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Abstract

A large fraction of the arithmetic operations re-

quired to evaluate deep neural networks (DNNs)

consists of matrix multiplications, in both con-

volution and fully connected layers. We perform

end-to-end learning of low-cost approximations of

matrix multiplications in DNN layers by casting

matrix multiplications as 2-layer sum-product net-

works (SPNs) (arithmetic circuits) and learning

their (ternary) edge weights from data. The SPNs

disentangle multiplication and addition operations

and enable us to impose a budget on the number of

multiplication operations. Combining our method

with knowledge distillation and applying it to im-

age classification DNNs (trained on ImageNet)

and language modeling DNNs (using LSTMs),

we obtain a first-of-a-kind reduction in number of

multiplications (over 99.5%) while maintaining

the predictive performance of the full-precision

models. Finally, we demonstrate that the pro-

posed framework is able to rediscover Strassen’s

matrix multiplication algorithm, learning to mul-

tiply 2× 2 matrices using only 7 multiplications

instead of 8.

1. Introduction

The outstanding predictive performance of deep neural net-

works (DNNs) often comes at the cost of large model size,

and corresponding computational inefficiency. This can

make the deployment of DNNs on mobile and embedded

hardware challenging. For example, a full-precision ResNet-

152 (He et al., 2016a) contains 60.2 million parameters and

one forward pass requires 11.3 billion floating point op-

erations. A variety of methods to address this issue were

proposed recently, including optimizing the network archi-

tecture, factorizing the weight tensors, pruning the weights,

1ETH Zürich, Zürich, Switzerland (most of this work was
done while MT was at Amazon AI) 2Amazon AI, Palo Alto, CA,
USA 3Caltech, Pasadena, CA, USA. Correspondence to: Michael
Tschannen <michaelt@nari.ee.ethz.ch>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

and reducing the numerical precision of weights and activa-

tions (see Section 1.1 for a detailed overview).

These prior works mainly focused on decreasing the number

of multiply-accumulate operations used by DNNs. In con-

trast, in this paper, the objective that guides our algorithm

design is a reduction of the number of multiplications. This

algorithm design principle has led to many fast algorithms

in linear algebra, most notably Strassen’s matrix multiplica-

tion algorithm (Strassen, 1969). Strassen’s algorithm uses 7
instead 8 multiplications to compute the product of two 2×2
matrices (and requires O(n2.807) operations for multiplying

n× n matrices). In the context of DNNs, the same design

principle led to the Winograd filter-based convolution algo-

rithm proposed by Lavin & Gray (2016). This algorithm

only requires 16 instead of 36 multiplications to compute

2 × 2 outputs of 2D convolutions with 3 × 3 kernels and

achieves a 2–3× speedup on GPU in practice.

From a hardware perspective, multipliers occupy consider-

ably more area on chip than adders (for fixed-point data

types). Field-programmable gate arrays (FPGAs) and

application-specific integrated circuits (ASICs) can there-

fore potentially accommodate considerably more adders

than multipliers, and trading off multiplications against ad-

ditions is desirable. In fact, it was demonstrated recently

that DNN architectures which rely on a large number of

additions and a small number of multiplications (such as (Li

et al., 2016)) achieve a 60% higher throughput on FPGA

than on GPU, while being 2.3× better in performance per

watt (Nurvitadhi et al., 2017). In the context of ASICs,

reducing the number of multiplications is beneficial as mul-

tiplication operations consume significantly more energy

than addition operations (3–30× depending on the data type

(Horowitz, 2014; Andri et al., 2018)). More generally, re-

placing multiplications in DNNs by additions leads to a

reduction in models size as addition/subtraction can be en-

coded as a binary weight. This is beneficial in terms of

throughput for most deep learning applications, which are

typically memory-bound.

Motivated by these observations, we propose a novel frame-

work to drastically reduce the number of multiplications

used by DNNs for inference. Specifically, for every DNN

layer, we cast the (matrix) multiplication of the weight ma-

trix with the activations as a 2-layer sum-product network
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Figure 1. Left: Illustration of the 2-layer SPN (1), implementing an (approximate) matrix multiplication. The edges (i.e., the matrices

Wa, Wb, Wc) have weights in K = {−1, 0, 1}. Right: Application of the proposed framework to 2D convolution leads to p-strided 2D

convolution with Wb, followed by channel-wise scaling by ã = Wavec(A), followed by 1/p-strided transposed 2D convolution with Wc.

(SPN) (arithmetic circuit). The SPNs disentangle (scalar)

multiplications and additions in a way similar to Strassen’s

algorithm. The number of hidden units in the SPNs therefore

determines the multiplication budget of the corresponding

DNN layers. We then learn the addition and multiplication

operations for all layers jointly from data by learning the

edges of the SPNs, encoded as ternary {−1, 0, 1} matrices.

As the transforms realized by the SPNs are approximate

and adapted to the weight matrices and distribution of the

activation tensors in the DNN, this allows us to reduce the

number of multiplications much more drastically than hand-

engineered transforms like Strassen’s algorithm or the more

specialized Winograd filter-based convolution. In summary,

our main contributions are the following.

• We propose a SPN-based framework for stochastic

gradient-based end-to-end learning of fast approximate

transforms for the arithmetic operations in DNN layers.

• Our framework allows fine-grained control of the num-

ber of multiplications and additions used at inference

time, enabling precise adjustment of the tradeoff be-

tween arithmetic complexity and accuracy of DNN

models.

• Extensive evaluations on CIFAR-10 and ImageNet

show that our method applied to ResNet (He et al.,

2016a) yields the same or higher accuracy than existing

complexity reduction methods while using consider-

ably fewer multiplications. For example, for ResNet-

18 our method reduces the number of multiplications

by 99.63% while incurring a top-1 accuracy degrada-

tion of only 2.0% compared to the full-precision model

on ImageNet.

• Our method applied to a language model with convolu-

tion and LSTM layers (Kim et al., 2016a) results in a

99.69% reduction in multiplications while inducing an

increase of only 3.3% in perplexity.

• Combining our method with knowledge distillation

(KD) techniques, we obtain for the first time massive

reductions in number of multiplications (99.5% and

more) while maintaining the predictive performance of

the full-precision models, for both image classification

and language modeling.

• We demonstrate that the proposed framework is able

to rediscover Strassen’s algorithm, i.e., it can learn to

(exactly) multiply 2 × 2 matrices using only 7 multi-

plications instead of 8.

Two key aspects of our approach that lead to gains compared

previous methods are (i) our method is specifically tailored

to reduce the number of multiplications whereas some pre-

vious works put more emphasis on model size reduction,

and (ii) we leverage knowledge distillation which improves

our results further.

We continue by reviewing related work in Section 1.1 and

then describe our method and its application to 2D convo-

lution in Section 2. A detailed numerical evaluation of our

method is presented in Section 3 and concluding remarks

can be found in Section 4.

1.1. Related work

We briefly review the most common approaches to compress

DNNs, focusing on methods decreasing computational com-

plexity rather than memory footprint. In all cases, there is a

tradeoff between the complexity reduction and reduction in

the (inference) accuracy of the compressed model.

A popular way to speed up DNNs, in particular convo-

lutional neural networks (CNNs), is to utilize resource-

efficient architectures, such as SqueezeNet (Iandola et al.,

2016), MobileNet (Howard et al., 2017), and ShuffleNet

(Zhang et al., 2017). SqueezeNet reduces the convolution

kernel size. MobileNet and ShuffleNet rely on depth-wise

separable convolutions and grouped convolutions, respec-

tively. More sophisticated grouping and sharing techniques

are studied by Wang et al. (2016).

Another strategy to accelerate CNNs is to exploit the low-

rank structure prevalent in weight matrices and convolution

kernels. Denton et al. (2014); Novikov et al. (2015); Kim

et al. (2016b) use tensor decompositions to obtain low-rank

approximations of pretrained weight matrices and filter ten-

sors, then finetune the approximated weight matrices and

filters to restore the accuracy of the compressed models.
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Other works (Tai et al., 2016; Wen et al., 2017) employ low

rank-promoting regularizers to further reduce the rank of

the filter tensors. A framework to exploit low-rank structure

in the filter responses is presented by Zhang et al. (2016).

Sparsifying filters and pruning channels are popular meth-

ods to make DNNs more efficient during inference. Wen

et al. (2016) and Lebedev & Lempitsky (2016) rely on

group norm-based regularizers and demonstrate their ef-

fectiveness in penalizing unimportant filters and channels,

promoting hardware-friendly filter shapes, regularizing the

network depth, and optimizing the filter receptive fields.

Inter-channel and intra-channel redundancy is exploited by

Liu et al. (2015) via a two-stage factorization procedure.

An energy-aware methodology to prune filters of CNNs is

described in (Yang et al., 2017).

Finally, an effective way to adapt DNNs to resource-

constrained platforms is to reduce the numerical precision

of their weights and/or activations. Examples for DNNs

that quantize both weights and activations are DoReFa-Net

(Zhou et al., 2016), XNOR-Net (Rastegari et al., 2016), and

ABC-Net (Lin et al., 2017). Other works use binary weights

(Courbariaux et al., 2015; Rastegari et al., 2016; Lin et al.,

2017) and ternary weights (Li et al., 2016; Zhu et al., 2016)

but maintain full-precision values for the activations. Keep-

ing the activations in full precision instead of quantizing

them leads to a smaller decrease in computational cost, but

can yield better predictive performance.

2. Learning Fast Matrix Multiplications via

SPNs

2.1. Casting matrix multiplication as SPN

Given square matrices A,B ∈ R
n×n, the product C = AB

can be represented as a 2-layer SPN

vec(C) = Wc[(Wbvec(B))⊙ (Wavec(A))] (1)

where Wa,Wb ∈ K
r×n2

and Wc ∈ K
n2×r, with K :=

{−1, 0, 1}, are fixed, vec(D) stands for vectorization of

the matrix D = [d1 . . . dm] ∈ R
k×m, i.e., vec(D) =

[d⊤1 . . . d⊤m]⊤ ∈ R
km, and ⊙ denotes the element-wise

product. The SPN (1) disentangles additions (and subtrac-

tions), encoded in the ternary matrices Wa, Wb, and Wc,

and multiplications, realized exclusively by the operation ⊙
(see Fig. 1, left). The width of the hidden layer of the SPN,

r, hence determines the number of multiplications used for

the matrix multiplication. A naïve implementation of the

matrix multiplication AB requires r = n3. For n = 2,1

Strassen’s matrix multiplication algorithm (Strassen, 1969)

specifies the following set of weights that satisfy (1) for

1The formulation by Strassen (1969) is more general, applying
recursively to 4 equally-sized subblocks of square matrices, with
the 2× 2 case occurring at maximal recursion depth.

r = 7 (instead of r = 8)

Wa =





















1 0 0 1
0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

−1 1 0 0
0 0 1 −1





















, Wb =





















1 0 0 1
1 0 0 0
0 0 1 −1

−1 1 0 0
0 0 0 1
1 0 1 0
0 1 0 1





















,

Wc =









1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0









. (2)

An interesting tensor perspective on the SPN (1) (not ex-

plored in-depth here) is common in the context of algebraic

complexity theory. Specifically, (1) can be written as

vec(C)i =

n2

∑

k=1

n2

∑

l=1

(Mn)i,k,lvec(A)kvec(B)l, where

(Mn)i,k,l =

r
∑

j=1

(Wc)i,j(Wa)j,k(Wb)j,l.

Mn is the (n × n)-matrix multiplication tensor, and r
hence corresponds to the rank of Mn. It is known that

rank(M2) = 7 and 19 ≤ rank(M3) ≤ 23, see (Elser,

2016) for more details and references.

Elser (2016) explores learning exact matrix multiplications

via SPNs of the form (1) for n = 2 and n = 3 from synthetic

data. Thereby, the elements of Wa, Wb, and Wc are relaxed

to real numbers instead of elements from K. Note that this

relaxation leads to an increase in the number of multiplica-

tions in general. In contrast, we integrate SPNs with weights

from K into DNN layers and learn them end-to-end (see

next section), realizing actual reductions in multiplications.

2.2. Learning fast approximate matrix multiplications

for DNNs

Writing matrix products in the form (1) is not specific

to square matrices. Indeed, it is easy to see that r ≥
nmk is a sufficient condition for the existence of matri-

ces Wa,Wb,Wc with elements in K such that the product

of any two matrices A ∈ R
k×m and B ∈ R

m×n, including

matrix-vector products (i.e., n = 1), can be written in the

form (1). When the matrices A and B are drawn from prob-

ability distributions that concentrate on low-dimensional

manifolds of Rk×m and R
m×n, respectively, or if one of

the matrices is fixed, it may be possible to find Wa and Wb

that satisfy the equality in (1) approximately even when

r ≪ nmk. In this case, (1) approximately computes the

product AB while considerably reducing the number of

multiplications compared to the naïve implementation. Fur-

thermore, by imposing structure (such as, e.g., sparsity or
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block-diagonal structure) into the matrices Wa, Wb, Wc

one can tailor sharing or grouping of the operations for the

application or platform at hand.

In this paper, we leverage this concept to accelerate and

compress the matrix multiplications in DNN layers for in-

ference. Specifically, for layer ℓ, we associate A with the

(pretrained) weights/filters Wℓ and B with the correspond-

ing activations/feature maps Fℓ. The ternary matrices Wa,

Wb, and Wc are then learned end-to-end using a stochastic

gradient-based optimizer (one set of weights Wa, Wb, Wc

for each layer). After training, Wa and vec(A) can be col-

lapsed into a vector ã = Wavec(A) ∈ R
r as they are both

fixed during inference. Alternatively, ã ∈ R
r, Wb, and Wc

can be learned jointly from scratch. The choice of r deter-

mines the tradeoff between the computational cost in terms

of multiplications and the precision of the the approximate

matrix multiplication, and hence the predictive performance

of the network. This approach requires r full-precision

parameters and rm(k + n) ternary weight parameters. It

reduces the number of multiplications by a factor of mnk/r.

Quantizing the elements of Wa, Wb, and Wc to K dur-

ing training poses a challenge as quantization is non-

differentiable. Different approaches were proposed to over-

come this issue (Courbariaux et al., 2015; Li et al., 2016;

Rastegari et al., 2016; Zhu et al., 2016; Agustsson et al.,

2017). Here, we adopt the method from (Li et al., 2016) and

briefly describe it for quantizing Wa (Wb and Wc are quan-

tized in exactly the same way). Specifically, this method

maintains a full-precision version W fp
a of Wa during train-

ing and quantizes W fp
a in every forward pass by approxi-

mately solving the optimization problem

α∗,W t∗
a = argmin

α,W t
a

‖W fp
a − αW t

a‖
2
F

s.t. α > 0, W t
a ∈ K

r×km, (3)

and by setting Wa = α∗W t∗
a (the scaling factors α∗ for

Wa, Wb, Wc can be absorbed by A or ã after training to

ensure that Wa, Wb, Wc have elements in K). During the

backward pass the quantization function is replaced by the

identity function, and the gradient step is applied to W fp
a .

Assuming i.i.d. Gaussian weights, Li et al. (2016) derive

the approximate solution

(W t∗
a )i,j =











1 if (W fp
a )i,j > ∆,

−1 if (W fp
a )i,j < −∆,

0 otherwise,

α∗ =

∑

(i,j) : (W t∗
a )i,j 6=0 |(W

fp
a )i,j |

∑

i,j |(W
t∗
a )i,j |

(4)

to (3), where ∆ = 0.7
kmr

∑

i,j |(W
fp
a )i,j |. While our frame-

work would allow quantized training from scratch with fixed

threshold ∆ and fixed quantization level α (e.g., ∆ = 0.5

and α = 1), we observed that relying on the scheme (4)

allows us to pretrain W fp
a , W fp

b , W fp
c without quantization,

and then activate quantization to stably continue training.

We found that this strategy leads to faster training while

inducing no loss in accuracy.

Besides the fully connected case described in this section,

we particularize the proposed approach for 2D convolutions

for image classification DNNs. We emphasize that any

DNN layer operation reducible to a general matrix multi-

plication (GEMM) can be cast into the form (1), including

n-dimensional convolutions, group (equivariant) convolu-

tions (when implemented as a filter bank) (Cohen & Welling,

2016), and deformable convolutions (Dai et al., 2017).

2.3. Knowledge distillation (KD)

KD refers to the process of training a student network using

a larger (in terms of the number of layers and hidden units)

teacher network (Bucilua et al., 2006; Hinton et al., 2014).

As a result, the student network typically has the same

or slightly better predictive performance than the teacher

network, despite being less complex. KD for training a

low-precision student network from a full-precision teacher

network with the same architecture and hyper parameters as

the student network was investigated recently in (Mishra &

Marr, 2018; Zhuang et al., 2018; Polino et al., 2018). Here,

we explore the same avenue to improve the predictive per-

formance of networks compressed with our method. Specifi-

cally, we follow the method proposed in (Hinton et al., 2014)

using the cross entropy between the student softmax output

and the teacher softmax output as KD loss term. We set the

softmax temperature parameter to 1 throughout and assign

the same weight to the KD loss term as to the original loss.

For sequence models, we simply apply the described KD

loss to the softmax outputs of the unrolled teacher and stu-

dent models (more sophisticated techniques were proposed

in (Kim & Rush, 2016)).

2.4. Application to 2D convolution

Consider the ℓth 2D convolution layer of a CNN applying

cout filters of dimension w× h× cin to a feature representa-

tion Fℓ of dimension W ×H × cin (width×height×number

of channels). To write the computation of all cout output

channels as a matrix multiplication, each feature map in Fℓ

is decomposed into WH patches of size w× h (after appro-

priate padding) and the vectorized patches are arranged in a

matrix F̃ℓ of dimension whcin ×WH . This transformation

is usually referred to as im2col, see (Sze et al. (2017),

Fig. 19) for an illustration. Accordingly, the filters for all

output channels are vectorized and jointly reshaped into a

cout × whcin matrix W̃ℓ. The vectorized layer output (be-

fore activation) for all cout output channels is obtained as

W̃ℓF̃ℓ and has dimension cout × WH . In principle, one
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can now compress the operation W̃ℓF̃ℓ using our method

by setting A = W̃ℓ, B = F̃ℓ, plugging them into (1), and

proceeding as described in Section 2.2. However, this re-

sults in impractically large Wa, Wb, and Wc and ignores

the weight sharing structure of the convolution. By asso-

ciating A with W̃ℓ and B with single columns of F̃ℓ we

can jointly compress the computations across all input and

output channels, while preserving the spatial structure of

the convolution. The resulting SPN realizes a convolution

with r ternary w×h× cin filters (the rows of Wb), followed

by a channel-wise scaling with ã = Wavec(W̃ℓ), followed

by convolution with a ternary 1× 1× r filter for each of the

cout outputs (the rows of Wc) see Fig. 1, right.

To realize local spatial compression, we partition the com-

putation of the convolution into subsets corresponding to

square output patches. In more detail, we consider the

computation of p × p convolution output patches from

(p− 1 + w)× (p− 1 + h) input patches, offset by a stride

of p, and approximate this computation with a SPN jointly

for all channels. As a result, the number of multiplications

is reduced both spatially and across channels. For example,

for 3 × 3 convolution filters, we divide the input feature

maps into 4× 4 spatial patches with a stride of 2, such that

the SPN computes 2 × 2 × cout outputs from 4 × 4 × cin
elements of Fℓ. Thereby, Wc realizes a 2 × 2 × r trans-

posed convolution with a stride of 1/2 (see Fig. 1, right,

and pseudocode in Appendix C). For fixed r, this reduces

the number of multiplications by a factor of 4 compared to

the case without spatial compression (i.e., p = 1).

In summary, the described compression of 2D convolution

leads to a reduction of the number of multiplications by a

factor cincoutwhp
2/r compared to the standard implemen-

tation of the convolution.

Finally, to reduce the number of additions realized through

Wb (and thereby the number of nonzero elements of Wb)

by a factor of g, we implement Wb as grouped convolution,

originally introduced in (Krizhevsky et al., 2012). Specifi-

cally, the convolution realized by Wb is assumed to consist

of g independent 2D convolutions each with cin/g input

channels and r/g output channels. In other words, Wb is

assumed to be block-diagonal with blocks of dimension

(r/g)× (whcin/g).

Relation to prior work in the 2D convolution case. Bi-

nary weight networks (BWNs) (Rastegari et al., 2016) and

ternary weight networks (TWNs) (Li et al., 2016) rely on

binary {−1, 1} and ternary {−1, 0, 1} weight matrices, re-

spectively, followed by (full-precision) rescaling of the acti-

vations (see Section 2.2) and are special cases of our frame-

work. ABC-Nets (Lin et al., 2017) approximate the full-

precision weight matrices as a weighted sum of multiple

binary {−1, 1} weight matrices and can also be cast as

(structured) SPNs. However, we do not directly recover

the trained ternary quantization (TTQ) approach from (Zhu

et al., 2016), which relies on asymmetric ternary weights

{−c1, 0, c2}, c1, c2 > 0. Finally, note that Winograd filter-

based convolution (Lavin & Gray, 2016) realizes spatial

compression over 2× 2 output patches but performs exact

computation and does not compress across channels.

3. Experiments2

3.1. Rediscovering Strassen’s algorithm

Before applying the proposed method to DNNs, we demon-

strate that it is able to rediscover Strassen’s algorithm, i.e.,

it can learn to multiply 2 × 2 matrices using only 7 multi-

plications instead of 8 (which implies a recursive algorithm

for larger matrices). This problem was previously studied

by Elser (2016), but for real-valued Wa, Wb, Wc, which in-

creases the number of multiplications in general when using

these matrices in (1) to compute matrix products. In con-

trast, our method learns Wa,Wb ∈ K
7×4, Wc ∈ K

4×7 (i.e.,

the discrete solution space has size 33·4·7 = 384), and hence

leads to an actual reduction in the number of multiplications.

We generate a training set containing 100k pairs (Ai, Bi)
with entries i.i.d. uniform on [−1, 1], train the SPN with

full-precision weights (initialized i.i.d. uniform on [−1, 1])
for one epoch with SGD (learning rate 0.1, momentum

0.9, mini-batch size 4), activate quantization, and train for

another epoch (with learning rate 0.001). Around 25 random

initializations are necessary to obtain convergence to zero

training L2-loss after activation of the quantization; for most

initializations the training L2-loss converges to a positive

value. A set of ternary weight matrices implementing an

exact matrix multiplication, found by our method, is

Wa =





















−1 −1 0 0
0 0 0 1

−1 −1 1 1
−1 0 1 0
−1 −1 1 0
0 0 1 0
0 −1 0 0





















, Wb =





















−1 −1 0 0
0 0 0 1
0 1 0 0
1 0 1 0

−1 −1 −1 0
1 1 1 1
0 0 −1 0





















,

Wc =









1 0 0 −1 −1 0 1
0 0 1 1 1 0 −1

−1 0 0 0 1 1 −1
0 1 0 0 0 0 1









.

3.2. Image classification

We apply our method to all convolution layers (including the

first convolution layer and the projection layers for subsam-

pling) of the ResNet architecture (He et al., 2016a) to create

the so-called Strassen-ResNet (ST-ResNet). We evaluate

2Code available at https://github.com/mitscha/

strassennets.

https://github.com/mitscha/strassennets
https://github.com/mitscha/strassennets
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ST-ResNet on CIFAR-10 (10 classes, 50k training images,

10k testing images) (Krizhevsky & Hinton, 2009) and Im-

ageNet (ILSVRC2012; 1k classes, 1.2M training images,

50k testing images) (Russakovsky et al., 2015) for different

choices of r, p, g, and compare the accuracy of ST-ResNet

to related works. All models were trained from scratch,

meaning we directly learn ã = Wavec(A) rather than as-

sociating A with the weights of pretrained networks and

learning Wa. Throughout the training process we used SGD

with momentum 0.9 and weight decay 10−4. As most re-

lated works involving ternary weights do not report sparsity

levels, to facilitate comparisons, we do not make any as-

sumption about the number of zeros among ternary weights.

It is the sparsity of the activations, not the weights, that

directly impacts the number of multiplications (the focus of

this paper). All model sizes are computed without (lossless)

compression of the network parameters.

3.2.1. CIFAR-10

We consider ST-ResNet-20 and employ the data augmenta-

tion procedure described in (He et al. (2016a), Sec. 4.2.).

We train for 250 epochs with initial learning rate 0.1 and

mini-batch size 128, multiplying the learning rate by 0.1
after 150 and 200 epochs. We then activate quantization

for Wb and Wc, set the learning rate to 0.01 and train the

network for 40 epochs, multiplying the learning rate by 0.1
every 10 epochs. Finally, we fix the (now ternary) Wb and

Wc and continue training for another 10 epochs. The re-

sulting testing accuracy is shown in Table 1 for different

r and p, along with the reduction in the number of multi-

plications compared to the uncompressed model (for the

32× 32 CIFAR-10 images; see Table 5 in Appendix D for

the reduction in the number of additions). Additional re-

sults for a similar experiment based on the VGG-inspired

7-layer architecture considered in (Courbariaux et al., 2015;

Li et al., 2016) can be found in Appendix A.

Table 1. Left: Testing accuracy (in %) of compressed ResNet-20

on CIFAR-10. Right: Reduction in the number of multiplications.

testing accuracy

r

p cout
3

4
cout

1

2
cout

1

4
cout

1 91.24 90.62 88.63 85.46

2 89.87 89.47 87.31 84.01

4 86.13 84.67 82.67 75.01

red. in multiplications

r

p cout
3

4
cout

1

2
cout

1

4
cout

1 98.96 99.08 99.21 99.33

2 99.33 99.36 99.39 99.42

4 99.42 99.43 99.44 99.44

Discussion. The model obtained for the base configuration

with r = cout and p = 1 incurs a negligible accuracy loss

compared to the uncompressed ResNet-20 with an accuracy

of 91.25% (He et al., 2016a) while reducing the number

of multiplications by 98.96% (the evaluation of the uncom-

pressed ResNet-20 requires 41.038M multiply-adds). This

model also matches the accuracy of TTQ (Zhu et al., 2016)

for ResNet-20 while requiring fewer multiplications (TTQ

does not quantize the first convolution layer). As r decreases

and/or p increases, the number of multiplications decreases

at the cost of further accuracy reduction.

3.2.2. IMAGENET

We consider ST-ResNet-18 and, unlike for the experiment

on CIFAR-10, we also compress the last (fully connected)

layer of ST-ResNet-18 for models with r ≤ cout in con-

volution layers, setting r = 1000 for that layer throughout

(we observed that compressing the last layer when r > cout
in convolution layers leads to a considerable reduction in

validation accuracy). Following (Rastegari et al., 2016; Li

et al., 2016; Zhu et al., 2016), the training images are resized

such that the shorter side has length 256 and are then ran-

domly cropped to 224×224 pixels. The validation accuracy

is computed from center crops. We use an initial learning

rate of 0.05 and mini-batch size 256, with two different

learning rate schedules depending on the value of r in the

convolution layers: We train for 40 epochs without quanti-

zation, multiplying the learning rate by 0.1 after 30 epochs,

if r ≤ cout, and for 70 epochs, multiplying the learning rate

by 0.1 after 40 and 60 epochs, otherwise. Thereafter, we

activate quantization and continue training for 10 epochs.

Finally, we fix Wb and Wc and train ã for another 5 epochs.

In Table 2 we report the validation accuracy of ST-ResNet-

18 for different r, p, and g, and the validation accuracy

obtained with KD. Table 3 shows the reduction in the num-

ber of multiplications compared to the original ResNet-18

model, for different r, p, and g (see Table 7 in Appendix D

for reductions in the number of additions and model size).

In Fig. 2, we plot the accuracy of ST-ResNet-18 for differ-

ent r, p, and g, as a function of the number of operations

and model size. In addition, we report the validation ac-

curacy for related works (Rastegari et al., 2016; Li et al.,

2016; Zhu et al., 2016; Lin et al., 2017) (see also Table 8

in Appendix D). We do not consider p > 2 as this leads to

(ternary) convolution with impractically large kernels for

224× 224 images.

Finally, to demonstrate amenability of our method to larger

models, we trained ST-ResNet-34 with r = 2cout, p = 2,

g = 1 (without tuning any hyper parameters) and obtained

69.2%/88.5% top-1/top-5 validation accuracy without KD

and 71.9%/90.5% with KD (the full-precision model ob-

tains 73.3%/91.3%; we report the accuracies of the Torch

pretrained models for all full-precision ResNets).

Discussion. All ST-ResNet-18 models that require the same

number of multiplications as TWN (those with r = cout,
p = 1, g = 4; r = cout, p = 1, g = 1; r = 2cout,
p = 2, g = 1) obtain a considerably higher top-1 and top-

5 accuracy than TWN. In particular, ST-ResNet-18 with

r = 2cout, p = 2, and g = 1 leads to a 7.0% improvement
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Figure 2. Top-1 and top-5 validation accuracy of ST-ResNet-18 on

ImageNet as a function of the number of multiplications, the num-

ber of additions, and model size, along with the values obtained in

related works BWN (Rastegari et al., 2016), TWN (Li et al., 2016),

TTQ (Zhu et al., 2016), ABC-Net-1/2/3/5 (Lin et al., 2017) (“+”

signs, the suffix reflects the ranking according to accuracy), and the

full-precision model (FP). The numbers associated with the marker

types correspond to the ratio of the number of hidden SP units

and output channels, r/cout. Different colors indicate different

combinations of output patch size p and number of convolution

groups g: Blue: p = 2, g = 1; green: p = 1, g = 1; red: p = 1,

g = 4. Selected models trained with KD are shown with filled

markers.

in top-1 accuracy. Furthermore, ST-ResNet-18 with r =
2cout, p = 1, and g = 1 outperforms TTQ while using

98.3% fewer multiplications. ST-ResNet-18 with r = 6cout,
p = 2, and g = 1 incurs a 2.0% reduction in top-1 accuracy

compared to the full-precision model while reducing the

number of multiplications by 99.63%. Our ST-ResNets

require fewer multiplications and additions than ABC-Net-

1/2/3 while yielding the same accuracy. For p = 2, our

models lead to a reduction in multiplications of at least 50%

compared to the ABC-Net with the same accuracy. Note

that TTQ and BWN use considerably more multiplications

than ST-ResNet-18, TWN, and ABC-Net as they do not

quantize the first convolution layer.

In contrast to the experiments on CIFAR-10, increasing p
from 1 to 2 increases the accuracy for fixed r ≥ 2cout. A

possible explanation for this behavior is that the benefits of

the increase in the number of ternary parameters obtained

by increasing p outweighs the loss in precision due to the

reduction in spatial resolution. This is in accordance with

the fact that the images in ImageNet are much larger than

Table 2. Top-1 and top-5 validation accuracy (in %) of ST-ResNet-

18 on ImageNet, for different choices of r, p, g, and with KD.

top-1 accuracy

r r (KD)

(p, g) 6cout 4cout 2cout cout
1

2
cout 4cout 2cout cout

(1, 1) 67.9 67.6 67.0 64.7 62.2 68.6 67.9 66.0

(2, 1) 68.2 68.0 67.1 64.1 61.8 70.4 69.4 66.4

(1, 4) 67.4 67.2 65.6 62.6 58.9 68.0 66.6 63.9

top-5 accuracy

r r (KD)

(p, g) 6cout 4cout 2cout cout
1

2
cout 4cout 2cout cout

(1, 1) 88.1 87.9 87.5 86.0 84.1 88.7 88.3 87.1

(2, 1) 88.2 88.0 87.5 85.6 83.9 89.4 89.0 87.3

(1, 4) 87.8 87.6 86.6 84.5 81.8 88.3 87.5 85.5

Table 3. Reduction in the number of multiplications (in %) of ST-

ResNet-18 compared to the full-precision model, for 224 × 224
images.

red. in multiplications

r

(p, g) 6cout 4cout 2cout cout
1

2
cout

(1, 1) 99.01 99.29 99.56 99.73 99.79

(2, 1) 99.63 99.70 99.77 99.83 99.85

(1, 4) 99.01 99.29 99.56 99.73 99.79

those in CIFAR-10, resulting in larger feature maps for most

layers.

KD leads to improvements in top-1 accuracy of 1.3–3.5%,

see Table 2. In particular, ST-ResNet-18 with r = 2cout,
p = 2, and g = 1 trained using KD essentially matches

the accuracy of the full-precision model. Increasing r to

4cout yields a model that even outperforms the full-precision

model. To the best of our knowledge, these models are the

first to realize massive reductions in the number of multipli-

cations (over 99.5%) while maintaining the accuracy of the

full-precision model. Note that student models outperform-

ing their teachers were observed before in different contexts

(Mishra & Marr, 2018; Zhuang et al., 2018; Furlanello et al.,

2018).

For some of the configurations, the reduction in multiplica-

tions comes at the cost of a small to moderate increase in the

number of additions. We emphasize that this is also the case

for Strassen’s algorithm (see (2)) and the Winograd filter-

based convolution (see (Lavin & Gray, 2016), Sec. 4.1).

The specific application and target platform will determine

what increase in the number of additions is acceptable.

Finally, in all our image classification experiments the ratio

r/cout is the same for all layers. Since one would expect

improvements from allocating more multiplications to lay-

ers that require more accurate operations, we also tested
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Figure 3. Testing PPL (averaged over 5 runs) for ST-LM as a

function of the number of operations and model size, along with the

values obtained for TWN quantization (4), and the full-precision

model (FP). Solid line: Without KD; dotted line: With KD. The

numbers associated with the marker types correspond to the ratio

of the number of hidden SP units and hidden units, r/nout.

a simple way to learn the ratio r/cout for each layer from

data. Specifically, we chose a large r/cout and applied L1

regularization to the vectors ã. However, for a given total

multiplication budget this strategy led to lower accuracy in

our experiments than just fixing r/cout for all layers.

3.3. Language modeling

We apply our method to the character-level language model

described in (Kim et al., 2016a) and evaluate it on the En-

glish Penn Treebank (PTB with word vocabulary size 10k,

character vocabulary size 51, 1M training tokens, standard

train-validation-test split, see (Kim et al., 2016a)) (Marcus

et al., 1993). We use the large version of the model from

(Kim et al., 2016a) which is composed of a convolution

layer with 1100 filters (applied to a character-level represen-

tation of the words, without aggregation across channels),

followed by a 2-layer highway network with 1100 hidden

units, feeding into a 2-layer LSTM network with 650 hidden

units (see Table 2 in (Kim et al., 2016a) for more details).

We obtain Strassen language models (ST-LMs) by replacing

the convolution layer and all fully connected layers (both

within the LSTM and the output/decode layer) with SPNs.

r is set to the number of filters for the convolution layer and

is parametrized as r(κ) = κ · nout for the fully connected

layers, where nout is the number of hidden units. For the

output/decode layer we use r(κ) = κ · 2000.

All models are trained for 40 epochs using SGD with mini-

batch size 20 and initial learning rate 2, multiplying the

learning rate by 0.5 when the validation perplexity per word

(PPL; c.f. Eq. (9) in (Kim et al., 2016a)) decreases by

less than 0.5 per epoch (a similar schedule was used in

(Kim et al., 2016a)). Although the ST-LMs train stably with

quantization from scratch, we train them for 20 epochs with

full-precision weights before activating quantization for Wb

and Wc, which leads to slightly lower validation PPLs. As a

baseline, we consider the TWN quantization scheme (4) and

apply it to all layers of the language model. As we observed

a somewhat higher variability in the validation performance

than for the image classification experiments, we train each

quantized model 5 times and report the average testing PPL.

In Figure 3, we plot the average testing PPL of our ST-LMs

for different r as a function of the number of operations and

model size, with and without KD. Table 6 in Appendix D

shows the reduction in the number of operations and model

size compared to the full-precision model.

Discussion. Our ST-LM models reduce the number of mul-

tiplications by over 99% compared to the full-precision

model, while incurring an increase in testing PPL of only

3–4%. The PPL obtained via TWN quantization clearly

exceeds that of all considered ST-LMs. The ST-LM model

with r = nout requires roughly the same number of multi-

plications as the TWN model but has a 7.4% lower testing

PPL. KD leads to a significant reduction in testing PPL.

The distilled ST-LMs outperform the teacher model for

r ≥ nout. To our knowledge, our models are the first to

obtain such massive reductions (over 99.5% for r ≤ 4nout)

in the number of multiplications while maintaining the PPL

of the full-precision model. We observed that KD applied

to the teacher model also reduces its testing PPL to values

comparable to that of the compressed models with KD for

r ≥ nout (see (Furlanello et al., 2018) for more exploration

of this phenomenon). On the other hand, KD considerably

increases the testing PPL for TWN.

There are only few prior works on compressing sequence

models in a multiplication-reducing fashion (He et al.,

2016b; Hubara et al., 2016). For single-layer LSTM and

GRU language models with binary weights He et al. (2016b)

report an increase in PPL of 70% and more compared to

the full-precision model, whereas Hubara et al. (2016) ob-

served divergence for a single-layer LSTM model with bi-

nary weights, but report small degradations for 4-bit weight

and activation quantization.

4. Conclusion and Future Work

We proposed and evaluated a versatile framework to learn

fast approximate matrix multiplications for DNNs end-to-

end. We found that our method leads to the same or higher

accuracy compared to existing methods while using signif-

icantly fewer multiplications. By leveraging KD we were

able to train models that incur no loss in predictive perfor-

mance despite reducing the number of multiplications by

over 99.5%. A natural next step is to incorporate activation

quantization into the proposed method. In addition, it will

be interesting to see how the theoretical gains reported here

translate into actual energy savings and runtime speedups

on specialized hardware such as FPGAs and ASICs.
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