
TASK2VEC: Task Embedding for Meta-Learning

Alessandro Achille
UCLA and AWS

achille@cs.ucla.edu

Michael Lam
AWS

michlam@amazon.com

Rahul Tewari
AWS

tewarir@amazon.com

Avinash Ravichandran
AWS

ravinash@amazon.com

Subhransu Maji
UMass and AWS
smmaji@amazon.com

Charless Fowlkes
UCI and AWS

fowlkec@amazon.com

Stefano Soatto
UCLA and AWS
soattos@amazon.com

Pietro Perona
Caltech and AWS
peronapp@amazon.com

Abstract

We introduce a method to provide vectorial represen-
tations of visual classification tasks which can be used
to reason about the nature of those tasks and their re-
lations. Given a dataset with ground-truth labels and a
loss function defined over those labels, we process images
through a “probe network” and compute an embedding
based on estimates of the Fisher information matrix asso-
ciated with the probe network parameters. This provides a
fixed-dimensional embedding of the task that is independent
of details such as the number of classes and does not require
any understanding of the class label semantics. We demon-
strate that this embedding is capable of predicting task sim-
ilarities that match our intuition about semantic and tax-
onomic relations between different visual tasks (e.g., tasks
based on classifying different types of plants are similar).
We also demonstrate the practical value of this framework
for the meta-task of selecting a pre-trained feature extractor
for a new task. We present a simple meta-learning frame-
work for learning a metric on embeddings that is capable of
predicting which feature extractors will perform well. Se-
lecting a feature extractor with task embedding obtains a
performance close to the best available feature extractor,
while costing substantially less than exhaustively training
and evaluating on all available feature extractors.

1. Introduction
The success of Deep Learning hinges in part on the fact

that models learned for one task can be used on other related
tasks. Yet, no general framework exists to describe and
learn relations between tasks. We introduce the TASK2VEC
embedding, a technique to represent tasks as elements of a
vector space based on the Fisher Information Matrix. The
norm of the embedding correlates with the complexity of
the task, while the distance between embeddings captures

semantic similarities between tasks (Fig. 1). When other
natural distances are available, such as the taxonomical dis-
tance in biological classification, we find that the embed-
ding distance correlates positively with it (Fig. 2). More-
over, we introduce an asymmetric distance on tasks which
correlates with the transferability between tasks.

Computation of the embedding leverages a duality be-
tween network parameters (weights) and outputs (activa-
tions) in a deep neural network (DNN): Just as the activa-
tions of a DNN trained on a complex visual recognition task
are a rich representation of the input images, we show that
the gradients of the weights relative to a task-specific loss
are a rich representation of the task itself. Specifically, given
a task defined by a dataset D = {(xi, yi)}Ni=1 of labeled
samples, we feed the data through a pre-trained reference
convolutional neural network which we call “probe net-
work”, and compute the diagonal Fisher Information Ma-
trix (FIM) of the network filter parameters to capture the
structure of the task (Sect. 2). Since the architecture and
weights of the probe network are fixed, the FIM provides a
fixed-dimensional representation of the task. We show this
embedding encodes the “difficulty” of the task, character-
istics of the input domain, and which features of the probe
network are useful to solve it (Sect. 2.1).

Our task embedding can be used to reason about the
space of tasks and solve meta-tasks. As a motivating exam-
ple, we study the problem of selecting the best pre-trained
feature extractor to solve a new task. This can be particu-
larly valuable when there is insufficient data to train or fine-
tune a generic model, and transfer of knowledge is essen-
tial. TASK2VEC depends solely on the task, and ignores
interactions with the model which may however play an
important role. To address this, we learn a joint task and
model embedding, called MODEL2VEC, in such a way that
models whose embeddings are close to a task exhibit good
perfmormance on the task. We use this to select an expert
from a given collection, improving performance relative to

1

ar
X

iv
:1

90
2.

03
54

5v
1

 [
cs

.L
G

]
 1

0
Fe

b
20

19
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216302109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Task Embeddings Domain Embeddings

Actinopterygii (n)

Amphibia (n)

Arachnida (n)

Aves (n)

Fungi (n)

Insecta (n)

Mammalia (n)

Mollusca (n)

Plantae (n)

Protozoa (n)

Reptilia (n)

Category (m)

Color (m)

Gender (m)

Material (m)

Neckline (m)

Pants (m)

Pattern (m)

Shoes (m)

Figure 1: Task embedding across a large library of tasks (best seen magnified). (Left) T-SNE visualization of the embed-
ding of tasks extracted from the iNaturalist, CUB-200, iMaterialist datasets. Colors indicate ground-truth grouping of tasks
based on taxonomic or semantic types. Notice that the bird classification tasks extracted from CUB-200 embed near the bird
classification task from iNaturalist, even though the original datasets are different. iMaterialist is well separated from iNat-
uralist, as it entails very different tasks (clothing attributes). Notice that some tasks of similar type (such as color attributes)
cluster together but attributes of different task types may also mix when the underlying visual semantics are correlated. For
example, the tasks of jeans (clothing type), denim (material) and ripped (style) recognition are close in the task embedding.
(Right) T-SNE visualization of the domain embeddings (using mean feature activations) for the same tasks. Domain em-
bedding can distinguish iNaturalist tasks from iMaterialist tasks due to differences in the two problem domains. However,
the fashion attribute tasks on iMaterialist all share the same domain and only differ in their labels. In this case, the domain
embeddings collapse to a region without recovering any sensible structure.

fine-tuning a generic model trained on ImageNet and ob-
taining close to ground-truth optimal selection. We discuss
our contribution in relation to prior literature in Sect. 6, after
presenting our empirical results in Sect. 5.

2. Task Embeddings via Fisher Information

Given an observed input x (e.g., an image) and an hid-
den task variable y (e.g., a label), a deep network is a
family of functions pw(y|x) parametrized by weights w,
trained to approximate the posterior p(y|x) by minimizing
the (possibly regularized) cross entropy loss Hpw,p̂(y|x) =
Ex,y∼p̂[− log pw(y|x)], where p̂ is the empirical distribu-
tion defined by the training set D = {(xi, yi)}Ni=1. It is
useful, especially in transfer learning, to think of the net-
work as composed of two parts: a feature extractor which
computes some representation z = φw(x) of the input data,
and a “head,” or classifier, which encodes the distribution
p(y|z) given the representation z.

Not all network weights are equally useful in predicting
the task variable: the importance, or “informative content,”
of a weight for the task can be quantified by considering a
perturbation w′ = w + δw of the weights, and measuring
the average Kullbach-Leibler (KL) divergence between the

original output distribution pw(y|x) and the perturbed one
pw′(y|x). To second-order approximation, this is

Ex∼p̂KL(pw′(y|x) ‖ pw(y|x)) = δw · Fδw + o(δw2),

where F is the Fisher information matrix (FIM):

F = Ex,y∼p̂(x)pw(y|x)

[
∇w log pw(y|x)∇w log pw(y|x)T

]
.

that is, the expected covariance of the scores (gradients of
the log-likelihood) with respect to the model parameters.

The FIM is a Riemannian metric on the space of proba-
bility distributions [7], and provides a measure of the infor-
mation a particular parameter (weight or feature) contains
about the joint distribution pw(x, y) = p̂(x)pw(y|x): If the
classification performance for a given task does not depend
strongly a parameter, the corresponding entry in the FIM
will be small. The FIM is also related to the (Kolmogorov)
complexity of a task, a property that can be used to de-
fine a computable metric of the learning distance between
tasks [3]. Finally, the FIM can be interpreted as an easy-to-
compute positive semidefinite upper-bound to the Hessian
of the cross-entropy loss, and coincides with it at local min-
ima [24]. In particular, “flat minima” correspond to weights
that have, on average, low (Fisher) information [5, 13].

2.1. TASK2VEC embedding using a probe network

While the network activations capture the information in
the input image which are needed to infer the image label,
the FIM indicates the set of feature maps which are more
informative for solving the current task. Following this in-
tuition, we use the FIM to represent the task itself. How-
ever, the FIMs computed on different networks are not di-
rectly comparable. To address this, we use single “probe”
network pre-trained on ImageNet as a feature extractor and
re-train only the classifier layer on any given task, which
usually can be done efficiently. After training is complete,
we compute the FIM for the feature extractor parameters.

Since the full FIM is unmanageably large for rich probe
networks based on CNNs, we make two additional approxi-
mations. First, we only consider the diagonal entries, which
implicitly assumes that correlations between different filters
in the probe network are not important. Second, since the
weights in each filter are usually not independent, we aver-
age the Fisher Information for all weights in the same filter.
The resulting representation thus has fixed size, equal to the
number of filters in the probe network. We call this embed-
ding method TASK2VEC.

Robust Fisher computation Since the FIM is a local
quantity, it is affected by the local geometry of the training
loss landscape, which is highly irregular in many deep net-
work architectures [21], and may be too noisy when trained
with few samples. To avoid this problem, instead of a direct
computation, we use a more robust estimator that leverages
connections to variational inference. Assume we perturb
the weights ŵ of the network with Gaussian noise N (0,Λ)
with precision matrix Λ, and we want to find the optimal Λ
which yields a good expected error, while remaining close
to an isotropic prior N (ŵ, λ2I). That is, we want to find Λ
that minimizes:

L(ŵ; Λ) = Ew∼N (ŵ,Λ)[Hpw,p̂p(y|x)]

+ β KL(N (0,Λ) ‖N (0, λ2I)),

whereH is the cross-entropy loss and β controls the weight
of the prior. Notice that for β = 1 this reduces to the Evi-
dence Lower-Bound (ELBO) commonly used in variational
inference. Approximating to the second order, the optimal
value of Λ satisfies (see Supplementary Material):

β

2N
Λ = F +

βλ2

2N
I.

Therefore, β
2NΛ ∼ F+o(1) can be considered as an estima-

tor of the FIM F , biased towards the prior λ2I in the low-
data regime instead of being degenerate. In case the task is
trivial (the loss is constant or there are too few samples) the
embedding will coincide with the prior λ2I , which we will
refer to as the trivial embedding. This estimator has the

advantage of being easy to compute by directly minimizing
the loss L(ŵ; Σ) through Stochastic Gradient Variational
Bayes [18], while being less sensitive to irregularities of
the loss landscape than direct computation, since the value
of the loss depends on the cross-entropy in a neighborhood
of ŵ of size Λ−1. As in the standard Fisher computation,
we estimate one parameter per filter, rather than per weight,
which in practice means that we constrain Λii = Λjj when-
ever wi and wj belongs to the same filter. In this case, opti-
mization of L(ŵ; Λ) can be done efficiently using the local
reparametrization trick of [18].

2.2. Properties of the TASK2VEC embedding

The task embedding we just defined has a number of
useful properties. For illustrative purposes, consider a two-
layer sigmoidal network for which an analytic expression
can be derived (see Supplementary Materials). The FIM
of the feature extractor parameters can be written using the
Kronecker product as

F = Ex,y∼p̂(x)pw(y|x)[(y − p)2 · S ⊗ xxT]

where p = pw(y = 1|x) and the matrix S = wwT � zzT �
(1 − z)(1 − z)T is an element-wise product of classifier
weights w and first layer feature activations z. It is informa-
tive to compare this expression to an embedding based only
on the dataset domain statistics, such as the (non-centered)
covariance C0 = E

[
xxT

]
of the input data or the covari-

ance C1 = E
[
zzT

]
of the feature activations. One could

take such statistics as a representative domain embedding
since they only depend on the marginal distribution p(x) in
contrast to the FIM task embedding, which depends on the
joint distribution p(x, y). These simple expressions high-
light some important (and more general) properties of the
Fisher embedding we now describe.

Invariance to the label space: The task embedding does
not directly depend on the task labels, but only on the pre-
dicted distribution pw(y|x) of the trained model. Infor-
mation about the ground-truth labels y is encoded in the
weights w which are a sufficient statistic of the task [5]. In
particular, the task embedding is invariant to permutations
of the labels y, and has fixed dimension (number of filters
of the feature extractor) regardless of the output space (e.g.,
k-way classification with varying k).

Encoding task difficulty: As we can see from the ex-
pressions above, if the fit model is very confident in its pre-
dictions, E[(y − p)2] goes to zero. Hence, the norm of the
task embedding ‖F‖? scales with the difficulty of the task
for a given feature extractor φ. Figure 2 (Right) shows that
even for more complex models trained on real data, the FIM
norm correlates with test performance.

Encoding task domain: Data points x that are classi-
fied with high confidence, i.e., p is close to 0 or 1, will
have a lower contribution to the task embedding than points

0 25 50 75 100 125
Size k of neighborhood

1.0

1.5

2.0

2.5

3.0

Av
g.

 to
p-

k
ta

x.
 d

ist
an

ce

Task2Vec distance
Tax. distance

0.4 0.6 0.8
L1 norm of task embedding 1e8

0%

10%

20%

30%

40%

50%

60%

Te
st

 e
rro

r o
n

ta
sk

 (%
)

Figure 2: Distance between species classification tasks. (Left) Task similarity matrix ordered by hierarchical clustering.
Note that the dendrogram produced by the task similarity matches the taxonomic clusters (indicated by color bar). (Center)
For tasks extracted from iNaturalist and CUB, we compare the cosine distance between tasks to their taxonomical distance.
As the size of the task embedding neighborhood increases (measured by number of tasks in the neighborhood), we plot the
average taxonomical distance of tasks from the neighborhood center. While the task distance does not perfectly match the
taxonomical distance (whose curve is shown in orange), it shows a good correlation. Difference are both due to the fact that
taxonomically close species may need very different features to be classified, creating a mismatch between the two notions
of distance, and because for some tasks in iNaturalist too few samples are provided to compute a good embedding. (Right)
Correlation between L1 norm of the task embedding (distance from origin) and test error obtained on the task.

near the decision boundary since p(1 − p) is maximized at
p = 1/2. Compare this to the covariance matrix of the data,
C0, to which all data points contribute equally. Instead, in
TASK2VEC information on the domain is based on data near
the decision boundary (task-weighted domain embedding).

Encoding useful features for the task: The FIM de-
pends on the curvature of the loss function with the diagonal
entries capturing the sensitivity of the loss to model param-
eters. Specifically, in the two-layer model one can see that,
if a given feature is uncorrelated with y, the correspond-
ing blocks of F are zero. In contrast, a domain embedding
based on feature activations of the probe network (e.g., C1)
only reflects which features vary over the dataset without
indication of whether they are relevant to the task.

3. Similarity Measures on the Space of Tasks
What metric should be used on the space of tasks? This

depends critically on the meta-task we are considering. As a
motivation, we concentrate on the meta-task of selecting the
pre-trained feature extractor from a set in order to obtain the
best performance on a new training task. There are several
natural metrics that may be considered for this meta-task.
In this work, we mainly consider:

Taxonomic distance For some tasks, there is a natural no-
tion of semantic similarity, for instance defined by sets of
categories organized in a taxonomic hierarchy where each
task is classification inside a subtree of the hierarchy (e.g.,
we may say that classifying breeds of dogs is closer to clas-

sification of cats than it is to classification of species of
plants). In this setting, we can define

Dtax(ta, tb) = min
i∈Sa,j∈Sb

d(i, j),

where Sa, Sb are the sets of categories in task ta, tb and
d(i, j) is an ultrametric or graph distance in the taxonomy
tree. Notice that this is a proper distance, and in particular
it is symmetric.

Transfer distance. We define the transfer (or fine-tuning)
gain from a task ta to a task tb (which we improperly call
distance, but is not necessarily symmetric or positive) as
the difference in expected performance between a model
trained for task tb from a fixed initialization (random or pre-
trained), and the performance of a model fine-tuned for task
tb starting from a solution of task ta:

Dft(ta → tb) =
E[`a→b]− E[`b]

E[`b]
,

where the expectations are taken over all trainings with the
selected architecture, training procedure and network ini-
tialization, `b is the final test error obtained by training on
task b from the chosen initialization, and `a→b is the error
obtained instead when starting from a solution to task a and
then fine-tuning (with the selected procedure) on task tb.

3.1. Symmetric and asymmetric TASK2VEC metrics

By construction, the Fisher embedding on which
TASK2VEC is based captures fundamental information

about the structure of the task. We may therefore expect
that the distance between two embeddings correlate posi-
tively with natural metrics on the space of tasks. However,
there are two problems in using the Euclidean distance be-
tween embeddings: the parameters of the network have dif-
ferent scales, and the norm of the embedding is affected by
complexity of the task and the number of samples used to
compute the embedding.

Symmetric TASK2VEC distance To make the distance
computation robust, we propose to use the cosine distance
between normalized embeddings:

dsym(Fa, Fb) = dcos

(Fa
Fa + Fb

,
Fb

Fa + Fb

)
,

where dcos is the cosine distance, Fa and Fb are the two
task embeddings (i.e., the diagonal of the Fisher Informa-
tion computed on the same probe network), and the division
is element-wise. This is a symmetric distance which we ex-
pect to capture semantic similarity between two tasks. For
example, we show in Fig. 2 that it correlates well with the
taxonomical distance between species on iNaturalist.

On the other hand, precisely for this reason, this distance
is ill-suited for tasks such as model selection, where the (in-
trinsically asymmetric) transfer distance is more relevant.

Asymmetric TASK2VEC distance In a first approxima-
tion, that does not consider either the model or the training
procedure used, positive transfer between two tasks depends
both on the similarity between two tasks and on the com-
plexity of the first. Indeed, pre-training on a general but
complex task such as ImageNet often yields a better result
than fine-tuning from a close dataset of comparable com-
plexity. In our case, complexity can be measured as the dis-
tance from the trivial embedding. This suggests the follow-
ing asymmetric score, again improperly called a “distance”
despite being asymmetric and possibly negative:

dasym(ta → tb) = dsym(ta, tb)− αdsym(ta, t0),

where t0 is the trivial embedding, and α is an hyperparam-
eter. This has the effect of bring more complex models
closer. The hyper-parameter α can be selected based on
the meta-task. In our experiments, we found that the best
value of α (α = 0.15 when using a ResNet-34 pretrained
on ImageNet as the probe network) is robust to the choice
of meta-tasks.

4. MODEL2VEC: task/model co-embedding
By construction, the TASK2VEC distance ignores details

of the model and only relies on the task. If we know what
task a model was trained on, we can represent the model by
the embedding of that task. However, in general we may
not have such information (e.g., black-box models or hand-
constructed feature extractors). We may also have multiple

models trained on the same task with different performance
characteristics. To model the joint interaction between task
and model (i.e., architecture and training algorithm), we aim
to learn a joint embedding of the two.

We consider for concreteness the problem of learning
a joint embedding for model selection. In order to em-
bed models in the task space so that those near a task
are likely to perform well on that task, we formulate the
following meta-learning problem: Given k models, their
MODEL2VEC embedding are the vectors mi = Fi + bi,
where Fi is the task embedding of the task used to train
model mi (if available, else we set it to zero), and bi is a
learned “model bias” that perturbs the task embedding to
account for particularities of the model. We learn bi by opti-
mizing a k-way cross entropy loss to predict the best model
given the task distance (see Supplementary Material):

L = E[− log p(m | dasym(t,m0), . . . , dasym(t,mk))].

After training, given a novel query task t, we can then pre-
dict the best model for it as the arg maxi dasym(t,mi), that
is, the model mi embedded closest to the query task.

5. Experiments
We test TASK2VEC on a large collection of tasks and

models, related to different degrees. Our experiments aim to
test both qualitative properties of the embedding and its per-
formance on meta-learning tasks. We use an off-the-shelf
ResNet-34 pretrained on ImageNet as our probe network,
which we found to give the best overall performance (see
Sect. 5.2). The collection of tasks is generated starting
from the following four main datasets. iNaturalist [36]:
Each task extracted corresponds to species classification in
a given taxonomical order. For instance, the “Rodentia
task” is to classify species of rodents. Notice that each
task is defined on a separate subset of the images in the
original dataset; that is, the domains of the tasks are dis-
joint. CUB-200 [37]: We use the same procedure as iNat-
uralist to create tasks. In this case, all tasks are classifica-
tions inside orders of birds (the aves taxonomical class), and
have generally much less training samples than correspond-
ing tasks in iNaturalist. iMaterialist [1] and DeepFashion
[23]: Each image in both datasets is associated with sev-
eral binary attributes (e.g., style attributes) and categorical
attributes (e.g., color, type of dress, material). We binarize
the categorical attributes, and consider each attribute as a
separate task. Notice that, in this case, all tasks share the
same domain and are naturally correlated.

In total, our collection of tasks has 1460 tasks (207
iNaturalist, 25 CUB, 228 iMaterialist, 1000 DeepFashion).
While a few tasks have many training examples (e.g., hun-
dred thousands), most have just hundreds or thousands of
samples. This simulates the heavy-tail distribution of data
in real-world applications.

[CUB] B
om

by
cill

ida
e

[CUB] T
hra

up
ida

e

[CUB] L
an

iida
e

[CUB] P
ass

eri
da

e

[CUB] M
im

ida
e

[CUB] A
nse

rifo
rm

es

[CUB] F
rin

gill
ida

e

[CUB] C
ard

ina
lida

e

[CUB] C
ap

rim
ulg

ifo
rm

es

[CUB] P
roc

ella
riif

orm
es

[CUB] A
po

dif
orm

es

[CUB] H
iru

nd
inid

ae

[CUB] C
ucu

lifo
rm

es

[CUB] C
ora

ciif
orm

es

[CUB] P
od

icip
ed

ifo
rm

es

[CUB] P
ele

can
ifo

rm
es

[CUB] P
icif

orm
es

[CUB] C
orv

ida
e

[CUB] Ic
ter

ida
e

[CUB] T
rog

lod
yti

da
e

[CUB] T
yra

nn
ida

e

[CUB] V
ire

on
ida

e

[CUB] C
ha

rad
riif

orm
es

[CUB] P
aru

lida
e

[CUB] E
mbe

riz
ida

e

[iN
at]

 Pe
lec

an
ifo

rm
es

[iN
at]

 Rod
en

tia

[iN
at]

 Colu
mbif

orm
es

[iN
at]

 Sa
pin

da
les

[iN
at]

 Pic
ifo

rm
es

[iN
at]

 Acci
pit

rifo
rm

es

[iN
at]

 Ran
un

cul
ale

s

[iN
at]

 Anse
rifo

rm
es

[iN
at]

 Cole
op

ter
a

[iN
at]

 Carn
ivo

ra

[iN
at]

 Anu
ra

[iN
at]

 Cha
rad

riif
orm

es

[iN
at]

 Gen
tia

na
les

[iN
at]

 Er
ica

les

[iN
at]

 Aspa
rag

ale
s

[iN
at]

 Fa
ba

les

[iN
at]

 Aste
ral

es

[iN
at]

 Odo
na

ta

[iN
at]

 Rosa
les

[iN
at]

 Pa
sse

rifo
rm

es

[iN
at]

 Cary
op

hy
llal

es

[iN
at]

 Pe
rci

for
mes

[iN
at]

 Sq
ua

mata

[iN
at]

 La
miale

s

[iN
at]

 Le
pid

op
ter

a

0%

20%

40%

60%

80%

Te
st

 E
rro

r
iNat+CUB error distribution and expert selection

Selected expert
ImageNet expert

Figure 3: TASK2VEC often selects the best available experts. Violin plot of the distribution of the final test error (shaded
plot) on tasks from the CUB-200 dataset (columns) obtained by training a linear classifier over several expert feature extrac-
tors (points). Most specialized feature extractors perform similarly on a given task, and generally are similar or worse than a
generic feature extractor pre-trained on ImageNet (blue triangles). However, in some cases a carefully chosen expert, trained
on a relevant task, can greatly outperform all other experts (long whisker of the violin plot). The model selection algorithm
based on TASK2VEC can, without training, suggest an expert to use for the task (red cross, lower is better). TASK2VEC mostly
recover the optimal, or close to optimal, feature extractor to use without having to perform an expensive brute-force search
over all possibilities. Columns are ordered by norm of the task embedding: Notice tasks with lower embedding norm have
lower error and more “complex” task (task with higher embedding norm) tend to benefit more from a specialized expert.

Together with the collection of tasks, we collect several
“expert” feature extractors. These are ResNet-34 models
pre-trained on ImageNet and then fine-tuned on a specific
task or collection of related tasks (see Supplementary Ma-
terials for details). We also consider a “generic”expert pre-
trained on ImageNet without any finetuning. Finally, for
each combination of expert feature extractor and task, we
trained a linear classifier on top of the expert in order to
solve the selected task using the expert.

In total, we trained 4,100 classifiers, 156 feature extrac-
tors and 1,460 embeddings. The total effort to generate the
final results was about 1,300 GPU hours.

Meta-tasks. In Sect. 5.2, for a given task we aim to pre-
dict, using TASK2VEC , which expert feature extractor will
yield the best classification performance. In particular, we
formulate two model selection meta-tasks: iNat + CUB and
Mixed. The first consists of 50 tasks and experts from iNat-
uralist and CUB, and aims to test fine-grained expert selec-
tion in a restricted domain. The second contains a mix of
26 curated experts and 50 random tasks extracted from all
datasets, and aims to test model selection between different
domains and tasks (see Supplementary Material for details).

5.1. Task Embedding Results

Task Embedding qualitatively reflects taxonomic dis-
tance for iNaturalist For tasks extracted from the iNat-
uralist dataset (classification of species), the taxonomical
distance between orders provides a natural metric of the se-
mantic similarity between tasks. In Figure 2 we compare
the symmetric TASK2VEC distance with the taxonomical
distance, showing strong agreement.

Task embedding for iMaterialist In Fig. 1 we show a
t-SNE visualization of the embedding for iMaterialist and
iNaturalist tasks. Task embedding yields interpretable re-
sults: Tasks that are correlated in the dataset, such as binary
classes corresponding to the same categorical attribute, may
end up far away from each other and close to other tasks that
are semantically more similar (e.g., the jeans category task
is close to the ripped attribute and the denim material). This
is reflected in the mixture of colors of semantically related
nearby tasks, showing non-trivial grouping.

We also compare the TASK2VEC embedding with a do-
main embedding baseline, which only exploits the input
distribution p(x) rather than the task distribution p(x, y).
While some tasks are highly correlated with their domain
(e.g., tasks from iNaturalist), other tasks differ only on the
labels (e.g., all the attribute tasks of iMaterialist, which
share the same clothes domain). Accordingly, the domain

102 103 104

Number of samples

-10%

0%

10%

Er
ro

r r
el

at
iv

e
to

 b
ru

te
 fo

rc
e

(lo
we

r i
s b

et
te

r)
Brute force fixed
ImageNet fixed
Task2Vec fixed

ImageNet finetune
Task2Vec finetune

Figure 4: TASK2VEC improves results at different
dataset sizes and training conditions: Performance of
model selection on a subset of 4 tasks as a function of
the number of samples available to train relative to opti-
mal model selection (dashed orange). Training a classifier
on the feature extractor selected by TASK2VEC (solid red) is
always better than using a generic ImageNet feature extrac-
tor (dashed red). The same holds when allowed to fine-tune
the feature extractor (blue curves). Also notice that in the
low-data regime fine-tuning the ImageNet feature extractor
is more expensive and has a worse performance than accu-
rately selecting a good fixed feature extractor.

Probe network Top-10 All
Chance +13.95% +59.52%
VGG-13 +4.82% +38.03%

DenseNet-121 +0.30% +10.63%
ResNet-13 +0.00% +9.97%

Table 1: Choice of probe network. Mean relative error
increase over the ground-truth optimum on the iNat+CUB
meta-task for different choices of the probe-network. We
also report the performance on the top 10 tasks with more
samples to show how data size affect different architectures.

embedding recovers similar clusters on iNaturalist. How-
ever, on iMaterialst domain embedding collapses all tasks
to a single uninformative cluster (not a single point due to
slight noise in embedding computation).

Task Embedding encodes task difficulty The scatter-
plot in Fig. 3 compares the norm of embedding vectors vs.
performance of the best expert (or task specific model for
cases where we have the diagonal computed). As shown
analytically for the two-layers model, the norm of the task
embedding correlates with the complexity of the task also
on real tasks and architectures.

5.2. Model Selection

Given a task, our aim is to select an expert feature extrac-
tor that maximizes the classification performance on that
task. We propose two strategies: (1) embed the task and

select the feature extractor trained on the most similar task,
and (2) jointly embed the models and tasks, and select a
model using the learned metric (see Section 4). Notice that
(1) does not use knowledge of the model performance on
various tasks, which makes it more widely applicable but
requires we know what task a model was trained for and
may ignore the fact that models trained on slightly differ-
ent tasks may still provide an overall better feature extrac-
tor (for example by over-fitting less to the task they were
trained on).

In Table 2 we compare the overall results of the various
proposed metrics on the model selection meta-tasks. On
both the iNat+CUB and Mixed meta-tasks, the Asymmetric
TASK2VEC model selection is close to the ground-truth op-
timal, and significantly improves over both chance, and over
using an generic ImageNet expert. Notice that our method
has O(1) complexity, while searching over a collection of
N experts is O(N).

Error distribution In Fig. 3 we show in detail the error
distribution of the experts on multiple tasks. It is interesting
to notice that the classification error obtained using most ex-
perts clusters around some mean value, and little improve-
ment is observed over using a generic expert. On the other
hand, a few optimal experts can obtain a largely better per-
formance on the task than a generic expert. This confirms
the importance of having access to a large collection of ex-
perts when solving a new task, especially if few training
data are available. But this collection can only be efficiently
exploited if an algorithm is given to efficiently find one of
the few experts for the task, which we propose.

Dependence on task dataset size Finding experts is es-
pecially important when the task we are interested in has
relatively few samples. In Fig. 4 we show how the perfor-
mance of TASK2VEC varies on a model selection task as the
number of samples varies. At all sample sizes TASK2VEC is
close to the optimum, and improves over selecting a generic
expert (ImageNet), both when fine-tuning and when train-
ing only a classifier. We observe that the best choice of ex-
perts is not affected by the dataset size, and that even with
few examples TASK2VEC is able to find the optimal experts.

Choice of probe network In Table 1 we show that
DenseNet [15] and ResNet architectures [11] perform sig-
nificantly better when used as probe networks to compute
the TASK2VEC embedding than a VGG [32] architecture.

6. Related Work
Task and Domain embedding. Tasks distinguished by
their domain can be understood simply in terms of image
statistics. Due to the bias of different datasets, sometimes a
benchmark task may be identified just by looking at a few
images [34]. The question of determining what summary

Meta-task Optimal Chance ImageNet TASK2VEC Asymmetric TASK2VEC MODEL2VEC

iNat + CUB 31.24 +59.52% +30.18% +42.54% +9.97% +6.81%
Mixed 22.90 +112.49% +75.73% +40.30% +29.23% +27.81%

Table 2: Model selection performance of different metrics. Average optimal error obtained on two meta-learning tasks
by exhaustive search over the best expert, and relative error increase when using cheaper model selection methods. Always
picking a fixed good general model (e.g., a model pretrained on ImageNet) performs better than picking an expert at random
(chance). However, picking an expert using the Asymmetric TASK2VEC distance can achieve an overall better performance
than using a general model. Notice also the improvement over the Symmetric version, especially on iNat + CUB, where
experts trained on very similar tasks may be too simple to yield good transfer, and should be avoided.

statistics are useful (analogous to our choice of probe net-
work) has also been considered, for example [9] train an
autoencoder that learns to extract fixed dimensional sum-
mary statistics that can reproduce many different datasets
accurately. However, for general vision tasks which apply
to all natural images, the domain is the same across tasks.

Taskonomy [39] explores the structure of the space of
tasks, focusing on the question of effective knowledge
transfer in a curated collection of 26 visual tasks, ranging
from classification to 3D reconstruction, defined on a com-
mon domain. They compute pairwise transfer distances be-
tween pairs of tasks and use the results to compute a di-
rected hierarchy. Introducing novel tasks requires comput-
ing the pairwise distance with tasks in the library. In con-
trast, we focus on a larger library of 1,460 fine-grained clas-
sification tasks both on same and different domains, and
show that it is possible to represent tasks in a topological
space with a constant-time embedding. The large task col-
lection and cheap embedding costs allow us to tackle new
meta-learning problems.

Fisher kernels Our work takes inspiration from Jaakkola
and Hausler [16]. They propose the “Fisher Kernel”, which
uses the gradients of a generative model score function as a
representation of similarity between data items

K(x(1), x(2)) = ∇θ logP (x(1)|θ)TF−1∇θ logP (x(2)|θ).

Here P (x|θ) is a parameterized generative model and F is
the Fisher information matrix. This provides a way to utilize
generative models in the context of discriminative learning.
Variants of the Fisher kernel have found wide use as a repre-
sentation of images [28, 29], and other structured data such
as protein molecules [17] and text [30]. Since the genera-
tive model can be learned on unlabelled data, several works
have investigated the use of Fisher kernel for unsupervised
learning [14, 31]. [35] learns a metric on the Fisher kernel
representation similar to our metric learning approach. Our
approach differs in that we use the FIM as a representation
of a whole dataset (task) rather than using model gradients
as representations of individual data items.

Fisher Information for CNNs Our approach to task em-
bedding makes use of the Fisher Information matrix of a

neural network as a characterization of the task. Use of
Fisher information for neural networks was popularized by
Amari [6] who advocated optimization using natural gra-
dient descent which leverages the fact that the FIM is an
appropriate parameterization-independent metric on statis-
tical models. Recent work has focused on approximates of
FIM appropriate in this setting (see e.g., [12, 10, 25]). FIM
has also been proposed for various regularization schemes
[5, 8, 22, 27], analyze learning dynamics of deep networks
[4], and to overcome catastrophic forgetting [19].

Meta-learning and Model Selection The general prob-
lem of meta-learning has a long history with much re-
cent work dedicated to problems such as neural architecture
search and hyper-parameter estimation. Closely related to
our problem is work on selecting from a library of classi-
fiers to solve a new task [33, 2, 20]. Unlike our approach,
these usually address the question via land-marking or ac-
tive testing, in which a few different models are evaluated
and performance of the remainder estimated by extension.
This can be viewed as a problem of completing a matrix
defined by performance of each model on each task.

A similar approach has been taken in computer vision for
selecting a detector for a new category out of a large library
of detectors [26, 40, 38].

7. Discussion
TASK2VEC is an efficient way to represent a task, or the

corresponding dataset, as a fixed dimensional vector. It has
several appealing properties, in particular its norm corre-
lates with the test error obtained on the task, and the co-
sine distance between embeddings correlates with natural
distances between tasks, when available, such as the taxo-
nomic distance for species classification, and the fine-tuning
distance for transfer learning. Having a representation of
tasks paves the way for a wide variety of meta-learning
tasks. In this work, we focused on selection of an expert
feature extractor in order to solve a new task, especially
when little training data is present, and showed that using
TASK2VEC to select an expert from a collection can sen-
sibly improve test performance while adding only a small
overhead to the training process.

Meta-learning on the space of tasks is an important step
toward general artificial intelligence. In this work, we in-
troduce a way of dealing with thousands of tasks, enough to
enable reconstruct a topology on the task space, and to test
meta-learning solutions. The current experiments highlight
the usefulness of our methods. Even so, our collection does
not capture the full complexity and variety of tasks that one
may encounter in real-world situations. Future work should
further test effectiveness, robustness, and limitations of the
embedding on larger and more diverse collections.

References
[1] iMaterialist Challenge (Fashion) at FGVC5 workshop,

CVPR 2018. https://www.kaggle.com/c/
imaterialist-challenge-fashion-2018.
5

[2] S. M. Abdulrahman, P. Brazdil, J. N. van Rijn, and J. Van-
schoren. Speeding up algorithm selection using average
ranking and active testing by introducing runtime. Machine
learning, 107(1):79–108, 2018. 8

[3] A. Achille, G. Mbeng, G. Paolini, and S. Soatto. The dy-
namic distance between learning tasks: From Kolmogorov
complexity to transfer learning via quantum physics and
the information bottleneck of the weights of deep networks.
Proc. of the NIPS Workshop on Integration of Deep Learning
Theories (ArXiv: 1810.02440), October 2018. 2

[4] A. Achille, M. Rovere, and S. Soatto. Critical learning pe-
riods in deep neural networks. Proc. of the Intl. Conf. on
Learning Representations (ICLR). ArXiv:1711.08856, 2019.
8

[5] A. Achille and S. Soatto. Emergence of invariance and dis-
entanglement in deep representations. Journal of Machine
Learning Research (ArXiv 1706.01350), 19(50):1–34, 2018.
2, 3, 8

[6] S.-I. Amari. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998. 8

[7] S.-I. Amari and H. Nagaoka. Methods of information geome-
try, volume 191 of translations of mathematical monographs.
American Mathematical Society, 13, 2000. 2

[8] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger gen-
eralization bounds for deep nets via a compression approach.
arXiv preprint arXiv:1802.05296, 2018. 8

[9] H. Edwards and A. Storkey. Towards a neural statistician.
arXiv preprint arXiv:1606.02185, 2016. 8

[10] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv preprint
arXiv:1703.03400, 2017. 8

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 7

[12] T. Heskes. On natural learning and pruning in multilayered
perceptrons. Neural Computation, 12(4):881–901, 2000. 8

[13] S. Hochreiter and J. Schmidhuber. Flat minima. Neural
Computation, 9(1):1–42, 1997. 2

[14] A. D. Holub, M. Welling, and P. Perona. Combining gener-
ative models and fisher kernels for object recognition. In
IEEE International Conference on Computer Vision, vol-
ume 1, pages 136–143. IEEE, 2005. 8

[15] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 7

[16] T. Jaakkola and D. Haussler. Exploiting generative models in
discriminative classifiers. In Advances in neural information
processing systems, pages 487–493, 1999. 8

[17] T. S. Jaakkola, M. Diekhans, and D. Haussler. Using the
fisher kernel method to detect remote protein homologies. In
ISMB, volume 99, pages 149–158, 1999. 8

[18] D. P. Kingma, T. Salimans, and M. Welling. Variational
dropout and the local reparameterization trick. In Advances
in Neural Information Processing Systems, pages 2575–
2583, 2015. 3, 13

[19] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,
A. Grabska-Barwinska, et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the national
academy of sciences, page 201611835, 2017. 8

[20] R. Leite, P. Brazdil, and J. Vanschoren. Selecting classifi-
cation algorithms with active testing. In International work-
shop on machine learning and data mining in pattern recog-
nition, pages 117–131. Springer, 2012. 8

[21] H. Li, Z. Xu, G. Taylor, and T. Goldstein. Visualizing the loss
landscape of neural nets. arXiv preprint arXiv:1712.09913,
2017. 3

[22] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-rao
metric, geometry, and complexity of neural networks. arXiv
preprint arXiv:1711.01530, 2017. 8

[23] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfash-
ion: Powering robust clothes recognition and retrieval with
rich annotations. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1096–1104,
2016. 5

[24] J. Martens. New perspectives on the natural gradient method.
CoRR, abs/1412.1193, 2014. 2, 12

[25] J. Martens and R. Grosse. Optimizing neural networks with
kronecker-factored approximate curvature. In International
conference on machine learning, pages 2408–2417, 2015. 8

[26] P. Matikainen, R. Sukthankar, and M. Hebert. Model rec-
ommendation for action recognition. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2256–2263. IEEE, 2012. 8

[27] Y. Mroueh and T. Sercu. Fisher gan. In Advances in Neural
Information Processing Systems, pages 2513–2523, 2017. 8

[28] F. Perronnin, J. Sánchez, and T. Mensink. Improving
the fisher kernel for large-scale image classification. In
European conference on computer vision, pages 143–156.
Springer, 2010. 8

[29] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-
age classification with the fisher vector: Theory and practice.
International journal of computer vision, 105(3):222–245,
2013. 8

https://www.kaggle.com/c/imaterialist-challenge-fashion-2018
https://www.kaggle.com/c/imaterialist-challenge-fashion-2018

[30] C. Saunders, A. Vinokourov, and J. S. Shawe-taylor. String
kernels, fisher kernels and finite state automata. In Advances
in Neural Information Processing Systems, pages 649–656,
2003. 8

[31] M. Seeger. Learning with labeled and unlabeled data. Tech-
nical Report EPFL-REPORT-161327, Institute for Adaptive
and Neural Computation, University of Edinburgh, 2000. 8

[32] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 7

[33] M. R. Smith, L. Mitchell, C. Giraud-Carrier, and T. Martinez.
Recommending learning algorithms and their associated hy-
perparameters. arXiv preprint arXiv:1407.1890, 2014. 8

[34] A. Torralba and A. A. Efros. Unbiased look at dataset bias.
In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1521–1528. IEEE, 2011. 8

[35] L. Van Der Maaten. Learning discriminative fisher kernels.
In ICML, volume 11, pages 217–224, 2011. 8

[36] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun,
A. Shepard, H. Adam, P. Perona, and S. Belongie. The inatu-
ralist species classification and detection dataset. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2018. 5

[37] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011. 5

[38] Y.-X. Wang and M. Hebert. Model recommendation: Gen-
erating object detectors from few samples. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1619–1628, 2015. 8

[39] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and
S. Savarese. Taskonomy: Disentangling task transfer learn-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3712–3722, 2018. 8

[40] P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh.
Predicting failures of vision systems. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3566–3573, 2014. 8

A. Analytic FIM for two-layer model
Assume we have data points (xi, yi), i = 1 . . . n and yi ∈ {0, 1}. Assume that a fixed feature extractor applied to data

points x yields features z = φ(x) ∈ Rd and a linear model with parameters w is trained to model the conditional distribution
pi = P (yi = 1|xi) = σ

(
wTφ(xi)

)
, where σ is the sigmoid function. The gradient of the cross-entropy loss with respect to

the linear model parameters is:
∂`

∂w
=

1

N

∑
i

(yi − pi)φ(xi),

and the empirical estimate of the Fisher information matrix is:

F = E
[∂`
∂w

(
∂`

∂w

)T]
= Ey∼pw(y|x)

1

N

∑
i

φ(xi)(yi − pi)2φ(xi)
T

=
1

n

∑
i

φ(xi)(1− pi)piφ(xi)
T

In general, we are also interested in the Fisher information of the parameters of the feature extractor φ(x) since this is
independent of the specifics of the output space y (e.g., for k-way classification). Consider a 2-layer network where the
feature extractor uses a sigmoid non-linearity:

p = σ(wT z) zk = σ(UTk x)

and the matrix U specifies the feature extractor parameters and w are parameters of the task-specific classifier. Taking the
gradient w.r.t. parameters we have:

∂`

∂wj
= (y − p)zj

∂`

∂Ukj
= (y − p)wkzk(1− zk)xj

The Fisher Information Matrix (FIM) consists of blocks:

∂`

∂wi

(
∂`

∂wj

)T
= (y − p)2zizj

∂`

∂Uki

(
∂`

∂wj

)T
= (y − p)2zjzk(1− zk)xi

∂`

∂Uli

(
∂`

∂Ukj

)T
= (y − p)2wkzk(1− zk)wlzl(1− zl)xixj

We focus on the FIM of the probe network parameters which is independent of the dimensionality of the output layer and
write it in matrix form as:

∂`

∂Ul

(
∂`

∂Uk

)T
= (y − p)2(1− zk)zk(1− zl)zlwkwlxxT

Note that each block {l, k} consists of the same matrix (y − p)2 · xxT multiplied by a scalar Skl given as:

Skl = (1− zk)zk(1− zl)zlwkwl

We can thus write the whole FIM as the expectation of a Kronecker product:

F = E[(y − p)2 · S ⊗ xxT]

where the matrix S can be written as
S = wwT � zzT � (1− z)(1− z)T

(a) Random linear + ReLU (b) Polynomial of degree three

Figure 5: Task embeddings computed for a probe network consisting of (a) 10 random linear + ReLU features and (b)
degree three polynomial features projected to 2D using t-SNE. The tasks are random binary partitions of the unit square
visualized in each icon (three tasks are visualized on the left) and cannot be distinguished based purely on the input domain
without considering target labels. Note that qualitatively similar tasks group together, with more complex tasks (requiring
complicated decision boundaries) separated from simpler tasks.

Given a task described by N training samples {(xe, ye)}, the FIM can be estimated empirically as

F =
1

N

∑
e

pe(1− pe) · Se ⊗ xexTe

Se = wwT � zezTe � (1− ze)(1− ze)T

where we take expectation over y w.r.t. the predictive distribution y ∼ pw(y|x).

Example toy task embedding As noted in the main text, the FIM depends on the domain embedding, the particular task
and its complexity. We illustrate these properties of the task embedding using an “toy” task space illustrated in Figure 5. We
generate 64 binary classification tasks by clustering a uniform grid of points in the XY plane into k ∈ [3, 16] clusters using
k-means and assigning a half of them to one category. We consider two different feature extractors, which play the role of
“probe network”. One is a collection of polynomial functions of degree d = 3, the second is 10 random linear features of the
form max(0, ax+ by + c) where a and b are sampled uniformly between [−1/2, 1/2] and c between [−1, 1].

B. Robust Fisher Computation
Consider again the loss function (parametrized with the covariance matrix Σ instead of the precision matrix Λ for conve-

nience of notation):
L(ŵ; Σ) = Ew∼N (ŵ,Σ)[Hpw,p̂(y|x)] + β KL(N (ŵ,Σ) ‖N (0, σ2I)).

We will make use of the fact that the Fisher Information matrix is a positive semidefinite approximation of the Hessian H of
the cross-entropy loss, and coincide with it in local minima [24]. Expanding to the second order around ŵ, we have:

L(ŵ; Σ) =Ew∼N (ŵ,Σ)[Hpŵ,p̂(y|x) +∇wHpŵ,p̂(y|x)(w − ŵ) +
1

2
(w − ŵ)TH(w − ŵ)] + β KL(N (ŵ,Σ) ‖N (0, σ2I))

=Hpŵ,p̂(y|x) +
1

2
tr(ΣH) + β KL(N (ŵ,Σ) ‖N (0, σ2I))

=Hpŵ,p̂(y|x) +
1

2
tr(ΣH) +

β

2
[
ŵ2

σ2
+

1

σ2
trΣ + k log σ2 − log(|Σ|)− k]

where in the last line used the known expression for the KL divergence of two Gaussian. Taking the derivative with respect
to Σ and setting it to zero, we obtain that the expression loss is minimized when Σ−1 = 2

β

(
H + β

2σ2 I
)
, or, rewritten in term

of the precision matrices, when

Λ =
2

β

(
H +

βλ2

2
I
)
,

where we have introduced the precision matrices Λ = Σ−1 and λ2I = 1/σ2I .
We can then obtain an estimate of the Hessian H of the cross-entropy loss at the point ŵ, and hence of the FIM, by

minimizing the loss L(ŵ,Λ) with respect to Λ. This is a more robust approximation than the standard definition, as it
depends on the loss in a whole neighborhood of ŵ of size ∝ Λ, rather than from the derivatives of the loss at a point.
To further make the estimation more robust, and to reduce the number of parameters, we constrain Λ to be diagonal, and
constrain weights wij belonging to the same filter to have the same precision Λij . Optimization of this loss can be performed
easily using Stochastic Gradient Variational Bayes, and in particular using the local reparametrization trick of [18].

The prior precision λ2 should be picked according to the scale of the weights of each layer. In practice, since the weights
of each layer have a different scale, we found it useful to select a different λ2 for each layer, and train it together with Λ,

C. Details of the experiments
C.1. Training of experts and classifiers

Given a task, we train an expert on it by fine-tuning an off-the-shelf ResNet-34 pretrained on ImageNet1. Fine-tuning is
performed by first fixing the weights of the network and retraining from scratch only the final classifier for 10 epochs using
Adam, and then fine-tuning all the network together with SGD for 60 epochs with weight decay 5e-4, starting from learning
rate 0.001 and decreasing it by a factor 0.1 at epochs 40.

Given an expert, we train a classifier on top of it by replacing the final classification layer and training it with Adam for
16 epochs. We use weight decay 5e-4 and learning rate 1e-4.

The tasks we train on generally have different number of samples and unbalanced classes. To limit the impact of this
imbalance on the training procedure, regardless of the total size of the dataset, in each epoch we always sample 10,000
images with replacement, uniformly between classes. In this way, all epochs have the same length and see approximately the
same number of examples for each class. We use this balanced sampling in all experiments, unless noted otherwise.

C.2. Computation of the TASK2VEC embedding

As the described in the main text, the TASK2VEC embedding is obtained by choosing a probe network, retraining the final
classifier on the given task, and then computing the Fisher Information Matrix for the weights of the probe network.

Unless specified otherwise, we use an off-the-shelf ResNet-34 pretrained on ImageNet as the probe network. The Fisher
Information Matrix is computed in a robust way minimizing the loss function L(ŵ; Λ) with respect to the precision matrix Λ,
as described before. To make computation of the embedding faster, instead of waiting for the convergence of the classifier,
we train the final classifier for 2 epochs using Adam and then we continue to train it jointly with the precision matrix Λ using
the loss L(ŵ; Λ). We constrain Λ to be positive by parametrizing it as Λ = exp(L), for some unconstrained variable L.
While for the classifier we use a low learning rate (1e-4), we found it useful to use an higher learning rate (1e-2) to train L.

C.3. Training the MODEL2VECembedding

As described in the main text, in the MODEL2VECembedding we aim to learn a vector representation mj = Fj + bj of
the j-th model in the collection, which represents both the task the model was trained on (through the TASK2VEC embedding
Fj), and the particularities of the model (through the learned parameter bj).

We learn bj by minimizing a k-way classification loss which, given a task t, aims to select the model that performs best
on the task among a collection of k models. Multiple models may perform similarly and close to optimal: to preserve this
information, instead of using a one-hot encoding for the best model, we train using soft-labels obtained as follows:

p̂(yi) = Softmax
(
− αerrori −mean(errori)

std(errori)

)
,

where errori,j is the ground-truth test error obtained by training a classifier for task i on top of the j-th model. Notice that
for α � 1, the soft-label yji reduces to the one-hot encoding of the index of the best performing model. However, for lower
α’s, the vector yi contains richer information about the relative performance of the models.

1https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

We obtain our prediction in a similar way: Let di,j = dasym(ti,mj), then we set our model prediction to be

p(y|di,0, . . . , di,k) = Softmax(−γ di),

where the scalar γ > 0 is a learned parameter. Finally, we learn both the mj’s and γ using a cross-entropy loss:

L =
1

N

N∑
i=0

Eyi∼p̂[p(yi|di,0, . . . , di,k)],

which is minimized precisely when p(y|di,0, . . . , di,k) = p̂(yi).
In our experiments we set α = 20, and minimize the loss using Adam with learning rate 0.05, weight decay 0.0005, and

early stopping after 81 epochs, and report the leave-one-out error (that is, for each task we train using the ground truth of all
other tasks and test on that task alone, and report the average of the test errors obtained in this way).

D. Datasets, tasks and meta-tasks

Our two model selection meta-tasks, iNat+CUB and Mixed, are curated as follows. For iNat+CUB, we generated 50
tasks and (the same) experts from iNaturalist and CUB. The 50 tasks consist of 25 iNaturalist tasks and 25 CUB tasks to
provide a balanced mix from two datasets of the same domain. We generated the 25 iNaturalist tasks by grouping species
into orders and then choosing the top 25 orders with the most samples. The number of samples for tasks shows the heavy-tail
distribution typical of real data, with the top task having 64,100 samples (the Passeriformes order classification task), while
most tasks have around 6, 000 samples.

The 25 CUB tasks were similarly generated with 10 order tasks but additionally has 15 Passeriformes family tasks: After
grouping CUB into orders, we determined 11 usable order tasks (the only unusable order task, Gaviiformes, has only one
species so it makes no sense to train on it). However, one of the orders—Passeriformes—dominated all other orders with 134
species when compared to 3-24 species of other orders. Therefore, we decided to further subdivide the Passeriformes order
task into family tasks (i.e., grouping species into families) to provide a more balanced partition. This resulted in 15 usable
family tasks (i.e., has more than one species) out of 22 family tasks. Unlike iNaturalist, tasks from CUB have only a few
hundreds of samples and hence benefit more from carefully selecting an expert.

In the iNAT+CUB meta-task the classification tasks are the same tasks used to train the experts. To avoid trivial solu-
tions (always selecting the expert trained on the task we are trying to solve) we test in a leave-one-out fashion: given a
classficication task, we aim to select the best expert that was not trained on the same data.

For the Mixed meta-task, we chose 40 random tasks and 25 curated experts from all datasets. The 25 experts were
generated from iNaturalist, iMaterialist and DeepFashion (CUB, having fewer samples than iNaturalist, is more appropriate
as tasks). For iNaturalist, we trained 15 experts: 8 order tasks and 7 class tasks (species ordered by class), both with number
of samples greater than 10,000. For DeepFashion, we trained 3 category experts (upper-body, lower-body, full-body). For
iMaterialist, we trained 2 category experts (pants, shoes) and 5 multi-label experts by grouping attributes (color, gender,
neckline, sleeve, style). For the purposes of clustering attributes into larger groups for training experts (and color coding
the dots in Figure 1), we obtained a de-anonymized list of the iMaterialist Fashion attribute names from the FGCV contest
organizers.

The 40 random tasks were generated as follows. In order to balance tasks among all datasets, we selected 5 CUB, 15
iNaturalist, 15 iMaterialist and 5 DeepFashion tasks. Within those datasets, we randomly pick tasks with a sufficient number
of validation samples and maximum variety. For the iNaturalist tasks, we group the order tasks into class tasks, filter out
the number of validation samples less than 100 and randomly pick order tasks within each class. For the iMaterialist tasks,
we similarly group the tasks (e.g. category, style, pattern), filter out tasks with less than 1,000 validation samples and
randomly pick tasks within each group. For CUB, we randomly select 2 order tasks and 3 Passeriformes family tasks, and
for DeepFashion, we randomly select the tasks uniformly. All this ensures that we have a balanced variety of tasks.

For the data efficiency experiment, we trained on a subset of the tasks and experts in the Mixed meta-task: We picked
the Accipitriformes, Asparagales, Upper-body, Short Sleeves for the tasks, and the Color, Lepidoptera, Upper-body, Passer-
iformes, Asterales for the experts. Tasks where selected among those that have more than 30,000 training samples in order
to represent all datasets. The experts were also selected to be representative of all datasets, and contain both strong and very
weak experts (such as the Color expert).

E. Error matrices

[CUB] P
roc

ella
riif

orm
es

(Ave
s)

[CUB] C
ucu

lifo
rm

es
(Ave

s)

[CUB] C
ha

rad
riif

orm
es

(Ave
s)

[CUB] C
ap

rim
ulg

ifo
rm

es
(Ave

s)

[CUB] P
ele

can
ifo

rm
es

(Ave
s)

[CUB] P
icif

orm
es

(Ave
s)

[CUB] A
nse

rifo
rm

es
(Ave

s)

[CUB] P
od

icip
ed

ifo
rm

es
(Ave

s)

[CUB] A
po

dif
orm

es
(Ave

s)

[CUB] C
ora

ciif
orm

es
(Ave

s)

[CUB] Ic
ter

ida
e (

Ave
s)

[CUB] C
ard

ina
lida

e (
Ave

s)

[CUB] M
im

ida
e (

Ave
s)

[CUB] P
aru

lida
e (

Ave
s)

[CUB] E
mbe

riz
ida

e (
Ave

s)

[CUB] C
orv

ida
e (

Ave
s)

[CUB] F
rin

gill
ida

e (
Ave

s)

[CUB] T
yra

nn
ida

e (
Ave

s)

[CUB] L
an

iida
e (

Ave
s)

[CUB] P
ass

eri
da

e (
Ave

s)

[CUB] H
iru

nd
inid

ae
 (A

ve
s)

[CUB] T
hra

up
ida

e (
Ave

s)

[CUB] V
ire

on
ida

e (
Ave

s)

[CUB] B
om

by
cill

ida
e (

Ave
s)

[CUB] T
rog

lod
yti

da
e (

Ave
s)

[iN
at]

 Pa
sse

rifo
rm

es
(Ave

s)

[iN
at]

 Le
pid

op
ter

a (
Ins

ect
a)

[iN
at]

 Sq
ua

mata
 (R

ep
tili

a)

[iN
at]

 Odo
na

ta
(In

sec
ta)

[iN
at]

 Cha
rad

riif
orm

es
(Ave

s)

[iN
at]

 Aste
ral

es
(M

ag
no

liop
sid

a)

[iN
at]

 Pe
lec

an
ifo

rm
es

(Ave
s)

[iN
at]

 Anse
rifo

rm
es

(Ave
s)

[iN
at]

 La
miale

s (
Mag

no
liop

sid
a)

[iN
at]

 Anu
ra

(Amph
ibia

)

[iN
at]

 Acci
pit

rifo
rm

es
(Ave

s)

[iN
at]

 Cary
op

hy
llal

es
(M

ag
no

liop
sid

a)

[iN
at]

 Cole
op

ter
a (

Ins
ect

a)

[iN
at]

 Aspa
rag

ale
s (

Lili
op

sid
a)

[iN
at]

 Rod
en

tia
 (M

am
malia

)

[iN
at]

 Carn
ivo

ra
(M

am
malia

)

[iN
at]

 Pic
ifo

rm
es

(Ave
s)

[iN
at]

 Fa
ba

les
 (M

ag
no

liop
sid

a)

[iN
at]

 Rosa
les

 (M
ag

no
liop

sid
a)

[iN
at]

 Colu
mbif

orm
es

(Ave
s)

[iN
at]

 Pe
rci

for
mes

(Acti
no

pte
ryg

ii)

[iN
at]

 Sa
pin

da
les

 (M
ag

no
liop

sid
a)

[iN
at]

 Ran
un

cul
ale

s (
Mag

no
liop

sid
a)

[iN
at]

 Gen
tia

na
les

 (M
ag

no
liop

sid
a)

[iN
at]

 Er
ica

les
 (M

ag
no

liop
sid

a)

[CUB] Procellariiformes (Aves)
[CUB] Cuculiformes (Aves)

[CUB] Charadriiformes (Aves)
[CUB] Caprimulgiformes (Aves)

[CUB] Pelecaniformes (Aves)
[CUB] Piciformes (Aves)

[CUB] Anseriformes (Aves)
[CUB] Podicipediformes (Aves)

[CUB] Apodiformes (Aves)
[CUB] Coraciiformes (Aves)

[CUB] Icteridae (Aves)
[CUB] Cardinalidae (Aves)

[CUB] Mimidae (Aves)
[CUB] Parulidae (Aves)

[CUB] Emberizidae (Aves)
[CUB] Corvidae (Aves)

[CUB] Fringillidae (Aves)
[CUB] Tyrannidae (Aves)

[CUB] Laniidae (Aves)
[CUB] Passeridae (Aves)

[CUB] Hirundinidae (Aves)
[CUB] Thraupidae (Aves)
[CUB] Vireonidae (Aves)

[CUB] Bombycillidae (Aves)
[CUB] Troglodytidae (Aves)
[iNat] Passeriformes (Aves)
[iNat] Lepidoptera (Insecta)

[iNat] Squamata (Reptilia)
[iNat] Odonata (Insecta)

[iNat] Charadriiformes (Aves)
[iNat] Asterales (Magnoliopsida)

[iNat] Pelecaniformes (Aves)
[iNat] Anseriformes (Aves)

[iNat] Lamiales (Magnoliopsida)
[iNat] Anura (Amphibia)

[iNat] Accipitriformes (Aves)
[iNat] Caryophyllales (Magnoliopsida)

[iNat] Coleoptera (Insecta)
[iNat] Asparagales (Liliopsida)

[iNat] Rodentia (Mammalia)
[iNat] Carnivora (Mammalia)

[iNat] Piciformes (Aves)
[iNat] Fabales (Magnoliopsida)
[iNat] Rosales (Magnoliopsida)

[iNat] Columbiformes (Aves)
[iNat] Perciformes (Actinopterygii)
[iNat] Sapindales (Magnoliopsida)

[iNat] Ranunculales (Magnoliopsida)
[iNat] Gentianales (Magnoliopsida)

[iNat] Ericales (Magnoliopsida)

15 18 18 20 16 17 19 16 22 17 22 17 18 23 24 19 19 16 22 17 17 23 23 24 20 17 20 15 18 14 30 18 15 25 26 24 26 18 19 20 19 25 18 26 19 27 24 20 22 24
12 15 17 18 18 23 17 20 18 22 23 18 14 18 18 21 20 20 20 16 22 23 22 18 19 12 16 20 19 19 32 14 19 25 17 20 29 21 27 19 17 16 26 29 19 20 31 27 25 25
45 44 41 45 43 45 45 46 46 46 47 49 46 47 47 45 46 47 48 47 44 47 48 44 48 36 42 45 45 32 51 41 43 47 48 46 50 42 47 48 45 44 50 48 43 44 49 48 50 48
21 24 29 16 27 21 16 23 27 23 21 25 25 27 20 27 23 23 25 27 24 20 29 21 17 27 24 16 19 23 33 27 20 23 24 23 23 27 25 28 23 17 29 35 35 21 29 27 31 31
18 17 22 15 17 19 19 20 20 19 17 19 17 19 20 15 18 16 21 18 17 20 23 17 21 20 19 17 20 19 24 17 18 20 24 22 25 20 23 17 19 20 19 20 18 16 25 25 23 24
13 11 15 13 10 8 11 12 14 14 13 13 14 11 15 12 16 17 13 15 16 14 15 16 16 6 9 14 11 10 13 9 12 14 14 16 14 10 12 13 12 3 15 15 15 10 16 16 15 13
16 14 16 13 12 15 12 12 12 11 14 16 17 12 13 13 15 15 13 17 14 15 15 14 14 12 11 12 12 12 20 10 8 17 14 14 12 11 14 14 10 12 14 14 15 11 17 16 15 17
20 17 27 16 21 21 13 16 19 16 17 24 24 20 20 18 22 20 22 17 17 18 20 17 22 17 16 24 21 13 26 17 15 18 25 20 17 15 18 17 22 17 19 25 22 18 23 20 17 17
22 27 24 22 24 27 25 21 23 27 23 29 27 25 24 22 27 27 26 27 22 27 30 25 22 18 19 24 21 22 26 24 19 27 26 24 27 31 28 22 21 22 32 22 25 24 27 26 28 28
19 21 21 19 19 20 18 20 21 19 21 23 22 26 21 22 22 30 17 20 21 19 26 22 25 17 16 20 20 15 30 18 16 29 25 19 20 19 24 21 18 21 31 25 21 24 30 24 29 21
28 31 32 27 32 31 30 31 34 30 25 30 29 28 32 32 29 29 30 28 31 34 28 30 28 20 25 30 29 26 35 26 27 35 35 28 34 29 34 33 30 28 32 36 29 28 37 36 36 36
12 13 10 14 8 11 12 14 12 9 14 7 13 14 16 13 9 14 10 12 15 16 13 12 13 6 10 16 14 9 18 9 13 18 13 10 19 11 13 13 14 12 16 18 11 12 15 18 20 19
7 14 6 8 9 10 8 14 12 12 13 10 11 8 11 9 14 13 11 12 11 12 15 10 11 5 5 8 10 10 17 9 4 16 10 9 14 11 14 8 11 10 10 14 5 8 10 15 13 15
35 37 41 36 36 36 38 42 36 40 37 37 36 23 36 36 35 39 40 40 40 38 34 38 35 14 26 36 33 33 42 33 34 42 37 40 41 29 39 36 37 30 42 42 34 33 43 45 43 41
36 42 43 38 38 42 38 43 40 41 41 44 40 39 29 41 42 43 41 38 42 43 42 42 39 18 31 40 38 32 53 39 40 50 43 42 49 34 45 43 41 36 47 50 35 40 50 50 51 49
29 30 32 29 29 29 29 29 33 27 30 30 32 30 33 25 32 30 30 28 27 30 31 29 30 23 26 29 32 27 35 30 32 33 30 32 35 27 33 27 25 31 31 33 28 34 35 35 34 35
7 5 11 7 12 6 9 9 7 9 7 8 8 4 8 11 6 8 10 7 8 7 8 10 6 4 7 7 6 6 8 6 7 13 7 9 7 7 11 7 8 7 9 13 7 6 13 10 9 11
42 43 42 41 38 40 40 41 43 43 38 42 41 42 40 41 43 36 46 44 40 42 40 42 42 24 39 40 41 38 46 40 37 47 40 41 49 37 40 43 42 39 45 44 37 41 46 50 46 46
35 35 32 28 27 38 40 42 35 33 33 33 45 22 30 32 35 33 22 33 35 35 30 28 42 25 27 37 23 28 32 20 17 42 33 30 37 27 35 37 28 27 35 37 30 33 37 35 37 32
38 27 32 38 40 35 33 32 35 37 32 42 30 35 33 35 32 30 28 32 33 27 37 37 27 18 35 22 30 33 38 35 25 38 30 32 35 28 35 32 32 28 33 35 25 35 35 43 37 42
27 23 29 20 21 21 19 24 27 23 25 27 24 22 24 21 25 20 24 23 23 27 23 28 22 12 19 26 29 17 32 18 18 30 25 24 28 20 29 25 24 23 28 26 23 27 34 26 28 26
10 13 7 7 13 8 13 13 13 10 5 7 10 10 5 8 8 12 12 8 13 8 15 13 3 3 5 7 5 8 13 8 10 15 7 10 8 7 8 5 7 8 12 13 7 12 10 18 12 13
32 33 39 35 36 31 34 38 33 35 33 35 34 27 34 29 35 33 35 34 36 33 32 41 30 15 24 32 32 27 41 27 33 45 37 35 44 34 43 29 33 28 44 42 31 37 48 46 42 40
10 10 15 7 10 8 13 20 10 10 10 12 13 10 13 15 10 7 8 12 10 8 12 13 8 7 15 12 12 18 17 12 13 15 18 10 18 13 13 12 7 10 17 12 13 12 17 8 15 13
32 32 33 27 31 32 30 36 31 32 30 31 31 31 30 33 26 31 35 30 29 34 30 30 22 18 24 29 33 29 35 30 31 32 28 29 33 32 35 30 30 31 40 35 34 30 37 38 32 34
78 81 81 78 78 81 79 82 80 81 79 81 80 80 81 80 78 81 82 78 79 81 81 81 80 56 73 79 78 76 86 75 77 84 82 78 85 77 82 79 79 77 85 85 75 78 86 85 87 84
61 60 62 58 60 59 61 63 60 60 60 61 60 62 60 60 60 63 62 60 60 62 62 60 60 54 31 54 56 60 62 59 60 60 55 60 60 54 62 60 59 60 62 62 60 57 61 62 63 61
73 74 73 70 72 73 73 75 74 72 75 74 70 75 74 72 73 76 74 72 74 72 75 72 73 68 68 61 71 71 75 71 74 74 73 73 73 71 74 71 72 73 77 76 71 70 76 77 77 76
71 73 73 69 70 70 73 72 70 70 72 74 71 71 73 71 71 74 72 72 71 73 71 71 72 65 59 67 45 69 72 68 71 69 70 71 70 64 69 71 70 68 67 72 71 69 74 72 73 71
62 60 61 59 65 62 63 65 64 62 65 64 59 63 65 64 60 66 63 60 61 62 65 64 65 54 59 59 62 48 70 57 57 65 66 60 66 60 69 62 63 60 68 70 61 64 69 69 69 65
69 68 69 69 69 69 70 70 69 67 68 67 66 69 68 67 68 69 68 70 69 69 69 69 69 66 64 66 66 67 49 69 69 54 69 69 57 65 59 69 68 69 58 60 68 66 63 58 58 59
58 61 55 49 54 56 54 57 58 59 62 55 58 64 60 59 57 64 57 54 57 57 63 53 59 48 50 54 60 53 67 46 51 59 56 51 62 57 64 51 47 56 64 64 54 59 67 67 67 61
60 60 63 61 61 60 60 63 64 60 66 65 60 62 63 59 61 66 60 62 58 66 67 59 62 57 59 66 62 56 69 59 57 61 67 61 66 63 65 64 62 62 64 65 63 65 66 65 68 64
62 58 61 60 59 58 61 63 57 59 58 59 58 60 61 56 60 60 60 61 61 59 61 61 63 55 57 57 56 57 43 59 61 38 57 60 47 54 45 60 58 59 46 45 61 58 52 49 47 48
69 69 73 65 71 72 72 71 69 72 71 73 70 73 71 69 71 71 73 69 70 75 70 74 66 68 60 64 70 70 75 68 71 71 58 70 74 64 71 72 73 70 70 74 70 69 76 75 71 71
69 69 69 68 73 72 68 75 74 76 70 73 68 74 69 70 70 77 73 69 71 76 71 72 71 62 67 68 68 68 77 69 68 76 66 66 74 66 71 72 68 66 74 76 71 72 71 77 73 72
60 57 59 56 58 55 60 58 55 58 55 54 57 57 59 53 58 56 57 57 56 55 57 55 54 55 53 53 56 57 44 56 57 45 54 57 42 53 48 53 56 57 47 50 56 54 50 46 48 46
45 42 44 41 43 42 42 46 43 43 43 43 42 40 45 42 44 45 45 40 43 43 41 40 43 34 29 40 37 41 49 41 43 44 39 44 44 29 43 42 42 40 42 46 43 38 52 48 45 46
51 50 53 48 50 51 51 54 50 50 52 48 52 52 55 50 52 54 52 51 53 45 51 50 52 44 47 49 51 51 38 48 50 38 49 53 40 48 34 51 49 52 41 42 52 48 44 44 42 44
56 50 54 51 48 49 48 58 49 49 53 51 48 50 52 46 52 50 47 50 50 48 48 46 46 43 51 44 50 53 56 52 56 58 51 50 58 51 54 44 50 52 54 54 50 48 59 61 59 59
52 47 58 48 47 54 49 56 49 51 53 51 50 55 54 52 50 49 52 47 52 49 53 49 50 52 49 49 53 54 58 53 54 58 54 53 58 53 56 54 46 52 54 59 49 49 57 57 57 54
59 62 60 52 60 56 57 52 59 62 53 63 61 64 62 63 58 63 61 60 61 63 66 59 63 41 50 60 51 52 69 55 54 72 61 59 66 50 60 53 56 48 63 67 58 60 70 66 68 69
61 60 59 57 61 64 65 61 60 59 58 58 59 61 59 59 60 63 61 61 60 58 63 58 60 56 54 60 58 59 49 58 61 46 58 60 49 57 48 59 60 60 43 49 62 57 50 52 50 50
65 65 65 66 64 63 71 70 64 63 63 64 65 68 64 62 62 66 65 66 68 63 69 67 66 59 61 62 67 68 51 62 66 54 62 63 57 61 62 64 62 66 59 49 64 63 56 57 58 58
53 50 55 51 50 58 55 56 59 59 57 57 50 62 59 50 55 58 55 52 57 59 59 60 57 41 50 51 59 50 67 55 51 62 58 50 61 50 56 59 58 59 67 61 50 64 64 63 59 65
45 46 48 45 44 48 45 52 44 47 46 45 44 49 48 44 45 50 50 46 48 43 48 43 45 41 35 45 43 46 48 46 48 47 47 51 48 41 46 49 48 46 48 49 48 29 50 50 48 46
64 68 70 67 63 64 67 64 64 66 70 65 63 67 67 69 67 68 67 66 69 64 65 65 63 64 61 61 65 65 64 67 70 59 63 67 60 62 64 65 67 64 56 61 70 57 53 60 61 62
50 48 50 50 49 48 53 51 49 48 50 47 46 52 53 45 51 51 50 49 52 49 50 49 50 51 48 49 51 52 35 48 50 33 50 54 38 49 37 50 49 49 39 37 54 47 42 35 39 39
57 54 52 55 51 54 56 55 53 54 54 53 54 55 54 52 50 53 53 53 52 53 55 54 55 53 51 51 50 57 41 54 57 42 51 55 44 48 45 57 56 51 46 45 54 48 47 45 40 43
49 46 52 47 48 48 47 49 47 48 46 44 47 49 48 48 51 49 49 47 50 47 49 52 48 44 45 49 45 51 38 48 47 37 46 51 38 45 35 47 50 49 40 40 50 45 40 39 41 35

Upp
er-

bo
dy

 clo
the

s

Low
er-

bo
dy

 clo
the

s

Fu
ll-b

od
y c

lot
he

s
Colo

r

Gen
de

r

Neck
line

Sle
ev

e
Sty

le
Pa

nts
Sh

oe
s

Ave
s

Mag
no

liop
sid

a

Ins
ect

a

Rep
tili

a

Mam
malia

Lili
op

sid
a

Amph
ibia

Pa
sse

rifo
rm

es

Lep
ido

pte
ra

Sq
ua

mata

Odo
na

ta

Cha
rad

riif
orm

es

Aste
ral

es

Pe
lec

an
ifo

rm
es

Anse
rifo

rm
es

[CUB] Parulidae

[CUB] Emberizidae

[CUB] Tyrannidae

[CUB] Charadriiformes

[INAT] Accipitriformes

[INAT] Caryophyllales

[INAT] Coleoptera

[INAT] Rodentia

[CUB] Pelecaniformes

[INAT] Carnivora

[INAT] Piciformes

[INAT] Fabales

[INAT] Rosales

[INAT] Columbiformes

[INAT] Perciformes

[INAT] Hymenoptera

[INAT] Testudines

[INAT] Hemiptera

[INAT] Suliformes

[INAT] Caudata

[IMAT] Male

[IMAT] Marbled

[DEEPFASHION] Sleeve

[IMAT] Printed

[IMAT] Prom dresses

[IMAT] Reversible

[IMAT] Ruched

[IMAT] Blouses

[IMAT] Slippers

[IMAT] Bodycon

[IMAT] Bodysuits

[IMAT] Velour

[IMAT] Winter boots

[IMAT] Criss cross

[DEEPFASHION] Floral

[IMAT] Embroidered

[IMAT] Flannel

[DEEPFASHION] Knit

[DEEPFASHION] Lace

[DEEPFASHION] Print

40 38 40 92 45 44 47 43 39 41 16 39 26 35 28 38 33 14 25 36 33 32 44 33 33

39 44 42 92 43 43 48 46 42 47 21 48 30 39 36 45 38 20 32 40 39 30 50 38 35

34 43 44 80 41 40 44 42 42 46 26 44 38 40 39 40 43 25 37 39 41 37 44 34 39

44 47 49 89 46 45 48 46 43 47 35 46 40 42 45 42 48 37 41 42 45 32 51 40 38

69 70 68 93 69 70 74 77 69 76 59 69 67 68 65 72 69 67 64 71 72 67 75 68 70

58 61 57 95 63 64 71 62 58 60 56 36 49 54 56 44 53 56 51 54 54 60 43 58 58

43 45 45 95 49 51 58 52 45 47 33 39 22 37 38 42 39 33 29 39 38 42 46 43 39

52 56 54 86 54 54 61 56 54 52 41 49 46 47 49 54 50 45 52 45 54 52 51 52 49

12 22 16 69 20 24 24 20 17 16 14 22 19 14 20 18 25 20 14 18 20 20 26 19 14

51 55 53 94 57 52 59 62 60 55 46 51 44 54 48 53 53 50 47 54 50 55 57 56 54

63 66 63 96 66 64 71 71 63 63 37 63 52 52 54 64 62 35 47 58 56 60 71 58 57

61 65 60 95 65 62 73 64 63 62 56 37 50 59 57 45 57 55 56 60 60 56 47 59 61

66 66 69 95 69 64 71 70 66 68 59 46 61 66 63 56 63 61 62 66 63 65 53 62 61

50 59 61 90 51 48 50 57 50 60 37 55 48 56 51 63 52 40 57 54 57 50 62 55 50

48 49 52 97 50 47 57 56 44 50 38 43 35 42 45 42 45 39 36 45 44 47 47 47 47

60 62 61 94 67 62 68 67 61 65 52 61 43 53 53 60 57 53 49 55 56 59 64 57 54

64 65 66 89 62 59 68 65 63 63 54 61 57 59 58 62 56 54 56 56 58 58 65 61 54

44 47 52 95 53 53 60 53 51 49 39 45 27 39 44 43 43 39 30 40 43 44 50 44 45

62 72 63 88 63 70 67 73 65 62 42 63 62 55 60 50 65 48 48 57 53 58 65 53 50

54 52 56 89 60 60 67 60 54 56 52 60 52 45 52 54 42 51 50 49 59 50 55 55 52

12 10 13 30 6 9 9 10 10 11 14 11 16 14 14 14 18 13 15 10 11 8 10 11 14

9 8 10 21 9 7 9 7 7 6 5 6 5 9 5 8 5 5 6 5 6 4 6 7 6

25 33 22 19 41 21 40 17 31 39 40 21 42 47 22 32 32 27 44 65 37 41 32 38 32

33 22 17 66 24 40 26 27 26 32 30 28 28 28 20 34 29 27 26 35 24 35 30 35 34

9 9 12 28 9 10 8 7 7 8 10 12 9 12 9 10 10 11 5 8 12 6 8 11 17

17 26 13 30 18 27 17 17 16 14 18 19 22 23 18 17 20 24 20 17 21 17 24 20 25

26 26 14 20 20 14 21 22 19 27 20 19 20 26 14 14 22 27 26 26 21 16 22 23 23

19 22 23 27 25 25 24 23 25 31 23 21 23 29 22 25 23 15 30 21 28 25 19 25 31

2 4 9 24 6 7 6 6 9 1 3 4 6 4 5 9 7 8 4 7 4 5 6 4 6

30 28 23 44 22 25 28 25 25 26 23 30 32 27 27 30 21 25 27 27 25 20 23 20 34

28 28 23 49 11 16 20 14 18 19 24 17 20 14 22 8 10 24 20 18 21 15 22 16 23

9 12 10 36 15 10 19 13 14 11 11 14 17 11 13 15 10 12 13 16 14 11 10 13 17

4 4 4 20 4 3 4 4 2 0 4 3 4 3 4 3 4 6 5 5 4 3 5 5 5

25 22 24 33 28 19 26 11 18 10 16 26 23 15 20 22 16 25 12 18 28 20 13 20 24

14 13 14 52 29 24 25 19 30 21 26 26 16 22 18 26 16 19 19 18 28 21 19 23 30

40 15 32 58 48 32 43 14 30 24 33 43 12 30 36 27 43 24 29 25 16 25 25 33 33

14 15 10 40 20 7 15 11 8 9 10 13 10 15 14 8 16 11 17 13 18 19 13 14 16

22 36 31 80 48 20 53 46 22 23 15 25 31 53 18 34 29 41 52 31 27 31 21 28 35

25 34 29 24 26 34 34 15 32 28 36 26 16 14 30 38 18 28 30 27 33 25 22 22 37

21 19 25 37 16 21 26 18 21 18 19 23 17 32 23 22 21 21 22 27 25 24 19 19 20

Figure 6: Meta-tasks ground-truth error matrices. (Best viewed magnified). (Left) Error matrix for the CUB+iNat
meta-task. The numbers in each cell is the test error obtained by training a classifier on a given combination of task (rows)
and expert (columns). The background color represent the Asymmetric TASK2VEC distance between the target task and
the task used to train the expert. Numbers in red indicate the selection made by the model selection algorithm based on
the Asymmetric TASK2VEC embedding. The (out-of-diagonal) optimal expert (when different from the one selected by our
algorithm), is highlighted in blue. (Right) Same as before, but for the Mixed meta-task.

