Hornik et al., 1989; Barron, 1993).

The input (feature) is denoted by variable x, and output (label) is denoted by variable y. We
assume the input and output are generated according to some joint density function p(x, y) such

that (xi, yi)
i.i.d.∼ p(x, y), where (xi, yi) denotes the i-th sample. We assume knowledge of the input

density p(x), and demonstrate how it can be used to train a neural network to approximate the
conditional density p(y|x) in a computationally efficient manner. We discuss in Section 3.1 how the
input density p(x) can be estimated through numerous methods such as score matching or spectral
methods. In settings such as experimental design, the input density p(x) is known to the learner
since she designs the density function, and our framework is directly applicable there. In addition,
we do not need to know the normalization factor or the partition function of the input distribution
p(x), and the estimation up to normalization factor suffices.

Risk bound: In this paper, we propose a new algorithm for training neural networks and provide
risk bounds with respect to an arbitrary target function. Risk is the expected loss over the joint
probability density function of input x and output y. Here, we consider the squared ℓ2 loss and
bound the risk error

Ex[|f(x)− f̂(x)|2], (6)
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σ(·) σ(·) σ(·)σ(·)
1 k

x1 x2 x3 xdx

E[ỹ|x]

A2

A1

· · ·

· · ·

· · ·

· · ·

Figure 1: Graphical representation of a neural network, E[ỹ|x] = A⊤
2 σ(A

⊤
1 x + b1) + b2. Note that this

representation is for general vector output ỹ which can be also written as E[ỹ|x] = 〈a2, σ(A⊤
1 x+ b1)〉+ b2 in

the case of scalar output ỹ.

where f(x) is an arbitrary function which we want to approximate by f̂(x) denoting the estimated
(trained) neural network. This notion of risk is also called mean integrated squared error. The
proposed risk error for a neural network consists of two parts: approximation error and estimation
error. Approximation error is the error in fitting the target function f(x) to a neural network with
the given architecture f̃(x), and estimation error is the error in training that network with finite
number of samples denoted by f̂(x). Thus, the risk error measures the ability of the trained neural
network to generalize to new data generated by function f(x). We now introduce the realizable
and non-realizable settings, which elaborates more these sources of error.

2.2.1 Realizable setting

In the realizable setting, the output is generated by a neural network. We consider a neural network
with one hidden layer of dimension k. Let the output ỹ ∈ {0, 1} be the binary label, and x ∈ R

d

be the feature vector; see Section 6.2 for generalization to higher dimensional output (multi-label
and multi-class), and also the continuous output case. We consider the label generating model

f̃(x) := E[ỹ|x] = 〈a2, σ(A⊤
1 x+ b1)〉+ b2, (7)

where σ(·) is (linear/nonlinear) elementwise function. See Figure 1 for a schematic representation
of label-function in (7) in the general case of vector output ỹ.

In the realizable setting, the goal is to train the neural network in (7), i.e., to learn the weight
matrices (vectors) A1 ∈ R

d×k, a2 ∈ R
k and bias vectors b1 ∈ R

k, b2 ∈ R. This only involves
the estimation analysis where we have a label-function f̃(x) specified in (7) with fixed unknown
parameters A1, b1, a2, b2, and the goal is to learn these parameters and finally bound the overall
function estimation error Ex[|f̃(x) − f̂(x)|2], where f̂(x) is the estimation of fixed neural network
f̃(x) given finite samples. For this task, we propose a computationally efficient algorithm which
requires only polynomial number of samples for bounded estimation error. This is the first time
that such a result has been established for any neural network.

10



Algorithm 1 NN-LIFT (Neural Network LearnIng using Feature Tensors)

input Labeled samples {(xi, yi) : i ∈ [n]}, parameter ǫ̃1, parameter λ.
input Third order score function S3(x) of the input x; see Equation (8) for the definition.
1: Compute T̂ := 1

n

∑
i∈[n] yi · S3(xi).

2: {(Â1)j}j∈[k] = tensor decomposition(T̂ ); see Section 3.2 and Appendix B for details.

3: b̂1 = Fourier method({(xi, yi) : i ∈ [n]}, Â1, ǫ̃1); see Procedure 2.
4: (â2, b̂2) = Ridge regression({(xi, yi) : i ∈ [n]}, Â1, b̂1, λ); see Procedure 3.
5: return Â1, â2, b̂1, b̂2.

2.2.2 Non-realizable setting

In the non-realizable setting, the output is an arbitrary function f(x) which is not necessarily a
neural network. We want to approximate f(x) by f̂(x) denoting the estimated (trained) neural
network. In this setting, the additional approximation analysis is also required. In this paper, we
combine the estimation result in realizable setting with the approximation bounds in Barron (1993)
leading to risk bounds with respect to the target function f(x); see (6) for the definition of risk.
The detailed results are provided in Section 5.

3 NN-LIFT Algorithm

In this section, we introduce our proposed method for learning neural networks using tensor, Fourier
and regression techniques. Our method is shown in Algorithm 1 named NN-LIFT (Neural Network
LearnIng using Feature Tensors). The algorithm has three main components. The first component
involves estimating the weight matrix of the first layer denoted by A1 ∈ R

d×k by a tensor decompo-
sition method. The second component involves estimating the bias vector of the first layer b1 ∈ R

k

by a Fourier method. We finally estimate the parameters of last layer a2 ∈ R
k and b2 ∈ R by linear

regression.
Note that most of the unknown parameters (compare the dimensions of matrix A1, vectors a2,

b1, and scalar b2) are estimated in the first part, and thus, this is the main part of the algorithm.
Given this fact, we also provide an alternative method for the estimation of other parameters of
the model, given the estimate of A1 from the tensor method. This is based on incrementally adding
neurons, one by one, whose first layer weights are given by A1 and the remaining parameters
are updated using brute force search on a grid. Since each update involves just updating the
corresponding bias term b1, and its contribution to the final output, this is low dimensional, and
can be done efficiently; details are in Section 6.3.

We now explain the steps of Algorithm 1 in more details.

3.1 Score function

The m-th order score function Sm(x) ∈
⊗m

R
d is defined as (Janzamin et al., 2014)

Sm(x) := (−1)m∇
(m)
x p(x)

p(x)
, (8)

where p(x) is the probability density function of random vector x ∈ R
d. In addition, ∇(m)

x denotes
the m-th order derivative operator; see (4) for the precise definition. The main property of score

11



functions as yielding differential operators that enables us to estimate the weight matrix A1 via
tensor decomposition is discussed in the next subsection; see Equation (9).

In this paper, we assume access to a sufficiently good approximation of the input pdf p(x) and
the corresponding score functions S2(x), S3(x). Indeed, estimating these quantities in general is a
hard problem, but there exist numerous instances where this becomes tractable. Examples include
spectral methods for learning latent variable models such as Gaussian mixtures, topic or admixture
models, independent component analysis (ICA) and so on (Anandkumar et al., 2014b). Moreover,
there have been recent advances in non-parametric score matching methods (Sriperumbudur et al.,
2013) for density estimation in infinite dimensional exponential families with guaranteed conver-
gence rates. These methods can be used to estimate the input pdf in an unsupervised manner.
Below, we discuss in detail about score function estimation methods. In this paper, we focus on
how we can use the input generative information to make training of neural networks tractable.
For simplicity, in the subsequent analysis, we assume that these quantities are perfectly known; it
is possible to extend the perturbation analysis to take into account the errors in estimating the
input pdf; see Remark 4.

Estimation of score function: There are various efficient methods for estimating the score
function. The framework of score matching is popular for parameter estimation in probabilistic
models (Hyvärinen, 2005; Swersky et al., 2011), where the criterion is to fit parameters based on
matching the data score function. Swersky et al. (2011) analyze the score matching for latent
energy-based models. In deep learning, the framework of auto-encoders attempts to find encoding
and decoding functions which minimize the reconstruction error under added noise; the so-called
Denoising Auto-Encoders (DAE). This is an unsupervised framework involving only unlabeled
samples. Alain and Bengio (2012) argue that the DAE approximately learns the first order score
function of the input, as the noise variance goes to zero. Sriperumbudur et al. (2013) propose
non-parametric score matching methods for density estimation in infinite dimensional exponen-
tial families with guaranteed convergence rates. Therefore, we can use any of these methods for
estimating S1(x) and use the recursive form (Janzamin et al., 2014)

Sm(x) = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x)

to estimate higher order score functions.

3.2 Tensor decomposition

The score functions are new representations (extracted features) of input data x that can be used for
training neural networks. We use score functions and labels of training data to form the empirical
cross-moment T̂ = 1

n

∑
i∈[n] yi ·S3(xi). We decompose tensor T̂ to estimate the columns of A1. The

following discussion reveals why tensor decomposition is relevant for this task.
The score functions have the property of yielding differential operators with respect to the input

distribution. More precisely, for label-function f(x) := E[y|x], Janzamin et al. (2014) show that

E[y · S3(x)] = E[∇(3)
x f(x)].

Now for the neural network output in (7), note that the function f̃(x) is a non-linear function of
both input x and weight matrix A1. The expectation operator E[·] averages out the dependency on
x, and the derivative acts as a linearization operator as follows. In the neural network output (7),

12



we observe that the columns of weight vector A1 are the linear coefficients involved with input
variable x. When taking the derivative of this function, by the chain rule, these linear coefficients
shows up in the final form. In particular, we show in Lemma 6 (see Section 7) that for neural
network in (7), we have

E [ỹ · S3(x)] =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j ∈ R

d×d×d, (9)

where (A1)j ∈ R
d denotes the j-th column of A1, and λj ∈ R denotes the coefficient; refer to

Equation (3) for the notion of tensor rank and its rank-1 components. This clarifies how the score
function acts as a linearization operator while the final output is nonlinear in terms of A1. The
above form also clarifies the reason behind using tensor decomposition in the learning framework.

Tensor decomposition algorithm: The goal of tensor decomposition algorithm is to recover
the rank-1 components of tensor. For this step, we use the tensor decomposition algorithm pro-
posed in (Anandkumar et al., 2014b,c); see Appendix B for details. The main step of the tensor
decomposition method is the tensor power iteration which is the generalization of matrix power
iteration to 3rd order tensors. The tensor power iteration is given by

u← T (I, u, u)

‖T (I, u, u)‖ ,

where u ∈ R
d, T (I, u, u) :=

∑
j,l∈[d] ujulT (:, j, l) ∈ R

d is a multilinear combination of tensor fibers.3

The convergence guarantees of tensor power iteration for orthogonal tensor decomposition have
been developed in the literature (Zhang and Golub, 2001; Anandkumar et al., 2014b). Note that
we first orthogonalize the tensor via whitening procedure and then apply the tensor power iteration.
Thus, the original tensor decomposition need not to be orthogonal.

Computational Complexity: It is popular to perform the tensor decomposition in a stochastic
manner which reduces the computational complexity. This is done by splitting the data into mini-
batches. Starting with the first mini-batch, we perform a small number of tensor power iterations,
and then use the result as initialization for the next mini-batch, and so on. As mentioned earlier, we
assume that a sufficiently good approximation of score function tensor is given to us. For specific
cases where we have this tensor in factor form, we can reduce the computational complexity of
NN-LIFT by not computing the whole tensor explicitly. By having factor form, we mean when we
can write the score function tensor in terms of summation of rank-1 components which could be
the summation over samples, or from other existing structures in the model. We now state a few
examples when we have the factor form, and provide the computational complexity. For example,
if input follows Gaussian distribution, the score function has a simple polynomial form, and the
computational complexity of tensor decomposition is O(nkdR), where n is the number of samples
and R is the number of initializations for the tensor decomposition. Similar argument follows when
the input distribution is mixture of Gaussian distributions.

We can also analyze complexity for more complex inputs. If we fit the input data into a
Restricted Boltzmann Machines (RBM) model, the computational complexity of our method is

3Tensor fibers are the vectors which are derived by fixing all the indices of the tensor except one of them, e.g.,
T (:, j, l) in the above expansion.
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Procedure 2 Fourier method for estimating b1

input Labeled samples {(xi, yi) : i ∈ [n]}, estimate Â1, parameter ǫ̃1.
input Probability density function p(x) of the input x.
1: for l = 1 to k do

2: Let Ωl :=
{
ω ∈ R

d : ‖ω‖ = 1
2 ,
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1−ǫ̃21/2
2

}
, and |Ωl| denotes the surface area of d−1

dimensional manifold Ωl.
3: Draw n i.i.d. random frequencies ωi, i ∈ [n], uniformly from set Ωl.
4: Let v := 1

n

∑
i∈[n]

yi
p(xi)

e−j〈ωi,xi〉 which is a complex number as v = |v|ej∠v . The operators | · |
and ∠· respectively denote the magnitude and phase operators.

5: Let b̂1(l) :=
1
π (∠v − ∠Σ(1/2)), where σ(x)

Fourier←−−−→ Σ(ω).
6: end for

7: return b̂1.

O(nkddhR). Here dh is the number of neurons of the first layer of the RBM used for approximating
the input distribution. Tensor methods are also embarrassingly parallelizable. When performed in
parallel, the computational complexity would beO(log(min{d, dh})) withO(nkddhR/ log(min(d, dh)))
processors. Alternatively, we can also exploit recent tensor sketching approaches (Wang et al.,
2015) for computing tensor decompositions efficiently. Wang et al. (2015) build on the idea of
count sketches and show that the running time is linear in the input dimension and the number
of samples, and is independent in the order of the tensor. Thus, tensor decompositions can be
computed efficiently.

3.3 Fourier method

The second part of the algorithm estimates the first layer bias vector b1 ∈ R
k. This step is

very different from the previous step for estimating A1 which was based on tensor decomposition
methods. This is a Fourier-based method where complex variables are formed using labeled data
and random frequencies in the Fourier domain; see Procedure 2. We prove in Lemma 7 that
the entries of b1 can be estimated from the phase of these complex numbers. We also observe in
Lemma 7 that the magnitude of these complex numbers can be used to estimate a2; this is discussed
in Appendix C.2.

Polynomial-time random draw from set Ωl: Note that the random frequencies are drawn
from a d − 1 dimensional manifold denoted by Ωl which is the intersection of sphere ‖ω‖ = 1

2

and cone
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1−ǫ̃21/2
2 in R

d. This manifold is actually the surface of a spherical cap.
In order to draw these frequencies in polynomial time, we consider the d-dimensional spherical
coordinate system such that one of the angles is defined based on the cone axis. We can then
directly impose the cone constraint by limiting the corresponding angle in the random draw. In
addition, Kothari and Meka (2014) propose a method for generating pseudo-random variables from
the spherical cap in logarithmic time.

Remark 1 (Knowledge of input distribution only up to normalization factor). The computation of
score function and the Fourier method both involve knowledge about input pdf p(x). However, we do
not need to know the normalization factor, also known as partition function, of the input pdf. For
the score function, it is immediately seen from the definition in (8) since the normalization factor
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Procedure 3 Ridge regression method for estimating a2 and b2

input Labeled samples {(xi, yi) : i ∈ [n]}, estimates Â1 and b̂1, regularization parameter λ.
1: Let ĥi := σ(Â⊤

1 xi + b̂1), i ∈ [n], denote the estimation of the neurons.
2: Append each neuron ĥi by the dummy variable 1 to represent the bias, and thus, ĥi ∈ R

k+1.
3: Let Σ̂ĥ := 1

n

∑
i∈[n] ĥiĥ

⊤
i ∈ R

(k+1)×(k+1) denote the empirical covariance of ĥ.

4: Let β̂λ ∈ R
k+1 denote the estimated parameters by λ-regularized ridge regression as

β̂λ =
(
Σ̂ĥ + λIk+1

)−1
· 1
n


∑

i∈[n]
yiĥi


 , (10)

where Ik+1 denotes the (k + 1)-dimensional identity matrix.
5: return â2 := β̂λ(1 : k), b̂2 := β̂λ(k + 1).

is canceled out by the division by p(x), and thus, the estimation of score function is at most as
hard as estimation of input pdf up to normalization factor. In the Fourier method, we can use the
non-normalized estimation of input pdf which leads to a normalization mismatch in the estimation
of corresponding complex number. This is not a problem since we only use the phase information
of these complex numbers.

3.4 Ridge regression method

For the neural network model in (7), given a good estimation of neurons, we can estimate the
parameters of last layer by linear regression. We provide Procedure 3 in which we use ridge
regression algorithm to estimate the parameters of last layer a2 and b2. See Appendix C.3 for the
details of ridge regression and the corresponding analysis and guarantees.

4 Risk Bound in the Realizable Setting

In this section, we provide guarantees in the realizable setting, where the function f̃(x) := E[ỹ|x]
is generated by a neural network as in (7). We provide the estimation error bound on the overall
function recovery Ex[|f̃(x)− f̂(x)|2] when the estimation is done by Algorithm 1.

We provide guarantees in the following settings. 1) In the basic case, we consider the un-
dercomplete regime k ≤ d, and provide the results assuming A1 is full column rank. 2) In the
second case, we form higher order cross-moments and tensorize it into a lower order tensor. This
enables us to learn the network in the overcomplete regime k > d, when the Khatri-Rao product
A1 ⊙ A1 ∈ R

d2×k is full column rank. We call this the overcomplete setting and this can handle
up to k = O(d2). Similarly, we can extend to larger k by tensorizing higher order moments in the
expense of additional computational complexity.

We define the following quantity for label function f̃(·) as

ζ̃f̃ :=

∫

Rd

f̃(x)dx.

Note that in the binary classification setting (ỹ ∈ {0, 1}), we have E[ỹ|x] := f̃(x) ∈ [0, 1] which is
always positive, and there is no square of f̃(x) considered in the above quantity.
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Let η denote the noise in the neural network model in (7) such that the output is

ỹ = f̃(x) + η.

Note that the noise η is not necessarily independent of x; for instance, in the classification setting
or binary output ỹ ∈ {0, 1}, the noise in dependent on x.

Conditions for Theorem 3:

• Non-degeneracy of weight vectors: In the undercomplete setting (k ≤ d), the weight
matrix A1 ∈ R

d×k is full column rank and smin(A1) > ǫ, where smin(·) denotes the minimum
singular value, and ǫ > 0 is related to the target error in recovering the columns of A1. In
the overcomplete setting (k ≤ d2), the Khatri-Rao product A1 ⊙ A1 ∈ R

d2×k is full column
rank4, and smin(A1 ⊙A1) > ǫ; see Remark 3 for generalization.

• Conditions on nonlinear activating function σ(·): the coefficients

λj := E
[
σ′′′(zj)

]
· a2(j), λ̃j := E

[
σ′′(zj)

]
· a2(j), j ∈ [k],

in (20) and (40) are nonzero. Here, z := A⊤
1 x+ b1 is the input to the nonlinear operator σ(·).

In addition, σ(·) satisfies the Lipschitz property5 with constant L such that |σ(u) − σ(u′)| ≤
L · |u − u′|, for u, u′ ∈ R. Suppose that the nonlinear activating function σ(z) satisfies the
property such that σ(z) = 1−σ(−z). Many popular activating functions such as step function,
sigmoid function and tanh function satisfy this last property.

• Subgaussian noise: There exists a finite σnoise ≥ 0 such that, almost surely,

Eη[exp(αη)|x] ≤ exp(α2σ2noise/2), ∀α ∈ R,

where η denotes the noise in the output ỹ.

• Bounded statistical leverage: There exists a finite ρλ ≥ 1 such that, almost surely,

√
k√

(inf{λj}+ λ)k1,λ
≤ ρλ,

where k1,λ denotes the effective dimensions of the hidden layer h := σ(A⊤
1 x + b1) as k1,λ :=∑

j∈[k]
λj

λj+λ
. Here, λj ’s denote the (positive) eigenvalues of the hidden layer covariance matrix

Σh, and λ is the regularization parameter of ridge regression.

We now elaborate on these conditions. The non-degeneracy of weight vectors are required for the
tensor decomposition analysis in the estimation of A1. In the undercomplete setting, the algorithm
first orthogonalizes (through whitening procedure) the tensor given in (9), and then decomposes
it through tensor power iteration. Note that the convergence of power iteration for orthogonal
tensor decomposition is guaranteed (Zhang and Golub, 2001; Anandkumar et al., 2014b). For the

4It is shown in Bhaskara et al. (2013) that this condition is satisfied under smoothed analysis.
5 If the step function σ(u) = 1{u>0}(u) is used as the activating function, the Lipschitz property does not hold

because of the non-continuity at u = 0. But, we can assume the Lipschitz property holds in the linear continuous
part, i.e., when u, u′ > 0 or u, u′ < 0. We then argue that the input to the step function 1{u>0}(u) is w.h.p. in the
linear interval (where the Lipschitz property holds).
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orthogonalization procedure to work, we need the tensor components (the columns of matrix A1)
to be linearly independent. In the overcomplete setting, the algorithm performs the same steps
with the additional tensorizing procedure; see Appendix B for details. In this case, a higher order
tensor is given to the algorithm and it is first tensorized before performing the same steps as in the
undercomplete setting. Thus, the same conditions are now imposed on A1 ⊙A1.

In addition to the non-degeneracy condition on weight matrix A1, the coefficients condition on
λj ’s is also required to ensure the corresponding rank-1 components in (9) do not vanish, and thus,
the tensor decomposition algorithm recovers them. Similarly, the coefficients λ̃j should be also
nonzero to enable us using the second order moment M̃2 in (39) in the whitening step of tensor
decomposition algorithm. If one of the coefficients vanishes, we use the other option to perform the
whitening; see Remark 5 and Procedure 5 for details. Note that the amount of non-linearity of σ(·)
affects the magnitude of the coefficients. It is also worth mentioning that although we use the third
derivative notation σ′′′(·) in characterizing the coefficients λj (and similarly σ′′(·) in λ̃j), we do not
need the differentiability of non-linear function σ(·) in all points. In particular, when input x is
a continuous variable, we use Dirac delta function δ(·) as the derivative in non-continuous points;
for instance, for the derivative of step function 1{x>0}(x), we have d

dx1{x>0}(x) = δ(x). Thus, in
general, we only need the expectations E [σ′′′(zj)] and E [σ′′(zj)] to exist for these type of functions
and the corresponding higher order derivatives.

We impose the Lipschitz condition on the non-linear activating function to limit the error
propagated in the hidden layer, when the first layer parameters are estimated by the neural network
and Fourier methods. The condition σ(z) = 1 − σ(−z) is also assumed to tackle the sign issue in
recovering the columns of A1; see Remark 6 for the details. The subgaussian noise and the bounded
statistical leverage conditions are standard conditions, required for ridge regression, which is used
for estimating the parameters of the second layer of the neural network. Both parameters σnoise,
and ρλ affect the sample complexity in the final guarantees.

Imposing additional bounds on the parameters of the neural network are useful in learning these
parameters with computationally efficient algorithms since it limits the searching space for training
these parameters. In particular, for the Fourier analysis, we assume the following conditions.
Suppose the columns of weight matrix A1 are normalized, i.e., ‖(A1)j‖ = 1, j ∈ [k], and the entries
of first layer bias vector b1 are bounded as |b1(l)| ≤ 1, l ∈ [k]. Note that the normalization condition
on the columns of A1 is also needed for identifiability of the parameters. For instance, if the non-
linear operator is the step function σ(z) = 1{z>0}(z), then matrix A1 is only identifiable up to
its norm, and thus, such normalization condition is required for identifiability. The estimation
of entries of the bias vector b1 is obtained from the phase of a complex number through Fourier
analysis; see Procedure 2 for details. Since there is ambiguity in the phase of a complex number6,
we impose the bounded assumption on the entries of b1 to avoid this ambiguity.

Let p(x) satisfy some mild regularity conditions on the boundaries of the support of p(x). In
particular, all the entries of (matrix-output) functions

f̃(x) · ∇(2)p(x), ∇f̃(x) · ∇p(x)⊤, ∇(2)f̃(x) · p(x) (11)

should go to zero on the boundaries of support of p(x). These regularity conditions are required
for the properties of the score function to hold; see Janzamin et al. (2014) for more details.

In addition to the above main conditions, we also need some mild conditions which are not
crucial for the recovery guarantees and are mostly assumed to simplify the presentation of the

6A complex number does not change if an integer multiple of 2π is added to its phase.
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main results. These conditions can be relaxed more. Suppose the input x is bounded, i.e., x ∈ Br,
where Br := {x : ‖x‖ ≤ r}. Assume the input probability density function p(x) ≥ ψ for some
ψ > 0, and for any x ∈ Br. The regularity conditions in (11) might seem contradictory with the
lower bound condition p(x) ≥ ψ, but there is an easy fix for that. The lower bound on p(x) is
required for the analysis of the Fourier part of the algorithm. We can have a continuous p(x), while
in the Fourier part, we only use x’s such that p(x) ≥ ψ, and ignore the rest. This only introduces
a probability factor Pr[x : p(x) ≥ ψ] in the analysis.

Settings of algorithm in Theorem 3:

• No. of iterations in Algorithm 7: N = Θ
(
log 1

ǫ

)
.

• No. of initializations in Procedure 8: R ≥ poly(k).

• Parameter ǫ̃1 = Õ
(

1√
n

)
in Procedure 2, where n is the number of samples.

• We exploit the empirical second order moment M̂2 := 1
n

∑
i∈[n] yi · S2(xi), in the whitening

Procedure 5, which is the first option stated in the procedure. See Remark 5 for further
discussion about the other option.

Theorem 3 (NN-LIFT guarantees: estimation bound in the realizable setting). Assume the above
settings and conditions hold. For ǫ > 0, suppose the number of samples n satisfies (up to log
factors)

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M

⊤
3 (x)

∥∥∥
]

(12)

·poly
(
ỹmax,

E
[∥∥S2(x)S⊤2 (x)

∥∥]

E
[∥∥M3(x)M⊤

3 (x)
∥∥] ,

ζ̃f̃
ψ
,
λ̃max

λ̃min

,
1

λmin
,
smax(A1)

smin(A1)
, |Ωl|, L,

‖a2‖
(a2)min

, |b2|, σnoise, ρλ
))

.

See (32), (55), (57) and (59) for the complete form of sample complexity. Here, M3(x) ∈ R
d×d2

denotes the matricization of score function tensor S3(x) ∈ R
d×d×d; see (1) for the definition of

matricization. Furthermore, λmin := minj∈[k] |λj |, λ̃min := minj∈[k] |λ̃j |, λ̃max := maxj∈[k] |λ̃j |,
(a2)min := minj∈[k] |a2(j)|, and ỹmax is such that |f̃(x)| ≤ ỹmax, for x ∈ Br. Then the function

estimate f̂(x) := 〈â2, σ(Â⊤
1 x + b̂1)〉 + b̂2 using the estimated parameters Â1, b̂1, â2, b̂2 (output of

NN-LIFT Algorithm 1) satisfies the estimation error

Ex[|f̂(x)− f̃(x)|2] ≤ Õ(ǫ2).

See Section 7 and Appendix C for the proof of theorem. Thus, we estimate the neural network
in polynomial time and sample complexity. This is one of the first results to provide a guaranteed
method for training neural networks with efficient computational and statistical complexity. Note
that although the sample complexity in (Barron, 1993) is smaller as n ≥ Õ

(
kd
ǫ2

)
, the proposed

algorithm in (Barron, 1993) is not computationally efficient.

Remark 2 (Sample complexity for Gaussian input). If the input x is Gaussian as x ∼ N (0, Id),
then we know that E

[∥∥M3(x)M
⊤
3 (x)

∥∥] = Õ
(
d3
)
and E

[∥∥S2(x)S⊤2 (x)
∥∥] = Õ

(
d2
)
, and the above

sample complexity is simplified.
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Remark 3 (Higher order tensorization). We stated that by tensorizing higher order tensors to lower
order ones, we can estimate overcomplete models where the hidden layer dimension k is larger than
the input dimension d. We can generalize this idea to higher order tensorizing such that m modes
of the higher order tensor are tensorized into a single mode in the resulting lower order tensor.
This enables us to estimate the models up to k = O(dm) assuming the matrix A1 ⊙ · · · ⊙ A1 (m
Khatri-Rao products) is full column rank. This is possible with the higher computational complexity.

Remark 4 (Effect of erroneous estimation of p(x)). The input probability density function p(x) is
directly used in the Fourier part of the algorithm, and also indirectly used in the tensor decomposition
part to compute the score function S3(x); see (8). In the above analysis, to simplify the presentation,
we assume we exactly know these functions, and thus, there is no additional error introduced by
estimating them. It is straightforward to incorporate the corresponding errors in estimating input
density into the final bound.

Remark 5 (Alternative whitening prodecure). In whitening Procedure 5, two options are provided
for constructing the second order moment M2. In the above analysis, we used the first option which
exploits the second order score function. If any coefficient λ̃j, j ∈ [k], in (39) vanishes, we cannot
use the second order score function in the whitening procedure, and we use the other option for
whitening; see Procedure 5 for the details.

5 Risk Bound in the Non-realizable Setting

In this section, we provide the risk bound for training the neural network with respect to an
arbitrary target function; see Section 2.2 for the definition of the risk.

In order to provide the risk bound with respect to an arbitrary target function, we also need to
argue the approximation error in addition to the estimation error. For an arbitrary function f(x),
we need to find a neural network whose error in approximating the function can be bounded. We
then combine it with the estimation error in training that neural network. This yields the final risk
bound.

The approximation problem is about finding a neural network that approximates an arbitrary
function f(x) with bounded error. Thus, this is different from the realizable setting where there is a
fixed neural network and we only analyze its estimation. Barron (1993) provides an approximation
bound for the two-layer neural network and we exploit that here. His result is based on the Fourier
properties of function f(x). Recall from (5) the definition of Fourier transform of f(x), denoted
by F (ω), where ω is called the frequency variable. Define the first absolute moment of the Fourier
magnitude distribution as

Cf :=

∫

Rd

‖ω‖2 · |F (ω)|dω. (13)

Barron (1993) analyzes the approximation properties of

f̃(x) =
∑

j∈[k]
a2(j)σ

(
〈(A1)j , x〉+ b1(j)

)
, ‖(A1)j‖ = 1, |b1(j)| ≤ 1, |a2(j)| ≤ 2Cf , j ∈ [k], (14)

where the columns of weight matrix A1 are the normalized version of random frequencies drawn
from the Fourier magnitude distribution |F (ω)| weighted by the norm of the frequency vector. More
precisely,

ωj
i.i.d.∼ ‖ω‖

Cf
|F (ω)|, (A1)j =

ωj
‖ωj‖

, j ∈ [k]. (15)
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See Section 7.2.1 for a detailed discussion on this connection between the columns of weight matrix
A1 and the random frequency draws from the Fourier magnitude distribution, and see how this
is argued in the proof of the approximation bound. The other parameters a2, b1 need to be also
found. He then shows the following approximation bound for (14).

Theorem 4 (Approximation bound, Theorem 3 of Barron (1993)). For a function f(x) with
bounded Cf , there exists an approximation f̃(x) in the form of (14) that satisfies the approximation
bound

Ex[|f(x)− f̃(x)|2] ≤ O(r2C2
f ) ·

(
1√
k
+ δ1

)2

,

where f(x) = f(x)− f(0). Here, for τ > 0,

δτ := inf
0<ξ≤1/2

{
2ξ + sup

|z|≥ξ

∣∣σ(τz) − 1{z>0}(z)
∣∣
}

(16)

is a distance between the unit step function 1{z>0}(z) and the scaled sigmoidal function σ(τz).

See Barron (1993) for the complete proof of the above theorem. For completeness, we have also
reviewed the main ideas of this proof in Section 7.2. We now provide the formal statement of our
risk bound.

Conditions for Theorem 5:

• The nonlinear activating function σ(·) is an arbitrary sigmoidal function satisfying the afore-
mentioned Lipschitz condition. Note that a sigmoidal function is a bounded measurable
function on the real line for which σ(z)→ 1 as z →∞ and σ(z)→ 0 as z → −∞.

• For ǫ > 0, suppose the number of samples n satisfies (up to log factors)

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M

⊤
3 (x)

∥∥∥
]

(17)

·poly
(
ymax,

E
[∥∥S2(x)S⊤2 (x)

∥∥]

E
[∥∥M3(x)M⊤

3 (x)
∥∥] ,

ζf
ψ
,
λ̃max

λ̃min

,
1

λmin
,
smax(A1)

smin(A1)
, |Ωl|, L,

‖a2‖
(a2)min

, |b2|, σnoise, ρλ
))

,

where ζf :=
∫
Rd f(x)

2dx; notice the difference with ζ̃f̃ . Note that this is the same sample

complexity as in Theorem 3 with ỹmax substituted with ymax and ζ̃f̃ substituted with ζf .

• The target function f(x) is bounded, and for ǫ > 0, it has bounded Cf as

Cf ≤ Õ
((

1√
k
+ δ1

)−1

·
(

1√
k
+ ǫ

)
· 1√

E

[
‖S3(x)‖2

] (18)

·poly


1

r
,
E

[
‖S3(x)‖2

]

E

[
‖S2(x)‖2

] , ψ, λ̃min

λ̃max

, λmin,
smin(A1)

smax(A1)
,

1

|Ωl|
,
1

L
,
(a2)min

‖a2‖
,

1

|b2|
,

1

σnoise
,
1

ρλ




 .

See (60) and (62) for the complete form of bound on Cf . For Gaussian input x ∼ N (0, Id),

we have
√

E [‖S3(x)‖2] = Õ
(
d1.5
)
, and r = Õ(

√
d).

See Corollary 1 for examples of functions that satisfy this bound, and thus, we can learn them
by the proposed method.
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• The coefficients λj := E [σ′′′(zj)] · a2(j), and λ̃j := E [σ′′(zj)] · a2(j), j ∈ [k], in (20) and (40)
are non-zero.

• k random i.i.d. draws of frequencies in Equation (15) are linearly independent. Note that
the draws are from Fourier magnitude distribution7 ‖ω‖ · |F (ω)|. For more discussions on
this condition, see Section 7.2.1 and earlier explanations in this section. In the overcomplete
regime, (k > d), the linear independence property needs to hold for appropriate tensorizations
of the frequency draws.

The above requirements on the number of samples n and parameter Cf depend on the pa-
rameters of the neural network A1, a2, b1 and b2. Note that there is also a dependence on these
parameters through coefficients λj and λ̃j. Since this is the non-realizable setting, these neural net-
work parameters correspond to the neural networks that satisfy the approximation bound proposed
in Theorem 4 and are generated via random draws from the frequency spectrum of the function
f(x).

The proposed bound on Cf in (18) is stricter when the number of hidden units k increases. This
might seem counter-intuitive, since the approximation result in Theorem 4 suggests that increasing
k leads to smaller approximation error. But, note that the approximation result in Theorem 4 does
not consider efficient training of the neural network. The result in Theorem 5 also deals with the
efficient estimation of the neural network. This imposes additional constraint on the parameter Cf
such that when the number of neurons increases, the problem of learning the network weights is
more challenging for the tensor method to resolve.

Theorem 5 (NN-LIFT guarantees: risk bound). Suppose the above conditions hold. Then the
target function f is approximated by the neural network f̂ which is learnt using NN-LIFT in Algo-
rithm 1 satisfying w.h.p.

Ex[|f(x)− f̂(x)|2] ≤ O(r2C2
f ) ·

(
1√
k
+ δ1

)2

+O(ǫ2),

where δτ is defined in (16). Recall x ∈ Br, where Br := {x : ‖x‖ ≤ r}.

The theorem is mainly proved by combining the estimation bound guarantees in Theorem 3,
and the approximation bound results for neural networks provided in Theorem 4. But note that
the approximation bound provided in Theorem 4 holds for a specific class of neural networks which
are not generally recovered by the NN-LIFT algorithm. In addition, the estimation guarantees in
Theorem 3 is for the realizable setting where the observations are the outputs of a fixed neural
network, while in Theorem 5 we observe samples of arbitrary function f(x). Thus, the approxima-
tion analysis in Theorem 4 can not be directly applied to Theorem 3. For this, we need additional
assumptions to ensure the NN-LIFT algorithm recovers a neural network which is close to one of
the neural networks that satisfy the approximation bound in Theorem 4. Therefore, we impose
the bound on quantity Cf , and the full column rank assumption proposed in Theorem 4. See
Appendix D for the complete proof of Theorem 5.

The above risk bound includes two terms. The first term O(r2C2
f ) ·

(
1√
k
+ δ1

)2
represents the

approximation error on how the arbitrary function f(x) with quantity Cf can be approximated
by the neural network, whose weights are drawn from the Fourier magnitude distribution; see

7Note that it should be normalized to be a probability distribution as in (15).
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Theorem 4 for the formal statement. From the definition of Cf in (13), this bound is weaker
when the Fourier spectrum of target f(x) has more energy in higher frequencies. This makes
intuitive sense since it should be easier to approximate a function which is more smooth and has
less fluctuations. The second term O(ǫ2) is from estimation error for NN-LIFT algorithm, which is
analyzed in Theorem 3. The polynomial factors for sample complexity in our estimation error are
slightly worse than the bound provided in Barron (1994), but note that we provide an estimation
method which is both computationally and statistically efficient, while the method in Barron (1994)
is not computationally efficient. Thus, for the first time, we have a computationally efficient method
with guaranteed risk bounds for training neural networks.

Discussion on δτ in the approximation bound: The approximation bound involves a term
δτ which is a constant and does not shrink with increasing the neuron size k. Recall that δτ
measures the distance between the unit step function 1{z>0}(z) and the scaled sigmoidal function
σ(τz) (which is used in the neural network specified in (7)). We now provide the following two
observations

The above risk bound is only provided for the case τ = 1. We can generalize this result
by imposing different constraint on the norm of columns of A1 in (14). In general, if we impose

‖(A1)j‖ = τ, j ∈ [k], for some τ > 0, then we have the approximation bound8 O(r2C2
f ) ·
(

1√
k
+ δτ

)2
.

Note that δτ → 0 when τ → ∞ (the scaled sigmoidal function σ(τz) converges to the unit step
function), and thus, this constant approximation error vanishes.

If the sigmoidal function is the unit step function as σ(z) = 1{z>0}(z), then δτ = 0 for all τ > 0,
and hence, there is no such constant approximation error.

6 Discussions and Extensions

In this section, we provide additional discussions. We first propose a toy example contrasting the
hardness of optimization problems backpropagation and tensor decomposition. We then discuss the
generalization of learning guarantees to higher dimensional output, and also the continuous output
case. We then discuss an alternative approach for estimating the low-dimensional parameters of
the model.

6.1 Contrasting the loss surface of backpropagation with tensor decomposition

We discussed that the computational hardness of training a neural network is due to the non-
convexity of the loss function, and thus, popular local search methods such as backpropagation
can get stuck in spurious local optima. We now provide a toy example highlighting this issue, and
contrast it with the tensor decomposition approach.

We consider a simple binary classification task shown in Figure 2.a, where blue and magneta
data points correspond to two different classes. It is clear that these two classes can be classified by
a mixture of two linear classifiers which are drawn as green solid lines in the figure. For this task, we
consider a two-layer neural network with two hidden neurons. The loss surfaces for backpropagation
and tensor decomposition are shown in Figures 2.b and 2.c, respectively. They are shown in terms

8Note that this change also needs some straightforward appropriate modifications in the algorithm.
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(b) Loss surface for backprop.
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(c) Loss surface for tensor method

Figure 2: (a) Classification task: two colors correspond to binary labels. A two-layer neural network with
two hidden neurons is used. Loss surface in terms of the first layer weights of one neuron (i.e., weights
connecting the inputs to the neuron) is plotted while other parameters are fixed. (b) Loss surface for usual
square loss objective has spurious local optima. In part (a), one of the spurious local optima is drawn as red
dashed lines and the global optimum is drawn as green solid lines. (c) Loss surface for tensor factorization
objective is free of spurious local optima.

of the weight parameters of inputs to the first neuron, i.e., the first column of matrix A1, while the
weight parameters to the second neuron are randomly drawn, and then fixed.

The stark contrast between the optimization landscape of tensor objective function, and the
usual square loss objective used for backpropagation are observed, where even for a very simple
classification task, backpropagation suffers from spurious local optima (one set of them is drawn as
red dashed lines), which is not the case with tensor methods that is at least locally convex. This
comparison highlights the algorithmic advantage of tensor decomposition compared to backpropa-
gation in terms of the optimization they are performing.

6.2 Extensions to cases beyond binary classification

We earlier limited ourselves to the case where the output of neural network ỹ ∈ {0, 1} is binary.
These results can be easily extended to more complicated cases such as higher dimensional output
(multi-label and multi-class), and also the continuous outputs (i.e., regression setting). In the rest
of this section, we discuss about the necessary changes in the algorithm to adapt it for these cases.

In the multi-dimensional case, the output label ỹ is a vector generated as

E[ỹ|x] = A⊤
2 σ(A

⊤
1 x+ b1) + b2,

where the output is either discrete (multi-label and multi-class) or continuous. Recall that the al-
gorithm includes three main parts: tensor decomposition, Fourier and ridge regression components.

Tensor decomposition: For the tensor decomposition part, we first form the empirical version
of T̃ = E [ỹ ⊗ S3(x)]; note that ⊗ is used here (instead of scalar product used earlier) since ỹ is not
a scalar anymore. By the properties of score function, this tensor has decomposition form

T̃ = E [ỹ ⊗ S3(x)] =
∑

j∈[k]
E
[
σ′′′(zj)

]
· (A2)

j ⊗ (A1)j ⊗ (A1)j ⊗ (A1)j ,
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where (A2)
j denotes the jth row of matrix A2. This is proved similar to Lemma 6. The tensor T̃ is

a fourth order tensor, and we contract the first mode by multiplying it with a random vector θ as
T̃ (θ, I, I, I) leading to the same form in (19) as

T̃ (θ, I, I, I) =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j ,

with λj changed to λj = E [σ′′′(zj)]·〈(A2)
j , θ〉. Therefore, the same tensor decomposition guarantees

in the binary case also hold here when the empirical version of T̃ (θ, I, I, I) is the input to the
algorithm.

Fourier method: Similar to the scalar case, we can use one of the entries of output to estimate
the entries of b1. There is an additional difference in the continuous case. Suppose that the output
is generated as ỹ = f̃(x) + η where η is noise vector which is independent of input x. In this case,
the parameter ζ̃f̃ corresponding to lth entry of output ỹl is changed to ζ̃f̃ :=

∫
Rd f̃(x)

2
l dx+

∫
R
η2l dt.

Ridge regression: The ridge regression method and analysis can be immediately generalized to
non-scalar output by applying the method independently to different entries of output vector to
recover different columns of matrix A2 and different entries of vector b2.

6.3 An alternative for estimating low-dimensional parameters

Once we have an estimate of the first layer weights A1, we can greedily (i.e., incrementally) add
neurons with the weight vectors (A1)j for j ∈ [k], and choose the bias b1(j) through grid search,
and learn its contribution a2(j) for its final output. This is on the lines of the method proposed
in Barron (1993), with one crucial difference that in our case, the first layer weights A1 are already
estimated by the tensor method. Barron (1993) proposes optimizing for each weight vector (A1)j
in d-dimensional space, whose computational complexity can scale exponentially in d in the worst
case. But, in our setup here, since we have already estimated the high-dimensional parameters
(i.e., the columns of A1), we only need to estimate a few low dimensional parameters. For the
new hidden unit indexed by j, these parameters include the bias from input layer to the neuron
(i.e., b1(j)), and the weight from the neuron to the output (i.e., a2(j)). This makes the approach
computationally tractable, and we can even use brute-force or exhaustive search to find the best
parameters on a finite set and get guarantees akin to (Barron, 1993).

7 Proof Sketch

In this section, we provide key ideas for proving the main results in Theorems 3 and 4.

7.1 Estimation bound

The estimation bound is proposed in Theorem 3, and the complete proof is provided in Appendix C.
Recall that NN-LIFT algorithm includes a tensor decomposition part for estimating A1, a Fourier
technique for estimating b1, and a linear regression for estimating a2, b2. The application of linear
regression in the last layer is immediately clear. In this section, we propose two main lemmas
which clarify why the other methods are useful for estimating the unknown parameters A1, b1
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in the realizable setting, where the label ỹ is generated by the neural network with the given
architecture.

In the following lemma, we show how the cross-moment between label and score function as
E[ỹ · S3(x)] leads to a tensor decomposition form for estimating weight matrix A1.

Lemma 6. For the two-layer neural network specified in (7), we have

E [ỹ · S3(x)] =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j , (19)

where (A1)j ∈ R
d denotes the j-th column of A1, and

λj = E
[
σ′′′(zj)

]
· a2(j), (20)

for vector z := A⊤
1 x+ b1 as the input to the nonlinear operator σ(·).

This is proved by the main property of score functions as yielding differential operators, where

for label-function f(x) := E[y|x], we have E[y · S3(x)] = E[∇(3)
x f(x)] (Janzamin et al., 2014); see

Section C.1 for a complete proof of the lemma. This lemma shows that by decomposing the cross-
moment tensor E[ỹ · S3(x)], we can recover the columns of A1.

We also exploit the phase of complex number v to estimate the bias vector b1; see Procedure 2.
The following lemma clarifies this. The perturbation analysis is provided in the appendix.

Lemma 7. Let

ṽ :=
1

n

∑

i∈[n]

ỹi
p(xi)

e−j〈ωi,xi〉. (21)

Notice this is a realizable of v in Procedure 2 where the output corresponds to a neural network ỹ.
If ωi’s are uniformly i.i.d. drawn from set Ωl, then ṽ has mean (which is computed over x, ỹ and
ω)

E[ṽ] =
1

|Ωl|
Σ

(
1

2

)
a2(l)e

jπb1(l), (22)

where |Ωl| denotes the surface area of d− 1 dimensional manifold Ωl, and Σ(·) denotes the Fourier
transform of σ(·).

This lemma is proved in Appendix C.2.

7.2 Approximation bound

We exploit the approximation bound argued in Barron (1993) provided in Theorem 4. We first dis-
cuss his main result arguing an approximation bound O(r2C2

f/k) for a function f(x) with bounded
parameter Cf ; see (13) for the definition of Cf . Note that this corresponds to the first term in
the approximation error proposed in Theorem 4. For this result, Barron (1993) does not consider
any bound on the parameters of first layer A1 and b1. He then provides a refinement of this result
where he also bounds the parameters of neural network as we also do in (14). This leads to the
additional term involving δτ in the approximation error as seen in Theorem 4. Note that bounding
the parameters of neural network is also useful in learning these parameters with computation-
ally efficient algorithms since it limits the searching space for training these parameters. We now
provide the main ideas of proving these bounds as follows.
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7.2.1 No bounds on the parameters of the neural network

We first provide the proof outline when there is no additional constraints on the parameters of
neural network; see set G defined in (24), and compare it with the form we use in (14) where there
are additional bounds. In this case, Barron (1993) argues approximation bound O(r2C2

f/k) which
is proved based on two main results. The first result says that if a function f is in the closure of
the convex hull of a set G in a Hilbert space, then for every k ≥ 1, there is an fk as the convex
combination of k points in G such that

E[|f − fk|2] ≤
c′

k
, (23)

for any constant c′ satisfying some lower bound related to the properties of set G and function f ;
see Lemma 1 in Barron (1993) for the precise statement and the proof of this result.

The second part of the proof is to argue that arbitrary function f ∈ Γ (where Γ denotes the set
of functions with bounded Cf ) is in the closure of the convex hull of sigmoidal functions

G :=
{
γσ
(
〈α, x〉+ β

)
: α ∈ R

d, β ∈ R, |γ| ≤ 2C
}
. (24)

Barron (1993) proves this result by arguing the following chain of inclusions as

Γ ⊂ clGcos ⊂ clGstep ⊂ clG,

where clG denotes the closure of set G, and sets Gcos and Gstep respectively denote set of some
sinusoidal and step functions. See Theorem 2 in Barron (1993) for the precise statement and the
proof of this result.

Random frequency draws from Fourier magnitude distribution: Recall from Section 5
that the columns of weight matrix A1 are the normalized version of random frequencies drawn from
Fourier magnitude distribution ‖ω‖ · |F (ω)|; see Equation (15). This connection is along the proof
of relation Γ ⊂ clGcos that we recap here; see proof of Lemma 2 in Barron (1993) for more details.
By expanding the Fourier transform as magnitude and phase parts F (ω) = ejθ(ω)|F (ω)|, we have

f(x) := f(x)− f(0) =
∫
g(x, ω)Λ(dω), (25)

where
Λ(ω) := ‖ω‖ · |F (ω)|/Cf (26)

is the normalized Fourier magnitude distribution (as a probability distribution) weighted by the
norm of frequency vector, and

g(x, ω) :=
Cf
‖ω‖ (cos(〈ω, x〉+ θ(ω))− cos(θ(ω))) .

The integral in (25) is an infinite convex combination of functions in the class

Gcos :=

{
γ

‖ω‖ (cos(〈ω, x〉 + β)− cos(β)) : ω 6= 0, |γ| ≤ C, β ∈ R

}
.

26



Now if ω1, ω2, . . . , ωk is a random sample of k points independently drawn from Fourier magnitude
distribution Λ, then by Fubini’s Theorem, we have

E

∫

Br


f(x)− 1

k

∑

j∈[k]
g(x, ωj)




2

µ(dx) ≤ C2

k
,

where µ(·) is the probability measure for x. This shows function f is in the convex hull of Gcos.

Note that the bound C2

k complies the bound in (23).

7.2.2 Bounding the parameters of the neural network

Barron (1993) then imposes additional bounds on the weights of first layer, considering the following
class of sigmoidal functions as

Gτ :=
{
γσ
(
τ(〈α, x〉 + β)

)
: ‖α‖ ≤ 1, |β| ≤ 1, |γ| ≤ 2C

}
. (27)

Note that the approximation proposed in (14) is a convex combination of k points in (27) with
τ = 1. Barron (1993) concludes Theorem 4 by the following lemma.

Lemma 8 (Lemma 5 in Barron (1993)). If g is a function on [−1, 1] with derivative bounded9 by
a constant C, then for every τ > 0, we have

inf
gτ∈clGτ

sup
|z|≤τ

|g(z) − gτ (z)| ≤ 2Cδτ .

Finally Theorem 4 is proved by applying triangle inequality to bounds argued in the above two
cases.

8 Conclusion

We have proposed a novel algorithm based on tensor decomposition for training two-layer neural
networks. This is a computationally efficient method with guaranteed risk bounds with respect to
the target function under polynomial sample complexity in the input and neuron dimensions. The
tensor method is embarrassingly parallel and has a parallel time computational complexity which
is logarithmic in input dimension which is comparable with parallel stochastic backpropagation.
There are number of open problems to consider in future. Extending this framework to a multi-layer
network is of great interest. Exploring the score function framework to train other discriminative
models is also interesting.
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A Tensor Notation

In this Section, we provide the additional tensor notation required for the analysis provided in the
supplementary material.

Multilinear form: The multilinear form for a tensor T ∈ R
q1×q2×q3 is defined as follows. Con-

sider matrices Mr ∈ R
qr×pr , r ∈ {1, 2, 3}. Then tensor T (M1,M2,M3) ∈ R

p1×p2×p3 is defined
as

T (M1,M2,M3) :=
∑

j1∈[q1]

∑

j2∈[q2]

∑

j3∈[q3]
Tj1,j2,j3 ·M1(j1, :)⊗M2(j2, :)⊗M3(j3, :). (28)

As a simpler case, for vectors u, v, w ∈ R
d, we have 10

T (I, v, w) :=
∑

j,l∈[d]
vjwlT (:, j, l) ∈ R

d, (29)

which is a multilinear combination of the tensor mode-1 fibers.

B Details of Tensor Decomposition Algorithm

The goal of tensor decomposition algorithm is to recover the rank-1 components of tensor; refer
to Equation (3) for the notion of tensor rank and its rank-1 components. We exploit the tensor
decomposition algorithm proposed in (Anandkumar et al., 2014b,c). Figure 3 depicts the flowchart
of this method where the corresponding algorithms and procedures are also specified. Similarly,
Algorithm 4 states the high-level steps of tensor decomposition algorithm. The main step of the
tensor decomposition method is the tensor power iteration which is the generalization of matrix
power iteration to 3rd order tensors. The tensor power iteration is given by

u← T (I, u, u)

‖T (I, u, u)‖ ,

where u ∈ R
d, T (I, u, u) :=

∑
j,l∈[d] ujulT (:, j, l) ∈ R

d is a multilinear combination of tensor fibers.
Note that tensor fibers are the vectors which are derived by fixing all the indices of the tensor
except one of them, e.g., T (:, j, l) in the above expansion. The initialization for different runs of

10Compare with the matrix case where for M ∈ R
d×d, we have M(I, u) = Mu :=

∑
j∈[d] ujM(:, j).
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Input: Tensor T =
∑

i∈[k] λiu
⊗3
i

Whitening procedure (Procedure 5)

SVD-based Initialization (Procedure 8)

Tensor Power Method (Algorithm 7 )

Output: {ui}i∈[k]

Figure 3: Overview of tensor decomposition algorithm for third order tensor (without tensorization).

Algorithm 4 Tensor Decomposition Algorithm Setup

input symmetric tensor T .
1: if Whitening then

2: Calculate T =Whiten(T ); see Procedure 5.
3: else if Tensorizing then

4: Tensorize the input tensor.
5: Calculate T =Whiten(T ); see Procedure 5.
6: end if

7: for j = 1 to k do

8: (vj , µj , T ) = tensor power decomposition(T ); see Algorithm 7.
9: end for

10: (A1)j = Un-whiten(vj), j ∈ [k]; see Procedure 6.
11: return {(A1)j}j∈[k].

tensor power iteration is performed by the SVD-based technique proposed in Procedure 8. This
helps to initialize non-convex tensor power iteration with good initialization vectors. The whitening
preprocessing is applied to orthogonalize the components of input tensor. Note that the convergence
guarantees of tensor power iteration for orthogonal tensor decomposition have been developed in
the literature (Zhang and Golub, 2001; Anandkumar et al., 2014b).

The tensorization step works as follows.

Tensorization: The tensorizing step is applied when we want to decompose overcomplete tensors
where the rank k is larger than the dimension d. For instance, for getting rank up to k = O(d2),
we first form the 6th order input tensor with decomposition as

T =
∑

j∈[k]
λja

⊗6
j ∈

6⊗
R
d.

Given T , we form the 3rd order tensor T̃ ∈⊗3
R
d2 which is the tensorization of T such that

T̃
(
i2 + d(i1 − 1), j2 + d(j1 − 1), l2 + d(l1 − 1)

)
:= T (i1, i2, j1, j2, l1, l2). (30)
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Procedure 5 Whitening

input Tensor T ∈ R
d×d×d.

1: Second order moment M2 ∈ R
d×d is constructed such that it has the same decompositon form

as target tensor T (see Section C.1.1 for more discussions):

• Option 1: constructed using second order score function; see Equation (39).

• Option 2: computed asM2 := T (I, I, θ) ∈ R
d×d, where θ ∼ N (0, Id) is a random standard

Gaussian vector.

2: Compute the rank-k SVD, M2 = U Diag(γ)U⊤, where U ∈ R
d×k and γ ∈ R

k.
3: Compute the whitening matrix W := U Diag(γ−1/2) ∈ R

d×k.
4: return T (W,W,W ) ∈ R

k×k×k.

Procedure 6 Un-whitening

input Orthogonal rank-1 components vj ∈ R
k, j ∈ [k].

1: Consider matrixM2 which was exploited for whitening in Procedure 5, and let λ̃j, j ∈ [k] denote
the corresponding coefficients as M2 = A1 Diag(λ̃)A⊤

1 ; see (39).
2: Compute the rank-k SVD, M2 = U Diag(γ)U⊤, where U ∈ R

d×k and γ ∈ R
k.

3: Compute

(A1)j =
1√
λ̃j

U Diag(γ1/2)vj , j ∈ [k].

4: return {(A1)j}j∈[k].

This leads to T̃ having decomposition

T̃ =
∑

j∈[k]
λj(aj ⊙ aj)⊗3.

We then apply the tensor decomposition algorithm to this new tensor T̃ . This now clarifies why the
full column rank condition is applied to the columns of A⊙A = [a1 ⊙ a1 · · · ak ⊙ ak]. Similarly, we
can perform higher order tensorizations leading to more overcomplete models by exploiting initial
higher order tensor T ; see also Remark 3.

Efficient implementation of tensor decomposition given samples: The main update steps
in the tensor decomposition algorithm is the tensor power iteration for which a multilinear oper-
ation is performed on tensor T . However, the tensor is not available beforehand, and needs to be
estimated using the samples (as in Algorithm 1 in the main text). Computing and storing the
tensor can be enormously expensive for high-dimensional problems. But, it is essential to note
that since we can form a factor form of tensor T using the samples and other parameters in the
model, we can manipulate the samples directly to perform the power update as multi-linear op-
erations without explicitly forming the tensor. This leads to efficient computational complexity.
See (Anandkumar et al., 2014a) for details on these implicit update forms.
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Algorithm 7 Robust tensor power method (Anandkumar et al., 2014b)

input symmetric tensor T̃ ∈ R
d′×d′×d′ , number of iterations N , number of initializations R.

output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to R do

2: Initialize v̂
(τ)
0 with SVD-based method in Procedure 8.

3: for t = 1 to N do

4: Compute power iteration update

v̂
(τ)
t :=

T̃ (I, v̂
(τ)
t−1, v̂

(τ)
t−1)

‖T̃ (I, v̂(τ)t−1, v̂
(τ)
t−1)‖

(31)

5: end for

6: end for

7: Let τ∗ := argmaxτ∈[R]{T̃ (v̂(τ)N , v̂
(τ)
N , v̂

(τ)
N )}.

8: Do N power iteration updates (31) starting from v̂
(τ∗)
N to obtain v̂, and set µ̂ := T̃ (v̂, v̂, v̂).

9: return the estimated eigenvector/eigenvalue pair (v̂, µ̂); the deflated tensor T̃ − µ̂ · v̂⊗3.

Procedure 8 SVD-based initialization (Anandkumar et al., 2014c)

input Tensor T ∈ R
d′×d′×d′ .

1: for τ = 1 to log(1/δ̂) do
2: Draw a random standard Gaussian vector θ(τ) ∼ N (0, Id′).

3: Compute u
(τ)
1 as the top left singular vector of T (I, I, θ(τ)) ∈ R

d′×d′ .
4: end for

5: v̂0 ← maxτ∈[log(1/δ̂)]

(
u
(τ)
1

)
min

.

6: return v̂0.

C Proof of Theorem 3

Proof of Theorem 3 includes three main pieces which is about arguing the recovery guarantees of
three different parts of the algorithm: tensor decomposition, Fourier method, and linear regression.
As the first piece, we show that the tensor decomposition algorithm for estimating weight matrix
A1 (see Algorithm 1 for the details) recovers it with the desired error. In the second part, we
analyze the performance of Fourier technique for estimating bias vector b1 (see Algorithm 1 and
Procedure 2 for the details) proving the error in the recovery is small. Finally as the last step, the
ridge regression is analyzed to ensure that the parameters of last layer of the neural network are
well estimated leading to the estimation of overall function f̃(x). We now provide the analysis of
these three parts.

C.1 Tensor decomposition guarantees

We first provide a short proof for Lemma 6 which shows how the rank-1 components of third order
tensor E [ỹ · S3(x)] are the columns of weight matrix A1.
Proof of Lemma 6: It is shown by Janzamin et al. (2014) that the score function yields differ-
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ential operator such that for label-function f(x) := E[y|x], we have

E[y · S3(x)] = E[∇(3)
x f(x)].

Applying this property to the form of label function f(x) in (7) denoted by f̃(x), we have

E [ỹ · S3(x)] = E[σ′′′(·)(a2, A⊤
1 , A

⊤
1 , A

⊤
1 )],

where σ′′′(·) denotes the third order derivative of element-wise function σ(z) : Rk → R
k. More

concretely, with slightly abuse of notation, σ′′′(z) ∈ R
k×k×k×k is a diagonal 4th order tensor with

its j-th diagonal entry equal to
∂3σ(zj )

∂z3j
: R → R. Here two properties are used to compute the

third order derivative ∇(3)
x f̃(x) on the R.H.S. of above equation as follows. 1) We apply chain rule

to take the derivatives which generates a new factor of A1 for each derivative. Since we take 3rd
order derivative, we have 3 factors of A1. 2) The linearity of next layers leads to the derivatives
from them being vanished, and thus, we only have the above term as the derivative. Expanding
the above multilinear form finishes the proof; see (28) for the definition of multilinear form. �

We now provide the recovery guarantees of weight matrix A1 through tensor decomposition as
follows.

Lemma 9. Among the conditions for Theorem 3, consider the rank constraint on A1, and the
non-vanishing assumption on coefficients λj ’s. Let the whitening to be performed using empirical
version of second order score function as specified in (39), and assume the coefficients λ̃j ’s do not
vanish. Suppose the sample complexity

n ≥ max

{
Õ

(
ỹ2maxE

[∥∥∥M3(x)M
⊤
3 (x)

∥∥∥
] λ̃4max

λ̃4min

s2max(A1)

λ2min · s6min(A1)
· 1
ǫ̃21

)
, (32)

Õ


ỹ2max · E

[∥∥∥M3(x)M
⊤
3 (x)

∥∥∥
]
·
(
λ̃max

λ̃min

)3
1

λ2min · s6min(A1)
· k


 ,

Õ

(
ỹ2max ·

E
[∥∥S2(x)S⊤2 (x)

∥∥]3/2

E
[∥∥M3(x)M

⊤
3 (x)

∥∥]1/2 ·
1

λ̃2min · s3min(A1)

)}
,

holds, where M3(x) ∈ R
d×d2 denotes the matricization of score function tensor S3(x) ∈ R

d×d×d;
see (1) for the definition of matricization. Then the estimate Â1 by NN-LIFT Algorithm 1 satisfies
w.h.p.

min
z∈{±1}

‖(A1)j − z · (Â1)j‖ ≤ Õ (ǫ̃1) , j ∈ [k],

where the recovery guarantee is up to the permutation of columns of A1.

Remark 6 (Sign ambiguity). We observe that in addition to the permutation ambiguity in the
recovery guarantees, there is also a sign ambiguity issue in recovering the columns of matrix A1

through the decomposition of third order tensor in (19). This is because the sign of (A1)j and
coefficient λj can both change while the overall tensor is still fixed. Note that the coefficient λj can
be positive or negative. According to the Fourier method for estimating b1, mis-calculating the sign
of (A1)j also leads to sign of b1(j) recovered in the opposite manner. In other words, the recovered
sign of the bias b1(j) is consistent with the recovered sign of (A1)j .

32



Recall we assume that the nonlinear activating function σ(z) satisfies the property such that
σ(z) = 1− σ(−z). Many popular activating functions such as step function, sigmoid function and
tanh function satisfy this property. Given this property, the sign ambiguity in parameters A1 and
b1 which leads to opposite sign in input z to the activating function σ(·) can be now compensated
by the sign of a2 and value of b2, which is recovered through least squares.

Proof of Lemma 9: From Lemma 6, we know that the exact cross-moment T̃ = E[ỹ · S3(x)] has
rank-one components as columns of matrix A1; see Equation (19) for the tensor decomposition form.
We apply a tensor decomposition method in NN-LIFT to estimate the columns of A1. We employ
noisy tensor decomposition guarantees in Anandkumar et al. (2014c). They show that when the
perturbation tensor is small, the tensor power iteration initialized by the SVD-based Procedure 8
recovers the rank-1 components up to some small error. We also analyze the whitening step and
combine it with this result leading to Lemma 10.

Let us now characterize the perturbation matrix and tensor. By Lemma 6, the CP decomposi-
tion form is given by T̃ = E[ỹ · S3(x)], and thus, the perturbation tensor is written as

E := T̃ − T̂ = E[ỹ · S3(x)]−
1

n

∑

i∈[n]
ỹi · S3(xi), (33)

where T̂ = 1
n

∑
i∈[n] ỹi · S3(xi) is the empirical form used in NN-LIFT Algorithm 1. Notice that in

the realizable setting, the neural network output ỹ is observed and thus, it is used in forming the
empirical tensor. Similarly, the perturbation of second order moment M̃2 = E[ỹ · S2(x)] is given by

E2 := M̃2 − M̂2 = E[ỹ · S2(x)]−
1

n

∑

i∈[n]
ỹi · S2(xi). (34)

In order to bound ‖E‖, we matricize it to apply matrix Bernstein’s inequality. We have the
matricized version as

Ẽ := E[ỹ ·M3(x)]−
1

n

∑

i∈[n]
ỹi ·M3(xi) =

∑

i∈[n]

1

n

(
E[ỹ ·M3(x)]− ỹi ·M3(xi)

)
,

where M3(x) ∈ R
d ×d2 is the matricization of S3(x) ∈ R

d×d×d; see (1) for the definition of matri-
cization. Now the norm of Ẽ can be bounded by the matrix Bernstein’s inequality. The norm of
each (centered) random variable inside the summation is bounded as ỹmax

n E[‖M3(x)‖], where ỹmax

is the bound on |ỹ|. The variance term is also bounded as

1

n2

∥∥∥
∑

i∈[n]
E

[
ỹ2i ·M3(xi)M

⊤
3 (xi)

]∥∥∥ ≤ 1

n
ỹ2maxE

[∥∥∥M3(x)M
⊤
3 (x)

∥∥∥
]
.

Applying matrix Bernstein’s inequality, we have w.h.p.

‖E‖ ≤ ‖Ẽ‖ ≤ Õ
(
ỹmax√
n

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]
)
. (35)

For the second order perturbation E2, it is already a matrix, and by applying matrix Bernstein’s
inequality, we similarly argue that w.h.p.

‖E2‖ ≤ Õ
(
ỹmax√
n

√
E
[∥∥S2(x)S⊤2 (x)

∥∥]
)
. (36)
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There is one more remaining piece to complete the proof of tensor decomposition part. The
analysis in Anandkumar et al. (2014c) does not involve any whitening step, and thus, we need to
adapt the perturbation analysis of Anandkumar et al. (2014c) to our additional whitening proce-
dure. This is done in Lemma 10. In the final recovery bound (46) in Lemma 10, there are two terms;
one involving ‖E‖, and the other involving ‖E2‖. We first impose a bound on sample complexity
such that the bound involving ‖E‖ dominates the bound involving ‖E2‖ as follows. Considering
the bounds on ‖E‖ and ‖E2‖ in (35) and (36), and imposing the lower bound on the number of
samples (third bound stated in the lemma) as

n ≥ Õ
(
ỹ2max ·

E
[∥∥S2(x)S⊤2 (x)

∥∥]3/2

E
[∥∥M3(x)M⊤

3 (x)
∥∥]1/2 ·

1

λ̃2min · s3min(A1)

)
,

leads to this goal. By doing this, we do not need to impose the bound on ‖E2‖ anymore, and
applying the perturbation bound in (35) to the required bound on ‖E‖ in Lemma 10 leads to
sample complexity bound (second bound stated in the lemma)

n ≥ Õ


ỹ2max · E

[∥∥∥M3(x)M
⊤
3 (x)

∥∥∥
]
·
(
λ̃max

λ̃min

)3
1

λ2min · s6min(A1)
· k


 .

Finally, applying the result of Lemma 10, we have the column-wise error guarantees (up to permu-
tation)

‖(A1)j − (Â1)j‖ ≤ Õ


smax(A1)

λmin

λ̃2max√
λ̃min

ỹmax

λ̃1.5min · s3min(A1)

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]

√
n


 ≤ Õ (ǫ̃1) ,

where in the first inequality we also substituted the bound on ‖E‖ in (35), and the first bound on
n stated in the lemma is used in the last inequality. �

C.1.1 Whitening analysis

The perturbation analysis of proposed tensor decomposition method in Algorithm 7 with the corre-
sponding SVD-based initialization in Procedure 8 is provided in Anandkumar et al. (2014c). But,
they do not consider the effect of whitening proposed in Procedures 5 and 6. Thus, we need to
adapt the perturbation analysis of Anandkumar et al. (2014c) when the whitening procedure is
incorporated. We perform it in this section.

We first elaborate on the whitening step, and analyze how the proposed Procedure 5 works.
We then analyze the inversion of whitening operator showing how the components in the whitened
space are translated back to the original space as stated in Procedure 6. We finally provide the
perturbation analysis of whitening step when estimations of moments are given.

Whitening procedure: Consider second order moment M̃2 which is used to whiten third order
tensor

T̃ =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j (37)
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in Procedure 5. It is constructed such that it has the same decomposition form as target tensor T̃ ,
i.e., we have

M̃2 =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j . (38)

We propose two options for constructing M̃2 in Procedure 5. First option is to use second order
score function and construct M̃2 := E [ỹ · S2(x)] for which we have

M̃2 := E [ỹ · S2(x)] =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j , (39)

where
λ̃j = E

[
σ′′(zj)

]
· a2(j), (40)

for vector z := A⊤
1 x + b1 as the input to the nonlinear operator σ(·). This is proved similar

to Lemma 6. Second option leads to the same form for M̃2 as (38) with coefficient modified as
λ̃j = λj · 〈(A1)j , θ〉.

Let matrix W ∈ R
d×k denote the whitening matrix in the noiseless case, i.e., the whitening

matrix W in Procedure 5 is constructed such that W⊤M̃2W = Ik. Applying whitening matrix W
to the noiseless tensor T̃ =

∑
j∈[k] λj · (A1)j ⊗ (A1)j ⊗ (A1)j , we have

T̃ (W,W,W ) =
∑

j∈[k]
λj

(
W⊤(A1)j

)⊗3
=
∑

j∈[k]

λj

λ̃
3/2
j

(
W⊤(A1)j

√
λ̃j

)⊗3

=
∑

j∈[k]
µjv

⊗3
j , (41)

where we define

µj :=
λj

λ̃
3/2
j

, vj := W⊤(A1)j

√
λ̃j, j ∈ [k], (42)

in the last equality. Let V := [v1 v2 · · · vk] ∈ R
k×k denote the factor matrix for T̃ (W,W,W ). We

have
V :=W⊤A1 Diag(λ̃1/2), (43)

and thus,
V V ⊤ =W⊤A1Diag(λ̃)A⊤

1 W =W⊤M̃2W = Ik.

Since V is a square matrix, it is also concluded that V ⊤V = Ik, and therefore, tensor T̃ (W,W,W ) is
whitened such that the rank-1 components vj ’s form an orthonormal basis. This discussion clarifies
how the whitening procedure works.

Inversion of the whitening procedure: Let us also analyze the inversion procedure on how
to transform vj ’s to (A1)j ’s. The main step is stated in Procedure 6. According to whitening Pro-
cedure 5, let M̃2 = U Diag(γ)U⊤, U ∈ R

d×k, γ ∈ R
k, denote the rank-k SVD of M̃2. Substituting

whitening matrix W := U Diag(γ−1/2) in (43), and multiplying U Diag(γ1/2) from left, we have

U Diag(γ1/2)V = UU⊤A1 Diag(λ̃1/2).

Since the column spans of A1 ∈ R
d×k and U ∈ R

d×k are the same (given their relations to M̃2),
A1 is a fixed point for the projection operator on the subspace spanned by the columns of U .
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This projector operator is UU⊤ (since columns of U form an orthonormal basis), and therefore,
UU⊤A1 = A1. Applying this to the above equation, we have

A1 = U Diag(γ1/2)V Diag(λ̃−1/2),

i.e.,

(A1)j =
1√
λ̃j

U Diag(γ1/2)vj , j ∈ [k]. (44)

The above discussions describe the details of whitening and unwhitening procedures. We now
provide the guarantees of tensor decomposition given noisy versions of moments M̃2 and T̃ .

Lemma 10. Let M̂2 = M̃2 − E2 and T̂ = T̃ − E respectively denote the noisy versions of

M̃2 =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j , T̃ =

∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j . (45)

Assume the second and third order perturbations satisfy the bounds

‖E2‖ ≤ Õ
(
λ
1/3
min

λ̃
7/6
min√
λ̃max

s2min(A1)
1

k1/6

)
,

‖E‖ ≤ Õ


λmin

(
λ̃min

λ̃max

)1.5

s3min(A1)
1√
k


 .

Then, the proposed tensor decomposition algorithm recovers estimations of rank-1 components
(A1)j ’s satisfying error

‖(A1)j − (Â1)j‖ ≤ Õ
(
smax(A1)

λmin
· λ̃

2
max√
λ̃min

·
[

‖E2‖3
λ̃3.5min · s6min(A1)

+
‖E‖

λ̃1.5min · s3min(A1)

])
, j ∈ [k]. (46)

Proof: We do not have access to the true matrix M̃2 and the true tensor T̃ , and the perturbed
versions M̂2 = M̃2 − E2 and T̂ = T̃ − E are used in the whitening procedure. Here, E2 ∈ R

d×d

denotes the perturbation matrix, and E ∈ R
d×d×d denotes the perturbation tensor. Similar to the

noiseless case, let Ŵ ∈ R
d×k denotes the whitening matrix constructed by Procedure 5 such that

Ŵ⊤M̂2Ŵ = Ik, and thus it orthogonalizes the noisy matrix M̂2. Applying the whitening matrix
Ŵ to the tensor T̂ , we have

T̂ (Ŵ , Ŵ , Ŵ ) = T̃ (W,W,W ) − T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ )− E(Ŵ , Ŵ , Ŵ )

=
∑

j∈[k]
µjv

⊗3
j − EW , (47)

where we used Equation (41), and we defined

EW := T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ ) + E(Ŵ , Ŵ , Ŵ ) (48)

as the perturbation tensor after whitening. Note that the perturbation is from two sources; one is
from the error in computing whitening matrix reflected in W − Ŵ , and the other is the error in
tensor T̂ reflected in E.
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We know that the rank-1 components vj’s form an orthonormal basis, and thus, we have a
noisy orthogonal tensor decomposition problem in (47). We apply the result of Anandkumar et al.
(2014c) where they show that if

‖EW ‖ ≤
µmin
√
log k

α0

√
k

,

for some constant α0 > 1, then the tensor power iteration (applied to the whitened tensor) recovers
the tensor rank-1 components with bounded error (up to the permutation of columns)

‖vj − v̂j‖ ≤ Õ
(‖EW ‖
µmin

)
. (49)

We now relate the norm of EW to the norm of original perturbations E and E2. For the first
term in (48), from Lemmata 4 and 5 of Song et al. (2013), we have

‖T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ )‖ ≤ 64‖E2‖3
λ̃3.5min · s6min(A1)

.

For the second term, by the sub-multiplicative property we have

‖E(Ŵ , Ŵ , Ŵ )‖ ≤ ‖E‖ · ‖Ŵ‖3 ≤ 8‖E‖ · ‖W‖3 ≤ 8‖E‖
s3min(A1)λ̃

3/2
min

.

Here in the last inequality, we used

‖W‖ = 1√
sk(M̃2)

≤ 1

smin(A1)
√
λ̃min

,

where sk(M̃2) denotes the k-th largest singular value of M̃2. Here, the equality is from the definition
of W based on rank-k SVD of M̃2 in Procedure 5, and the inequality is from M̃2 = A1 Diag(λ̃)A⊤

1 .
Substituting these bounds, we finally need the condition

64‖E2‖3
λ̃3.5min · s6min(A1)

+
8‖E‖

λ̃1.5min · s3min(A1)
≤ λmin

√
log k

α0λ̃1.5max

√
k
,

where we also substituted bound µmin ≥ λmin/λ̃
1.5
max, given Equation (42). The bounds stated in the

lemma ensures that each of the terms on the left hand side of the inequality are bounded by the right
hand side. Thus, by the result of Anandkumar et al. (2014c), we have ‖vj − v̂j‖ ≤ Õ (‖EW ‖/µmin).
On the other hand, by the unwhitening relationship in (44), we have

‖(A1)j − (Â1)j‖ =
1√
λ̃j

‖Diag(γ1/2) · [vj − v̂j]‖ ≤
√
γmax

λ̃min

· ‖vj − v̂j‖ ≤ smax(A1) ·
√
λ̃max

λ̃min

· ‖vj − v̂j‖.

(50)
where in the equality, we use the fact that orthonormal matrix U preserves the ℓ2 norm, and the
sub-multiplicative property is exploited in the first inequality. The last inequality is also from
γmax = smax(M̃2) ≤ s2max(A1) · λ̃max, which is from M̃2 = A1 Diag(λ̃)A⊤

1 . Incorporating the error
bound on ‖vj − v̂j‖ in (49), we have

‖(A1)j − (Â1)j‖ ≤ Õ


smax(A1) ·

√
λ̃max

λ̃min

· ‖EW ‖
µmin


 ≤ Õ

(
smax(A1)

λmin
· λ̃

2
max√
λ̃min

· ‖EW ‖
)
,

where we used the bound µmin ≥ λmin/λ̃
1.5
max in the last step. �
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C.2 Fourier analysis guarantees

The analysis of Fourier method for estimating parameter b1 includes the following two lemmas. In
the first lemma, we argue the mean of random variable v introduced in Algorithm 1 in the realizable
setting. This clarifies why the phase of v is related to unknown parameter b1. In the second lemma,
we argue the concentration of v around its mean leading to the sample complexity result. Note
that v is denoted by ṽ in the realizable setting.

The Fourier method can be also used to estimate the weight vector a2 since it appears in the
magnitude of complex number v. In this section, we also provide the analysis of estimating a2 with
Fourier method which can be used as an alternative, while we primarily estimate a2 by the ridge
regression analyzed in Appendix C.3.

Lemma 7 (Restated). Let

ṽ :=
1

n

∑

i∈[n]

ỹi
p(xi)

e−j〈ωi,xi〉. (51)

Notice this is a realizable of v in Procedure 2 where the output corresponds to a neural network ỹ.
If ωi’s are uniformly i.i.d. drawn from set Ωl, then ṽ has mean (which is computed over x, ỹ and
ω)

E[ṽ] =
1

|Ωl|
Σ

(
1

2

)
a2(l)e

jπb1(l), (52)

where |Ωl| denotes the surface area of d− 1 dimensional manifold Ωl, and Σ(·) denotes the Fourier
transform of σ(·).

Proof: Let F̃ (ω) denote the Fourier transform of label function f̃(x) := E[ỹ|x] = 〈a2, σ(A⊤
1 x+

b1)〉 which is (Marks II and Arabshahi, 1994)

F̃ (ω) =
∑

j∈[k]

a2(j)

|A1(d, j)|
Σ

(
ωd

A1(d, j)

)
e
j2πb1(j)

ωd
A1(d,j) δ

(
ω− −

ωd
A1(d, j)

A1(\d, j)
)
, (53)

where Σ(·) is the Fourier transform of σ(·), u⊤− = [u1, u2, . . . , ud−1] is vector u
⊤ with the last entry

removed, A1(\d, j) ∈ R
d−1 is the j-th column of matrix A1 with the d-th (last) entry removed, and

finally δ(u) = δ(u1)δ(u2) · · · δ(ud).
Let p(ω) denote the probability density function of frequency ω. We have

E[ṽ] = Ex,ỹ,ω

[
ỹ

p(x)
e−j〈ω,x〉

]

= Ex,ω

[
Eỹ|{x,ω}

[
ỹ

p(x)
e−j〈ω,x〉

∣∣∣x, ω
]]

= Ex,ω

[
f̃(x)

p(x)
e−j〈ω,x〉

]

=

∫

Ωl

∫
f̃(x)e−j〈ω,x〉p(ω)dxdω

=

∫

Ωl

F̃ (ω)p(ω)dω,
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where the second equality uses the law of total expectation, the third equality exploits the label-
generating function definition f̃(x) := E[ỹ|x], and the final equality is from the definition of Fourier
transform. The variable ω ∈ R

d is drawn from a d − 1 dimensional manifold Ωl ⊂ R
d. In order to

compute the above integral, we define d dimensional set

Ωl;ν :=

{
ω ∈ R

d :
1

2
− ν

2
≤ ‖ω‖ ≤ 1

2
+
ν

2
,
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1− ǫ̃21/2
2

}
,

for which Ωl = limν→0+ Ωl;ν . Assuming ω’s are uniformly drawn from Ωl;ν, we have

E[ṽ] = lim
ν→0+

∫

Ωl;ν
F̃ (ω)p(ω)dω

= lim
ν→0+

1

|Ωl;ν|

∫ +∞

−∞
F̃ (ω)1Ωl;ν

(ω)dω.

The second equality is from uniform draws of ω from set Ωl;ν such that p(ω) = 1
|Ωl;ν |1Ωl;ν

(ω), where

1S(·) denotes the indicator function for set S. Here, |Ωl;ν | denotes the volume of d dimensional
subspace Ωl;ν, for which in the limit ν → 0+, we have |Ωl;ν| = ν · |Ωl|, where |Ωl| denotes the surface
area of d− 1 dimensional manifold Ωl.

For small enough ǫ̃1 in the definition of Ωl;ν , only the delta function for j = l in the expansion
of F̃ (ω) in (53) is survived from the above integral, and thus,

E[ṽ] = lim
ν→0+

1

|Ωl;ν |

∫ +∞

−∞

a2(l)

|A1(d, l)|
Σ

(
ωd

A1(d, l)

)
e
j2πb1(l)

ωd
A1(d,l) δ

(
ω− −

ωd
A1(d, l)

A1(\d, l)
)
1Ωl;ν

(ω)dω.

In order to simplify the notations, in the rest of the proof we denote l-th column of matrix A1 by
vector α, i.e., α := (A1)l. Thus, the goal is to compute the integral

I :=

∫ +∞

−∞

1

|αd|
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω− −

ωd
αd
α−

)
1Ωl;ν

(ω)dω,

and note that E[ṽ] = a2(l) · limν→0+
I

|Ωl;ν | . The rest of the proof is about computing the above

integral. The integral involves delta functions where the final value is expected to be computed
at a single point specified by the intersection of line ω− = ωd

αd
α−, and sphere ‖ω‖ = 1

2 (when we

consider the limit ν → 0+). This is based on the following integration property of delta functions
such that for function g(·) : R→ R,

∫ +∞

−∞
g(t)δ(t)dt = g(0). (54)

We first expand the delta function as follows.

I =

∫ +∞

−∞

1

|αd|
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−1 −

αd−1

αd
ωd

)
1Ωl;ν

(ω)dω,

=

∫
· · ·
∫ +∞

−∞
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−2 −

αd−2

αd
ωd

)

1Ωl;ν
(ω) · δ (αdωd−1 − αd−1ωd) dω1 · · ·ωd,
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where we used the property 1
|β|δ(t) = δ(βt) in the second equality. Introducing new variable z, and

applying the change of variable ωd =
1

αd−1
(αdωd−1 − z), we have

I =

∫
· · ·
∫ +∞

−∞
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−2 −

αd−2

αd
ωd

)

1Ωl;ν
(ω) · δ(z)dω1 · · · dωd−1

dz

αd−1
,

=

∫
· · ·
∫ +∞

−∞

1

αd−1
Σ

(
ωd−1

αd−1

)
e
j2πb1(l)

ωd−1
αd−1 δ

(
ω1 −

α1

αd−1
ωd−1

)
· · · δ

(
ωd−2 −

αd−2

αd−1
ωd−1

)

1Ωl;ν

([
ω1, ω2, . . . , ωd−1,

αd
αd−1

ωd−1

])
dω1 · · · dωd−1.

For the sake of simplifying the mathematical notations, we did not substitute all the ωd’s with z in
the first equality, but note that all ωd’s are implicitly a function of z which is finally considered in
the second equality where the delta integration property in (54) is applied to variable z (note that
z = 0 is the same as ωd

αd
=

ωd−1

αd−1
). Repeating the above process several times, we finally have

I =

∫ +∞

−∞

1

α1
Σ

(
ω1

α1

)
e
j2πb1(l)

ω1
α1 · 1Ωl;ν

([
ω1,

α2

α1
ω1, . . . ,

αd−1

α1
ω1,

αd
α1
ω1

])
dω1.

There is a line constraint as ω1
α1

= ω2
α2

= · · · = ωd

αd
in the argument of indicator function. This implies

that ‖ω‖ = ‖α‖
α1
ω1 = ω1

α1
, where we used ‖α‖ = ‖(A1)l‖ = 1. Incorporating this in the norm bound

imposed by the definition of Ωl;ν, we have α1
2 (1− ν) ≤ ω1 ≤ α1

2 (1 + ν), and hence,

I =

∫ α1
2
(1+ν)

α1
2
(1−ν)

1

α1
Σ

(
ω1

α1

)
e
j2πb1(l)

ω1
α1 dω1.

We know E[ṽ] = a2(l) · limν→0+
I

|Ωl;ν | , and thus,

E[ṽ] = a2(l) ·
1

ν · |Ωl|
· α1ν

1

α1
Σ

(
1

2

)
ej2πb1(l)

1
2 =

1

|Ωl|
a2(l)Σ

(
1

2

)
ejπb1(l),

where in the first step we use |Ωl;ν | = ν · |Ωl|, and write the integral I in the limit ν → 0+. This
finishes the proof. �

In the following lemma, we argue the concentration of v around its mean which leads to the
sample complexity bound for estimating the parameter b1 (and also a2) within the desired error.

Lemma 11. If the sample complexity

n ≥ O
(
ζ̃f̃
ψǫ̃22

log
k

δ

)
(55)

holds for small enough ǫ̃2 ≤ ζ̃f̃ , then the estimates â2(l) =
|Ωl|

|Σ(1/2)| |ṽ|, and b̂1(l) = 1
π (∠ṽ−∠Σ(1/2))

for l ∈ [k], in NN-LIFT Algorithm 1 (see the definition of ṽ in (51)) satisfy with probability at least
1− δ,

|a2(l)− â2(l)| ≤
|Ωl|

|Σ(1/2)|O(ǫ̃2), |b1(l)− b̂1(l)| ≤
|Ωl|

π|Σ(1/2)||a2(l)|
O(ǫ̃2).
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Proof: The result is proved by arguing the concentration of variable ṽ in (51) around its mean
characterized in (52). We use the Bernstein’s inequality to do this. Let ṽ :=

∑
i∈[n] ṽi where

ṽi =
1
n

ỹi
p(xi)

e−j〈ωi,xi〉. By the lower bound p(x) ≥ ψ assumed in Theorem 3 and labels ỹi’s being

bounded, the magnitude of centered ṽi’s (ṽi − E[ṽi]) are bounded by O( 1
ψn ). The variance term is

also bounded as

σ2 =
∣∣∣
∑

i∈[n]
E

[
(ṽi − E[ṽi])(ṽi − E[ṽi])

]∣∣∣,

where u denotes the complex conjugate of complex number u. This is bounded as

σ2 ≤
∑

i∈[n]
E
[
ṽiṽi

]
=

1

n2

∑

i∈[n]
E

[
ỹ2i

p(xi)2

]

Since output ỹ is a binary label (ỹ ∈ {0, 1}), we have E[ỹ2|x] = E[ỹ|x] = f̃(x), and thus,

E

[
ỹ2

p(x)2

]
= E

[
E

[
ỹ2

p(x)2
|x
]]

= E

[
f̃(x)

p(x)2

]
≤ 1

ψ

∫

Rd

f̃(x)dx =
ζ̃f̃
ψ
,

where the inequality uses the bound p(x) ≥ ψ and the last equality is from definition of ζ̃f̃ . This
provides us the bound on variance as

σ2 ≤
ζ̃f̃
ψn

.

Applying Bernstein’s inequality concludes the concentration bound such that with probability at
least 1− δ, we have

|ṽ − E[ṽ]| ≤ O


 1

ψn
log

1

δ
+

√
ζ̃f̃
ψn

log
1

δ


 ≤ O(ǫ̃2),

where the last inequality is from sample complexity bound. This implies that ||ṽ|− |E[ṽ]|| ≤ O(ǫ̃2).

Substituting |E[ṽ]| from (52) and considering estimate â2(l) =
|Ωl|

|Σ(1/2)| |ṽ|, we have

|â2(l)− a2(l)| ≤
|Ωl|
|Σ(1/2)|O(ǫ̃2),

which finishes the first part of the proof. For the phase, we have φ := ∠ṽ−∠E[ṽ] = π(b̂1(l)− b1(l)).
On the other hand, for small enough error ǫ̃2 (and thus small φ), we have the approximation

φ ∼ tan(φ) ∼ |ṽ−E[ṽ]|
|E[ṽ]| (note that this is actually an upper bound such that φ ≤ tan(φ)). Thus,

|b̂1(l)− b1(l)| ≤
1

π|E[ṽ]|O(ǫ̃2) ≤
|Ωl|

π|Σ(1/2)||a2(l)|
O(ǫ̃2).

This finishes the proof of second bound. �
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C.3 Ridge regression analysis and guarantees

Let h := σ(A⊤
1 x+ b1) denote the neuron or hidden layer variable. With slightly abuse of notation,

in the rest of analysis in this section, we append variable h by the dummy variable 1 to represent
the bias, and thus, h ∈ R

k+1. We write the output as ỹ = h⊤β + η, where

β := [a2, b2] ∈ R
k+1.

Given the estimated parameters of first layer denoted by Â1 and b̂1, the neurons are estimated
as ĥ := σ(Â⊤

1 x + b̂1). In addition, the dummy variable 1 is also appended, and thus, ĥ ∈ R
k+1.

Because of this estimated encoding of neurons, we expand the output ỹ as

ỹ = ĥ⊤β + (h⊤ − ĥ⊤)β︸ ︷︷ ︸
bias (approximation): b(ĥ)

+ η︸︷︷︸
noise

= f̃(ĥ) + η, (56)

where f̃(ĥ) := E[ỹ|ĥ] = ĥ⊤β + b(ĥ). Here, we have a noisy linear model with additional bias
(approximation). Let β̂λ denote the ridge regression estimator for some regularization parameter
λ ≥ 0, which is defined as the minimizer of the regularized empirical mean squared error, i.e.,

β̂λ := argmin
β

1

n

∑

i∈[n]

(
〈β, ĥi〉 − ỹi

)2
+ λ‖β‖2.

We know this estimator is given by (when Σ̂ĥ + λI ≻ 0)

β̂λ =
(
Σ̂ĥ + λI

)−1
· Ê(ĥỹ),

where Σ̂ĥ := 1
n

∑
i∈[n] ĥiĥ

⊤
i is the empirical covariance of ĥ, and Ê denotes the empirical mean

operator. The analysis of ridge regression leads to the following expected prediction error (risk)
bound on the estimation of the output.

Lemma 12 (Expected prediction error of ridge regression). Suppose the parameter recovery results
in Lemmata 9 and 11 on A1 and b1 hold. In addition, assume the nonlinear activating function
σ(·) satisfies the Lipschitz property such that |σ(u) − σ(u′)| ≤ L · |u − u′|, for u, u′ ∈ R. The
following noise, approximation and statistical leverage conditions also hold. Then, by choosing the
optimal λ > 0 in the λ-regularized ridge regression (which estimates the parameters â2 and b̂2), the
estimated output as f̂(x) = â⊤2 σ(Â

⊤
1 x+ b̂1) + b̂2 satisfies the risk bound

E[|f̂(x)− f̃(x)|2] ≤ O
(
k‖β‖2
n

)
+O

(√
2k‖β‖2
n

(
E[b(ĥ)2] + σ2

noise
/2
))

+ E[b(ĥ)2],

where

E[b(ĥ)2] ≤
[
r +

|Ωl|
π|Σ(1/2)||a2(l)|

]2
‖β‖2L2kO(ǫ̃2).

Proof: Since ĥ := σ(Â⊤
1 x + b̂1), we equivalently argue the bound on E[(ĥ⊤β̂λ − f̃(ĥ))2], where

f̂(x) = f̂(ĥ) = ĥ⊤β̂λ. From standard results in the study of inverse problems, we know (see
Proposition 5 in Hsu et al. (2014))

E[(ĥ⊤β̂λ − f̃(ĥ))2] = E[(ĥ⊤β − f̃(ĥ))2] + ‖β̂λ − β‖2Σ
ĥ
.
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Here, for positive definite matrix Σ ≻ 0, the vector norm ‖ · ‖Σ is defined as ‖v‖Σ :=
√
v⊤Σv. For

the first term, by the definition of f̃(ĥ) as f̃(ĥ) := E[ỹ|ĥ] = ĥ⊤β + b(ĥ), we have

E[(ĥ⊤β − f̃(ĥ))2] = E[b(ĥ)2].

Lemma 13 bounds E[b(ĥ)2] and bounding ‖β̂λ − β‖2Σ
ĥ
is argued in Lemma 14 and Remark 7.

Combining these bounds finishes the proof. �

In order to have final risk bounded as E[|f̂(x) − f̃(x)|2] ≤ Õ(ǫ2), for some ǫ > 0, the above
lemma imposes sample complexity as (some of other parameters considered in (32), (55) are not
repeated here)

n ≥ Õ
(
L
k‖β‖2
ǫ2

(1 + σ2noise)

)
. (57)

Lemma 13 (Bounded approximation). Suppose the parameter recovery results in Lemmata 9 and 11
on A1 and b1 hold. In addition, assume the nonlinear activating function σ(·) satisfies the Lipschitz
property such that |σ(u) − σ(u′)| ≤ L · |u − u′|, for u, u′ ∈ R. Then, the approximation term is
bounded as

E[b(ĥ)2] ≤
[
r +

|Ωl|
π|Σ(1/2)||a2(l)|

]2
‖β‖2L2kO(ǫ̃2).

Proof: We have
E[b(ĥ)2] = E[〈h− ĥ, β〉2] ≤ ‖β‖2 · E[‖h− ĥ‖2]. (58)

Define ǫ̃ := max{ǫ̃1, ǫ̃2}, where ǫ̃1 and ǫ̃2 are the corresponding bounds in Lemmata 9 and 11,
respectively. Using the Lipschitz property of nonlinear function σ(·), we have

|hl − ĥl| = |σ(〈(A1)l, x〉+ b1(l))− σ(〈(Â1)l, x〉+ b̂1(l))|
≤ L ·

[
|〈(A1)l − (Â1)l, x〉|+ |b1(l)− b̂1(l)|

]

≤ L ·
[
rO(ǫ̃) +

|Ωl|
π|Σ(1/2)||a2(l)|

O(ǫ̃)

]
,

where in the second inequality, we use the bounds in Lemmata 9 and 11, and bounded x such that
‖x‖ ≤ r. Applying this to (58) concludes the proof. �

We now assume the following additional conditions to bound ‖β̂λ − β‖2Σ
ĥ
. The following dis-

cussions are along the results of Hsu et al. (2014).
We define the effective dimensions of the covariate ĥ as

kp,λ :=
∑

j∈[k]

(
λj

λj + λ

)p
, p ∈ {1, 2},

where λj ’s denote the (positive) eigenvalues of Σĥ, and λ is the regularization parameter of ridge
regression.

• Subgaussian noise: there exists a finite σnoise ≥ 0 such that, almost surely,

Eη[exp(αη)|ĥ] ≤ exp(α2σ2noise/2), ∀α ∈ R,

where η denotes the noise in the output ỹ.
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• Bounded statistical leverage: there exists a finite ρλ ≥ 1 such that, almost surely,
√
k√

(inf{λj}+ λ)k1,λ
≤ ρλ.

• Bounded approximation error at λ: there exists a finite Bbias,λ ≥ 0 such that, almost surely,

ρλ

(
Bmax +

√
k‖β‖

)
≤ Bbias,λ,

where |b(ĥ)| ≤ Bmax. Note that the approximation term b(ĥ) is bounded in Lemma 13. The
parameter Bbias,λ only contributes to the lower order terms in the analysis of ridge regression.

Lemma 14 (Bounding excess mean squared error: Theorem 2 of Hsu et al. (2014)). Fix some
λ ≥ 0, and suppose the above noise, approximation and statistical leverage conditions hold, and in
addition,

n ≥ Õ(ρ2λk1,λ). (59)

Then, we have

‖β̂λ − β‖2Σ
ĥ
≤ Õ

(
k

λn

(
E[b(ĥ)2] + σ2noise/2

)
+
λ‖β‖2

2

(
1 +

k/λ+ 1

n

))
+ o(1/n),

where E[b(ĥ)2] is bounded in Lemma 13.

In the above lemma, we also used the discussions in Remarks 12 and 15 of Hsu et al. (2014)
which include comments on the simplification of the general result.

Remark 7 (Optimal λ). In addition, along the discussion in Remark 15 of Hsu et al. (2014), by
choosing the optimal λ > 0 that minimizes the bound in the above lemma, we have

‖β̂λ − β‖2Σ
ĥ
≤ O

(
k‖β‖2
n

)
+O

(√
2k‖β‖2
n

(
E[b(ĥ)2] + σ2

noise
/2
))

.

D Proof of Theorem 5

Before we provide the proof, we first state the details of bound on Cf . We require

Cf ≤ min



Õ


1

r

(
1√
k
+ δ1

)−1 1√
E[‖S3(x)‖2]

· λ̃
2
min

λ̃2max

· λmin ·
s3min(A1)

smax(A1)
· ǫ̃1


 , (60)

Õ


1

r

(
1√
k
+ δ1

)−1 1√
E[‖S3(x)‖2]

· λmin

(
λ̃min

λ̃max

)1.5

s3min(A1) ·
1√
k


 ,

O

(
1

r

(
1√
k
+ δ1

)−1
E[‖S3(x)‖2]1/4
E[‖S2(x)‖2]3/4

· λ̃min · s1.5min(A1)

)}
.

Proof of Theorem 5: We first argue that the perturbation involves both estimation and
approximation parts.
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Perturbation decomposition into approximation and estimation parts: Similar to the
estimation part analysis, we need to ensure the perturbation from exact means is small enough to
apply the analysis of Lemmas 9 and 11. Here, in addition to the empirical estimation of quantities
(estimation error), the approximation error also contributes to the perturbation. This is because
there is no realizable setting here, and the observations are from an arbitrary function f(x). We
address this for both the tensor decomposition and the Fourier parts as follows.

Recall that we use notation f̃(x) (and ỹ) to denote the output of a neural network. For
arbitrary function f(x), we refer to the neural network satisfying the approximation error provided
in Theorem 4 by ỹf . The ultimate goal of our analysis is to show that NN-LIFT recovers the
parameters of this specific neural network with small error. More precisely, note that these are a
class of neural networks satisfying the approximation bound in Theorem 5, and it suffices to say
that the output of the algorithm is close enough to one of them.

Tensor decomposition: There are two perturbation sources in the tensor analysis. One is
from the approximation part and the other is from the estimation part. By Lemma 6, the CP
decomposition form is given by T̃f = E[ỹf · S3(x)], and thus, the perturbation tensor is written as

E := T̃f − T̂ = E[ỹf · S3(x)]−
1

n

∑

i∈[n]
yi · S3(xi),

where T̂ = 1
n

∑
i∈[n] yi · S3(xi) is the empirical form used in NN-LIFT Algorithm 1. Note that the

observations are from the arbitrary function y = f(x). The perturbation tensor can be expanded
as

E = E[ỹf · S3(x)]− E[y · S3(x)]︸ ︷︷ ︸
:=Eapx.

+E[y · S3(x)]−
1

n

∑

i∈[n]
yi · S3(xi)

︸ ︷︷ ︸
:=Eest.

,

where Eapx. and Eest. respectively denote the perturbations from approximation and estimation
parts.

We also desire to use the exact second order moment M̃2,f = E[ỹf · S2(x)] for the whitening
Procedure 5 in the tensor decomposition method. But, we have an empirical version for which the
perturbation matrix E2 := M̃2,f − M̂2 is expanded as

E2 = E[ỹf · S2(x)]− E[y · S2(x)]︸ ︷︷ ︸
:=E2,apx.

+E[y · S2(x)]−
1

n

∑

i∈[n]
yi · S2(xi)

︸ ︷︷ ︸
:=E2,est.

,

where E2,apx. and E2,est. respectively denote the perturbations from approximation and estimation
parts.

In Theorem 3 where there is no approximation error, we only need to analyze the estimation
perturbations characterized in (33) and (34) since the neural network output is directly observed
(and thus, we use ỹ to denote the output). Now, the goal is to argue that the norm of perturbations
E and E2 are small enough (see Lemma 10), ensuring the tensor power iteration recovers the rank-1
components of T̃f = E[ỹf · S3(x)] with bounded error. Again recall from Lemma 6 that the rank-1
components of tensor T̃f = E[ỹf · S3(x)] are the desired components to recover.
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The estimation perturbations Eest. and E2,est. are similarly bounded as in Lemma 9 (see (35)
and (36)), and thus, we have w.h.p.

‖Eest.‖ ≤ Õ
(
ymax√
n

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]
)
,

‖E2,est.‖ ≤ Õ
(
ymax√
n

√
E
[∥∥S2(x)S⊤2 (x)

∥∥]
)
,

where M3(x) ∈ R
d×d2 denotes the matricization of score function tensor S3(x) ∈ R

d×d×d, and ymax

is the bound on |f(x)| = |y|.
The norm of approximation perturbation Eapx. := E[(ỹf − y) · S3(x)] is bounded as

‖Eapx.‖ = ‖E[(ỹf − y) · S3(x)]‖
≤ E[‖(ỹf − y) · S3(x)‖]
= E[|ỹf − y| · ‖S3(x)‖]

≤
(
E[|ỹf − y|2] · E[‖S3(x)‖2]

)1/2
,

where the first inequality is from the Jensen’s inequality applied to convex norm function, and we
used Cauchy-Schwartz in the last inequality. Applying the approximation bound in Theorem 4, we
have

‖Eapx.‖ ≤ O(rCf ) ·
(

1√
k
+ δ1

)
·
√

E[‖S3(x)‖2], (61)

and similarly,

‖E2,apx.‖ ≤ O(rCf ) ·
(

1√
k
+ δ1

)
·
√

E[‖S2(x)‖2],

We now need to ensure the overall perturbations E = Eest. + Eapx. and E2 = E2,est. + E2,apx.

satisfies the required bounds in Lemma 10. Note that similar to what we do in Lemma 9, we first
impose a bound such that the term involving ‖E‖ is dominant in (46). Bounding the estimation
part ‖Eest.‖ provides similar sample complexity as in estimation Lemma 9 with ỹmax substituted
by ymax.

For the approximation error, by imposing (third bound stated in the theorem)

Cf ≤ O
(
1

r

(
1√
k
+ δ1

)−1
E[‖S3(x)‖2]1/4
E[‖S2(x)‖2]3/4

· λ̃min · s1.5min(A1)

)
,

we ensure that the term involving ‖E‖ is dominant in the final recovery error in (46). By doing
this, we do not need to impose the bound on ‖E2,apx.‖ anymore, and applying the bound in (61)
to the required bound on ‖E‖ in Lemma 10 leads to bound (second bound stated in the theorem)

Cf ≤ Õ


1

r

(
1√
k
+ δ1

)−1 1√
E[‖S3(x)‖2]

· λmin

(
λ̃min

λ̃max

)1.5

s3min(A1) ·
1√
k


 .
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Finally, applying the result of Lemma 10, we have the column-wise error guarantees (up to permu-
tation)

‖(A1)j − (Â1)j‖ ≤ Õ
(
smax(A1)

λmin

λ̃2max√
λ̃min

‖Eest.‖+ ‖Eapx.‖
λ̃1.5min · s3min(A1)

)
,

≤ Õ
(
λ̃2max

λ̃2min

smax(A1)

λmin · s3min(A1)

[
ymax√
n

√
E
[∥∥M3(x)M

⊤
3 (x)

∥∥]

+ rCf ·
(

1√
k
+ δ1

)
·
√

E[‖S3(x)‖2]
])

≤ Õ (ǫ̃1) ,

where in the second inequality we substituted the earlier bounds on ‖Eest.‖ and ‖Eapx.‖, and the
first bounds on n and Cf stated in the theorem are used in the last inequality.

Fourier part: Let

ṽf :=
1

n

∑

i∈[n]

(ỹf )i
p(xi)

e−j〈ωi,xi〉.

Note that this a realization of ṽ defined in (51) when the output is generated by a neural network
satisfying approximation error provided in Theorem 4 denoted by ỹf ; see the discussion in the
beginning of the proof.

The perturbation is now

e := E[ṽf ]−
1

n

∑

i∈[n]

yi
p(xi)

e−j〈ωi,xi〉

︸ ︷︷ ︸
=:v

.

Similar to the tensor decomposition part, it can be expanded to estimation and approximation
parts as

e := E[ṽf ]− E[v]︸ ︷︷ ︸
eapx.

+E[v]− v︸ ︷︷ ︸
eest.

.

Similar to Lemma 11, the estimation error is w.h.p. bounded as

|eest.| ≤ O(ǫ̃2),

if the sample complexity satisfies n ≥ Õ
(
ζf
ψǫ̃22

)
, where ζf :=

∫
Rd f(x)

2dx. Notice the difference

between ζf and ζ̃f̃ . The approximation part is also bounded as

|eapx.| ≤
1

ψ
E[|ỹf − y|] ≤

1

ψ

√
E[|ỹf − y|2] ≤

1

ψ
O(rCf ) ·

(
1√
k
+ δ1

)
,

where the last inequality is from the approximation bound in Theorem 4. Imposing the condition

Cf ≤
1

r

(
1√
k
+ δ1

)−1

· O(ψǫ̃2) (62)

satisfies the desired bound |eapx.| ≤ O(ǫ̃2). The rest of the analysis is the same as Lemma 11.
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Ridge regression: It introduces an additional approximation term in the linear regression for-
mulated in (56). Given the above bounds on Cf , the new approximation term only contributes to
lower order terms.

Combining the analyzes for tensor decomposition, Fourier and ridge regression parts finishes
the proof. �

D.1 Discussion on Corollary 1

Similar to the specific Gaussian kernel function, we can also provide the results for other kernel
functions and in general for positive definite functions as follows. f(x) is said to be positive definite
if
∑

j,l xixjf(xj − xl) ≥ 0, for all xj, xl ∈ R
d. Barron (1993) shows that positive definite functions

have Cf bounded as

Cf ≤
√
−f(0) · ∇2f(0),

where ∇2f(x) :=
∑

i∈[d] ∂
2f(x)/∂x2i . Note that the operator ∇2 is different from the derivative

operator ∇(2) that we defined in (4). Applying this to the proposed bound in (18), we conclude
that our algorithm can train a neural network which approximates a class of positive definite and
kernel functions with similar bounds as in Theorem 5. Corollary 1 is for the special case of Gaussian
kernel function.
Proof of Corollary 1: For the location and scale mixture f(x) :=

∫
K(α(x + β))G(dα, dβ), we

have (Barron, 1993) Cf ≤ CK ·
∫
|α| · |G|(dα, dβ), where CK denotes the corresponding parameter

for K(x). For the standard Gaussian kernel function K(x) considered here, we have (Barron, 1993)
CK ≤

√
d, which concludes

Cf ≤
√
d ·
∫
|α| · |G|(dα, dβ).

We now apply the required bound in (18) to finish the proof. But, in this specific setting, we also
have the following simplifications for the bound in (18).

For the Gaussian input x ∼ N (0, σ2xId), the score function is

S3(x) =
1

σ6x
x⊗3 − 1

σ4x

∑

j∈[d]
(x⊗ ej ⊗ ej + ej ⊗ x⊗ ej + ej ⊗ ej ⊗ x) ,

which has expected square norm as E[‖S3(x)‖2] = Õ(d3/σ6x).
Given the input is Gaussian and the activating function is the step function, we can also write

the coefficients λj and λ̃j as

λj = a2(j) ·
1√
2πσ3x

· exp
(
−b1(j)

2

2σ2x

)
·
(
b1(j)

2

σ2x
− 1

)
,

λ̃j = a2(j) ·
b1(j)√
2πσ3x

· exp
(
−b1(j)

2

2σ2x

)
.

Given the bounds on coefficients as |b1(j)| ≤ 1, |a2(j)| ≤ 2Cf , j ∈ [k], we have

λ̃min

λ̃max

≥ (a2)min · (b1)min

2Cf
exp(−1/(2σ2x)),

λmin ≥
(a2)min√
2πσ3x

exp(−1/(2σ2x)) · min
j∈[k]
|b1(j)2/σ2x − 1|.
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Recall that the columns of A1 are randomly drawn from the Fourier spectrum of f(x) as de-
scribed in (15). Given f(x) is the Gaussian kernel, the Fourier spectrum ‖ω‖·|F (ω)| corresponds to a
sub-gaussain distribution. Thus, the singular values of A1 are bounded as (Rudelson and Vershynin,
2009)

smin(A1)

smax(A1)
≥ 1−

√
k/d

1 +
√
k/d
≥ O(1),

where the last inequality is from k = Cd for some small enough C < 1.
Substituting these bounds in the required bound in (18) finishes the proof. �
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