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Abstract— This paper is concerned with the distributed aver-
aging problem over a given undirected graph. To enable every
vertex to compute the average of the initial numbers sitting on
the vertices of the graph, the policy is to pick an edge at random
and update the values on its ending vertices based on some
rules, but only in terms of the quantized data being exchanged
between them. Our recent paper showed that the quantized
consensus is reached under a simple updating protocol which
deploys a fixed tuning factor. The current paper allows the
tuning factor to be time-dependent in order to achieve two
goals. First, this makes it possible to study the numerical
stability of the protocol with a fixed tuning factor under a
small perturbation of this parameter. Furthermore, exploiting
a time-varying tuning factor facilitates the implementation of
the consensus protocol and pushes the steady state of the
system towards an equilibrium point, as opposed to making it
oscillatory. The current paper is an important extension of our
recent work, which generalizes a finite-dimensional problem to
an infinite-dimensional one that is more challenging in nature.

I. INTRODUCTION

Distributed computation has been an active research area

in the past few decades, which targets the computation of

a quantity of interest, such as temperature or some other

measurement, over a network of processors in a decentralized

way [1], [2]. In particular, the distributed averaging problem

has drawn much attention recently, whose objective is to

decentrally compute the average of several real numbers

lying on the nodes of a network [3], [4]. In a more general

framework, consider a network of agents where each agent

is associated with some data (such as a real number or an

image). The problem of contriving a protocol by means of

which the agents can update their data so that ultimately

they all agree upon some universal shared data is called the

consensus or state agreement problem [3], [4].

Various problems in different fields can be interpreted as

a consensus problem. For instance, the synchronization of

coupled oscillators appearing in biophysics, neurobiology,

and systems biology, is nothing but reaching a consensus

on the frequencies of all agents [7], [8]. Moreover, the

problem of aligning the heading angles of a group of mobile

agents (e.g. a flock of birds) can be regarded as a consensus

problem on the heading angles [11]. Given a sensor network

comprising a set of sensors measuring the same quantity in

a noisy environment, the problem of reaching a consensus

on the state estimates is discussed in [12]. The consensus

problem for networks of dynamic agents with fixed and

switching topologies is tackled in [3], where it is shown that

The authors are with the Department of Control and Dynamical
Systems, California Institute of Technology, Pasadena, USA (emails:
lavaei@cds.caltech.edu; murray@cds.caltech.edu).

the convergence rate is related to the algebraic connectivity

of the network. The work [13] elaborates on the relationship

between the amount of information exchanged by the agents

and the rate of convergence to the consensus.

Consider a consensus problem over a network of agents

associated with a set of real numbers. There are applications

for which the agents cannot communicate synchronously.

Therefore, the gossip algorithm has been widely exploited by

researchers to handle the averaging problem asynchronously

[14], [15]. This type of algorithm selects a pair of agents at

each time, and updates their values based on some averaging

policy. The consensus problem in the context of gossip

algorithm has been thoroughly investigated in the literature

[16], [17], [18], [19]. For instance, the work [16] studies

the convergence of a general randomized gossip algorithm,

and derives conditions under which the algorithm converges.

This paper also shows that the averaging time of a gossip

algorithm depends on the second largest eigenvalue of a

doubly stochastic matrix characterizing the algorithm.

In light of practical communication constraints, a pair of

agents can normally exchange only their quantized data.

This has given rise to the emergence of quantized gossip

algorithms. The notion of quantized consensus is defined in

[18] for the case when quantized values (integers) are to be

averaged over a connected network with digital communi-

cation channels. This paper shows that the quantized gossip

algorithm leads to reaching the quantized consensus. The

result is extended in [19] to the case when the quantization

is uniform, and the initial numbers owned by the agents are

reals (as opposed to being integers). The paper [19] shows

that the quantized gossip algorithm works for a particular

choice of the updating parameter. Our recent papers [20],

[21] prove the convergence of this algorithm for a wide

range of updating parameters, under any arbitrary quantizer

including uniform and logarithmic ones. Furthermore, the

steady-state behavior of the system together with the ex-

pected value of the convergence time is studied extensively

in these papers.

However, the stochastic gossip algorithm studied in [19],

[20], [21] is based on the hypothesis that the tuning factor

(updating parameter) is fixed. There are two incentives to

relax this assumption and allow this parameter to be time-

varying. First, the tuning factor is prone to numerical errors

in practice and, in order to investigate the stability of the

above-mentioned algorithm with respect to this parameter,

one way is to let this factor be time-dependent. Moreover, it

is easy to observe that an appropriate tuning of this factor

at each time update in terms of the previous state of the

system makes the state approach an equilibrium point, rather
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than being oscillated (which normally happens when a fixed

updating parameter is deployed). Thus, the objective of the

current paper is to show the convergence to a quantized

consensus even in the case of using a time-varying tuning

parameter. This modification in the gossip algorithm converts

the finite-dimensional state space to an infinite-dimensional

one, for which most of the ideas developed in [20], [21]

break down.

The paper is organized as follows. Some preliminaries are

presented in Section II, and the problem is formulated ac-

cordingly. The convergence proof is provided in Section III.

The results are illustrated in Section IV through simulations.

Some concluding remarks are drawn in Section V.

II. PROBLEM FORMULATION

Consider an undirected connected graph G = (V, E ,P)
with the set of vertices V := {v1, v2, ..., vν} and the set

of edges E . Assume that P := {pij}i,j is a set of weights

assigned to the edges of G such that:
∑

i, j ∈ ν
i ≤ j

pij = 1 (1)

where ν := {1, 2, ..., ν}. The quantity pij (i, j ∈ ν) is equal

to zero if (i, j) 6∈ E ; otherwise, it is strictly positive. In

particular, p11, p22, ..., pνν are all equal to zero. The set P
defines a discrete probability distribution on the edges of G,

i.e. it specifies the probability by which a certain edge of the

graph can be chosen at random. Suppose that a real number

xi has been assigned to the vertex vi, for all i ∈ ν. Let q(x) :
ℜ → ℜ be a general quantization operator characterized as

follows:

q(x) =

{

Li if x ∈ [Li, L̄i]
Li+1 if x ∈ (L̄i, Li+1]

∀i ∈ Z (2)

where {Li}
∞
−∞ is a monotonically increasing sequence of

reals representing the quantization levels, and:

L̄i :=
Li + Li+1

2
, ∀i ∈ Z (3)

The scalar quantities Li and L̄i will be referred to as level

and splitting level, respectively. For some technical reasons,

assume that the terms Li+1 − Li, i ∈ Z, are all bounded

away from 0. The following gossip algorithm is proposed

in [19]:

Stochastic Gossip (SG) Algorithm:

Step 1: Pick a positive real ε, and set k = 0. Define xi[0] :=
xi, for every i ∈ ν.

Step 2: Pick an edge of G at random.

Step 3: Suppose that the ending vertices of the edge selected

in step 2 possess the values xi[k] and xj [k]. Perform the

following updates:

xi[k + 1] = xi[k] + ε ×
(

q(xj [k]) − q(xi[k])
)

,

xj [k + 1] = xj [k] + ε ×
(

q(xi[k]) − q(xj [k])
)

,

xq[k + 1] = xq[k], ∀q ∈ ν\{i, j}

(4)

Step 4: Increase k by 1 and jump to step 2.

For simplicity, the short-hand notation:

X[k] =
[

x1[k] x2[k] · · · xν [k]
]

, k ∈ Z (5)

will be used henceforth. The next definition is extracted

from [20].

Definition 1: Given a stochastic quantization-based pro-

tocol acting on G (e.g. the SG algorithm), assume that the

vector X[k] denotes the values on the vertices of G at time

k obtained using this protocol. It is said that the quantized

consensus is reached almost surely for the graph G under the

protocol C if for every arbitrary initial state xi[0] ∈ ℜν , with

probability 1 there exist a natural number k0 and an integer

µ such that either of the following sets of relations holds:






∑ν

i=1 xi[k] =
∑ν

i=1 xi[0]

xj [k] ∈ [Lµ, Lµ+1]
∀k ≥ k0, ∀j ∈ ν (6)

or:






∑ν

i=1 xi[k] =
∑ν

i=1 xi[0]

xj [k] ∈ (L̄µ, L̄µ+1]
∀k ≥ k0, ∀j ∈ ν (7)

The names consensus and quantized consensus will be

used interchangeably in the rest of the paper. It was shown

in [20] that the quantized consensus is reached for the con-

nected graph G under the above-mentioned gossip algorithm

if ε ∈ (0, 0.5]. However, two important issues arise regarding

this algorithm:

• First, it remains unclear if this algorithm is numerically

stable with respect to ε in the case when ε could be

perturbed infinitesimally at each time instant.

• It sounds reasonable to pick a small ε when the two

numbers being updated are close to each other, and

pick a large ε otherwise. This brings the possibility

of allowing ε to be time-varying, in which case the

convergence to the quantized consensus needs to be

investigated.

These questions motivate the modification of the SG

algorithm in such a way that the above-mentioned issues

are taken into consideration. In this regard, the following

algorithm is introduced.

Adaptive Stochastic Gossip (ASG) Algorithm:

Step 1: Set k = 0. Define xi[0] := xi, for every i ∈ ν.

Step 2: Pick an edge of G at random.

Step 3: Select a positive number and denote it with εk.

Suppose that the ending vertices of the edge selected in step 2

possess the values xi[k] and xj [k]. Perform the following

updates:

xi[k + 1] = xi[k] + εk ×
(

q(xj [k]) − q(xi[k])
)

,

xj [k + 1] = xj [k] + εk ×
(

q(xi[k]) − q(xj [k])
)

,

xq[k + 1] = xq[k], ∀q ∈ ν\{i, j}

(8)

Step 4: Increase k by 1 and jump to step 2.
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The primary goal of this paper is to study whether the

quantized consensus is reached under this adaptive algorithm.

More precisely, it is desired to show that if there exist two

positive numbers εmin and εmax in the interval (0, 0.5) such

that εmin ≤ εk ≤ εmax for all k ∈ N ∪ {0}, then almost

surely the quantized consensus is reached asymptotically.

III. MAIN RESULTS

Assume that the initial state X0 := X[0] belongs to the

hyper-rectangle [Lmin, Lmax]
ν , where Lmin and Lmax are

some quantization levels. Moreover, suppose that there exist

two numbers εmin and εmax in the interval (0, 0.5) such that

the tuning factor εk chosen in step 3 of the ASG algorithm

always belongs to the interval [εmin, εmax], for all k ∈ N ∪
{0}. Before proceeding with the development of the paper,

a few definitions need to be provided.

Definition 2: Define η1 and η2 to be:

η1 = max
i∈Z

L̄i s.t. L̄i ≤ xave,

η2 = min
j∈Z

L̄j s.t. L̄j ≥ xave

(9)

where xave := x1+x2+···+xν

ν
.

Definition 3: For every i ∈ Z, define:

S(L̄i) :=
(

ωi, ω
′
i

]ν
(10)

where:
ωi := L̄i − εmax(Li+1 − Li),

ω′
i := L̄i + εmax(Li+1 − Li)

(11)

(note that for a set R, the symbol Rν denotes the product

set R×R× · · · × R).

Definition 4: For every i ∈ Z, define the distance function

d(·,S(L̄i)) : [Lmin, Lmax]
ν → R

+ ∪ {0} as:

d(α,S(L̄i)) := min
β∈S(L̄i)

|α − β|1 (12)

for all α ∈ [Lmin, Lmax]
ν , where | · |1 denotes the L1 norm.

Now, it is desired to motivate the introduction of the set

S(L̄i) and its associated distance function d(X[·],S(L̄i)).
This illustration is essential to understanding the arguments

made in the current work. Notice that although the graph G is

coordinate free, when it comes to assigning real numbers to

its vertices, it makes sense to incorporate the topology of the

graph and its corresponding initial state into a graph whose

geometry matters. To be more precise, draw the graph G in

the 2-dimensional plane so that its vertex vi is placed in the

coordinates (i, xi(0)), for all i ∈ ν. Denote this coordinated

graph with ~G. As an example, if G contains 4 vertices with

the edges {(1, 2), (2, 3), (3, 4), (4, 1)} and the initial values

X0 = (3, 3, 2, 0.5), then the corresponding coordinated graph
~G will turn out to be the one depicted in Figure 1. When

the ASG algorithm is run on the graph G, the values sitting

on the vertices change. This makes the graph ~G move in

the plane (each vertex moves up or down vertically). As a

result, define ~G(k) to be the corresponding coordinated graph

at time k (k ∈ N). Now, draw the horizontal lines y = Lj

and y = L̄j , ∀j ∈ Z, in the plane containing the graph

0 1 2 3 4 5
0

1

2

3

4

Fig. 1. An example of the coordinated graph ~G with four vertices.

~G. These lines represent all quantization levels as well as

splitting levels. Given i ∈ Z, sketch two specific lines y =
L̄i−εmax(Li+1−Li) and y = L̄i +εmax(Li+1−Li). These

lines that surround the horizontal line y = L̄i create a strip in

the plane (this strip, for instance, resembles the shaded area

in Figure 2). The set S(L̄i) can be visualized to be this strip

with its bottom border line removed. Moreover, the distance

function d(X[k], L̄i) is indeed the L1 distance of the vertices

of ~G(k) from the aforementioned strip. It will be shown

in Theorem 1 that this distance function, which is defined

in a natural way, is always non-increasing. Furthermore,

Theorem 2 will substantiate that, with probability 1, there

exists a time instant k0 such that the graph ~G(k) either lies

entirely on one side of the line y = L̄i for all k ≥ k0 or

asymptotically converges to the strip sketched around the line

y = L̄i as k goes to infinity. These theorems are given in

the sequel.

Theorem 1: Run the ASG algorithm on the graph G with

the initial state X0. For every i ∈ Z, the following statements

hold:

i) If X[k] ∈ S(L̄i) for some k ∈ N, then X[k′] ∈ S(L̄i)
for all k′ ≥ k. In other words, S(L̄i) is an invariant set.

ii) The function d(X[·],S(L̄i)) is non-increasing, i.e.:

d(X[k],S(L̄i)) ≤ d(X[k − 1],S(L̄i)) (13)

for all k ∈ N.

iii) Given a positive real number µ ∈ (0, 0.5 − εmax),
assume that an edge (j, p) ∈ E is selected at time k,

k ∈ N, for which the set of relations:

xj [k − 1] ≤ L̄i,

xp[k − 1] > L̄i + (εmax + µ)(Li+1 − Li)
(14)

or:

xj [k − 1] > L̄i,

xp[k − 1] ≤ L̄i − (εmax + µ)(Li+1 − Li)
(15)

holds. Then:

d(X[k],S(L̄i)) ≤ d(X[k − 1],S(L̄i))

− min(µ, εmin)(Li+1 − Li)
(16)

Proof: The proofs of Parts (i) and (ii) are straightforward.

To prove Part (iii), different possibilities with regards to the
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values sitting on the j-th and p-th vertices must be studied

separately. As one such a possibility, assume that (14) holds,

and that xj [k − 1] and xp[k − 1] both belong to the interval

[Li, Li+1] (note that the other cases can be studied in the

same way). To show inequality (16), observe that:

xj [k] = xj [k − 1] + εk−1(Li+1 − Li) ≤ ω′
i (17)

and:

xp[k] = xp[k − 1] − εk−1(Li+1 − Li) > L̄i (18)

Therefore, if µ ≤ εk−1, then there is a reduction in the

distance function by at least µ(Li+1−Li). If µ > εk−1, then

the distance function reduces by at least εk−1(Li+1 − Li).
These observations lead to inequality (16). ¥

The proof provided in [20] for the convergence of the

SG algorithm relies on two facts: i) the state X[k] belongs

to a finite-dimensional space for every natural number k

ii) there exists an integer-valued distance function with

certain useful features. However, none of these properties

are still maintained under the ASG algorithm. More specifi-

cally, X[k] normally belongs to the infinite-dimensional set

[Lmin, Lmax]
ν , and the distance function dε(X[·],S(L̄i)) is

real-valued. One implication of the second fact is that the

distance function can be reduced infinitesimally, rather than

by 1 in the integer case. To circumvent this hurdle, Part (iii)

of Theorem 1 is provided to emphasize that under certain

conditions, the distance function dε(X[·],S(L̄i)) reduces by

a meaningful number (say, at least min(µ, εmin)(Li+1−Li)).
Theorem 2: Run the ASG algorithm on the graph G with

the initial state X0. Regarding the asymptotic behavior of

the state X[k] relative to the splitting level L̄i (∀i ∈ Z), one

of the following cases always takes place with probability 1:

i) There exists a natural number k0 such that:

X[k] ∈
(

L̄i, Lmax

]ν
, ∀k ≥ k0 (19)

ii) There exists a natural number k0 such that:

X[k] ∈
[

Lmin, L̄i

]ν
, ∀k ≥ k0 (20)

iii) The state X[k] asymptotically converges to the set

S(L̄i), i.e. for every µ ∈ (0, 0.5− εmax), there exists a

natural number k0 such that:

X[k] ∈
(

ωi−µ(Li+1−Li), ω
′
i +µ(Li+1−Li)

]ν
(21)

for all k ≥ k0.

Proof: For a proof by contradiction, assume that none of

the cases (i), (ii) and (iii) occurs for a given real number

µ ∈ (0, 0.5 − εmax). This, together with the connectivity of

the graph, implies that at each time instant k ∈ N, there

exists a path j1, j2, ..., jp such that:

xj1 [k] ≤ L̄i,

L̄i < xj2 [k], ..., xjp−1
[k] ≤ ω′

i + µ(Li+1 − Li),

ω′
i + µ(Li+1 − Li) < xjp

[k]

(22)

or:

xj1 [k] ≤ ωi − µ(Li+1 − Li),

ωi − µ(Li+1 − Li) < xj2 [k], ..., xjp−1
[k] ≤ L̄i,

L̄i < xjp
[k]

(23)

As an example, a path satisfying the conditions given in (22)

is illustrated in Figure 2. Since there may exist more than

Fig. 2. The path shown in the figure satisfies the conditions given in (22).

one such path, find one whose length is minimum and

then attribute it to the time instant k. Hence, an infinite

sequence of paths, denoted by H, will be produced. On

the other hand, the graph G has only a finite number of

simple paths. Therefore, one can find a path in H with

minimum length that appears an infinite number of times.

With a slight abuse of notation, assume that this path is

ρ1, ρ2, ..., ρp, and occurs at time instant {ki}
∞
i=1. With no

loss of generality, assume that this path always corresponds

to the set of relations (22) (as opposed to (23)). Now,

partition the interval [Lmin, Lmax] into a finite number of

sub-intervals such that each of them has a length smaller

than 0.5 εmin(Li+1−Li). This induces a finite grid structure

on the box [Lmin, Lmax]
ν . Denote the number of sub-boxes

of [Lmin, Lmax]
ν resulting from this gridding with µ, and

the sub-boxes themselves with T1, T2, ..., Tµ. Note that every

X[k] belongs to one of the boxes T1, T2, ..., Tµ (it may

belong to more than one box if it sits on the boundary

of a box). To geometrically visualize the idea behind this

gridding, consider the plane in which the coordinated graph
~G is depicted. Partition the part of the plane enclosed by the

lines y = Lmin and y = Lmax with a number of horizontal

lines so that every two neighboring lines be distant from

each other by at most 0.5 εmin(Li+1−Li). This partitioning

creates a finite number of strips such that each vertex of

the graph ~G(k) belongs to one of them. If there are ω of

such strips, the vertices of the graph ~G(k) can be placed in

these strips in ων ways. In other words, µ := ων different

configurations can be envisaged for the graph ~G(k) relative

to these strips. These different configurations are denoted by

T1, T2, ..., Tµ. Note that when two coordinated graphs, say
~G(k) and ~G(k′), belong to the same configuration (sub-box),

it means that every two corresponding vertices of the graphs

lie in the same strip; i.e. the graphs somehow possess the

same geometry up to the grid size.

Since each of the points X[k1],X[k2], ... belongs to one of

the µ configurations T1, T2, ..., Tµ, there exist a subsequence
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of {kj}
∞
1 , denoted by {k̄j}

∞
1 , and a number ξ ∈ {1, 2, ..., µ}

such that X[k̄j ] ∈ Tξ for all j ∈ N. Due to the fact that the

statement of this theorem is related to the existence of a time

instant k0 or an asymptotic convergence with probability 1,

any pathological case whose corresponding probability is 0

can be ignored. Indeed, one can assume that if the ASG

algorithm is run, then the probability that the size of the

smallest path appearing infinitely many times in H is p

and there exists a subsequence {k̄j}
∞
1 corresponding to this

path for which X[k̄j ] ∈ Tξ for all j ∈ N is nonzero. By

Theorem 4 in [22], there exists a subsequence of {k̄j}
∞
1 ,

denoted by {k̃j}
∞
1 , such that the edge between the vertices

ρ1 and ρ2 is always selected at times k̃1 + 1, k̃2 + 1, ....

Since the set of relations (22) holds for k = k̃j , ∀j ∈ N, it

is evident that:

xρ2
[k̃j + 1] ≤ xρ2

[k̃j ] − εmin(Li+1 − Li), j ∈ N (24)

This implies that X[k̃j +1] no longer belongs to Tξ (in light

of the fact that the grid size was at most 0.5 εmin(Li+1−Li)).
Consequently, the graph ~G(k̃j) loses its configuration Tξ at

time k̃j +1, but regain it at time k̃j+1. It is desired to prove

that this recurrence cannot take place infinitely many times

corresponding to j = 1, 2, .... To this end, notice that in order

for xρ2
[k̃j + 1] to return to its initial strip (corresponding to

Tξ), one of the following cases must happen during the time

interval [k̃j + 1, k̃j+1]:

a) There exist a time k and a vertex vq such that:

xρ2
[k − 1] ≤ xρ2

[k̃j + 1], xq[k − 1] > L̄i+1 (25)

and that the edge (ρ2, q) is selected at time k.

b) Vertex ρ2 goes below the line y = L̄i at some time.

Therefore, one of the above situations (a) or (b) must

occur an infinite number of times (as j changes from 1

to ∞). First, assume that case (a) occurs infinitely many

times. It is easy to argue that every time that this case

happens, the distance function d(X[·], L̄i+1) reduces by

at least min(0.5 − εmax, εmin)(Li+2 − Li+1) (in light of

Part (iii) of Theorem 1). This pushes the distance function

d(X[·], L̄i+1) towards −∞, whereas it must always remain

nonnegative. This contradiction rules out this case. Now,

assume that case (b) occurs infinitely many times. Similar

to the argument made above, one can argue that vertex ρp

is always above the line y = ω′
j + µ(Lj+1 − Lj), except

possibly at a finite number of times that could go below

this line. Ignoring these times, one can assume with no

loss of generality that vertex ρp is always above the line

y = L̄i + εmax(Li+1 − Li). Hence, case (b) results that at

some time instant, vertex ρ2 goes below the line y = L̄i,

which introduces an undesirable path satisfying a constraint

of type (22), but with a length smaller than p. This means that

there are infinite number of undesirable paths occurring in H
whose lengths are less than p. Thus, there is an undesirable

path of length smaller than p which repeats infinite times.

This contradicts the assumption that the minimum length of

such a path is p. ¥

The main result of the paper is given below, which

proves the convergence of the ASG algorithm and, besides,

characterizes the steady-state behavior of the state X[k].
Theorem 3: Run the ASG algorithm on the graph G with

the initial state X0. One of the following cases occurs with

probability 1:

a) The state X[k] asymptotically converges to the set

S(η1) as k → ∞ (the asymptotic convergence is in

the sense described in Theorem 2).

b) The state X[k] asymptotically converges to the set

S(η2) as k → ∞.

c) There exists a natural number k0 such that:

X[k] ∈
(

η1, η2

]ν
, ∀k ≥ k0 (26)

Proof: By considering L̄i = η2 in Theorem 2, it readily

follows from this theorem that one of the cases (i), (ii) or

(iii) takes places for L̄i = η2. Evidently, case (i) can be ruled

out in light of the fact that the average of the entries of X[k]
is less than or equal to η2 and therefore X[k] cannot belong

to
(

η2, Lmax

]ν
. On the other hand, case (iii) in this theorem

is indeed identical to case (b) in Theorem 3. Therefore, it

remains to only assume that case (ii) in Theorem 2 takes

place. In other words, suppose that there exists a natural

number k0 with probability 1 such that:

X[k] ∈
[

Lmin, η2

]ν
, ∀k ≥ k0 (27)

As before, one of the following three possibilities happens

with probability 1 (in light of Theorem 2 for L̄i = η1):

• There exists a natural number k′
0 such that X[k] ∈

(

η1, Lmax

]ν
for all k ≥ k′

0: This together with (27)

proves case (c) of Theorem 3.

• There exists a natural number k′
0 such that X[k] ∈

[

Lmin, η1

]ν
for all k ≥ k′

0: Similar to the argument

made earlier concerning the average of the entries of

X[k], one can easy argue that this case is impossible

unless X[k] = (η1, η1, ..., η1), which leads to case (a)

in Theorem 3.

• The state X[k] asymptotically converges to the set

S(η1): This case is the same as case (a) of Theo-

rem 3. ¥

Remark 1: The results of this paper are important exten-

sions of those given in [20] in two aspects:

• The tuning parameter ε can be time-varying, which is

advantageous in terms of both checking the numeri-

cal stability of the SG algorithm and introducing the

freedom of choosing a state-dependent tuning factor (as

explained in the preceding section).

• Even if ε is kept fixed throughout the entire run of the

algorithm, our earlier paper [20] needs to assume that

all quantization levels {Li}
∞
−∞ are integer multiples of

a specific number (say, they are all integers) in order

to confine the state space to a finite-dimensional space.

Nonetheless, this constraint is removed in the current

paper.

Remark 2: Unlike the case of picking a fixed ε, the

convergence time under the ASG algorithm may be infinite
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due to the phenomenon of asymptotic convergence to the

quantized consensus. However, the time k0 at which the state

of the system is in the µ-vicinity of the consensus set is finite

(see part (iii) of Theorem 2). To find the expected value of

k0, one can adopt a technique similar to the one developed in

[21], which leads to lower and upper bounds on this quantity

corresponding to the worst initial state.

A. Oscillatory steady state

Consider the graph G under the SG algorithm. Our recent

paper [20] proved that the state X[k] may take two different

behaviors for large enough k’s as follows:

i) X[k] is an equilibrium point of the system that belongs

to an invariant set of diameter 1 (say (η1, η2]
ν).

ii) X[k] belongs to an invariant set of diameter 2ε (say

S(η1) or S(η2)), and the behavior of the state in this

set is oscillatory with probability 1.

For the sake of refraining from unnecessary computations

and communications, it is really preferred to reach an equi-

librium point, rather than oscillate in a set. To increase the

chance of ending up in case (i), one needs to pick a small

ε. This has a detrimental effect on the time required for

reaching the consensus. The ASG algorithm proposed in this

paper resolves this issue efficiently. As a possible strategy,

adjust the tuning factor εk as follows. Given the numbers

xi[k] and xj [k] being updated at time k + 1, if q(xi[k]) and

q(xj [k]) are two neighboring quantization levels, then set

εk = εmin; otherwise choose εk = εmax. Now, by letting

εmin go to zero (when k goes to infinity), the state X[k]
will be an equilibrium point with a high probability. In other

words, the ASG algorithm integrates the SG algorithm for

different values of the fixed parameter ε, while it keeps the

required convergence time in a reasonable range (roughly

speaking, the convergence time in this case mainly depends

on εmax, as opposed to εmin, due to the fact that most of the

updates are performed by the factor εmax). The efficacy of

this strategy will be illustrated in the next section.

IV. SIMULATION RESULTS

Consider a complete graph G with 30 nodes, and assume

that each node is associated with a real number that is gen-

erated using a Gaussian probability distribution with mean 0

and variance 100. Moreover, suppose that the quantization is

uniform, i.e. Li is equal to i for all i ∈ Z. To compare

the ASG algorithm with the SG algorithm, first let ε be

fixed and equal to 0.5 at all times. The SG algorithm was

run on 100 randomly generated initial values and it was

observed that the expected value of the convergence time was

755.40. However, the steady-state behavior of the system was

oscillatory for 34 samples of the initial state. As discussed

earlier, one can pick a smaller ε to diminish the probability

of ending up with an oscillatory steady-state behavior. As a

result, pick ε = 0.1. The expected value of the convergence

time was obtained as 2114.3, while the steady-state behavior

was still oscillatory for 21 samples of the initial state. Now,

run the ASG algorithm on the graph for the same 100

samples of the initial state. Tune the factor εk (k ∈ N∪{0})

according to a simple rule as follows:

εk =

{

0.1 if
∣

∣q(xj [k]) − q(xi[k])
∣

∣ = 1
0.5 otherwise

(28)

where (i, j) denotes the edge selected at time k + 1. Hence,

the ASG algorithm with this updating rule integrates the SG

algorithm with ε = 0.5 and the SG algorithm with ε = 0.1.

The expected value of the convergence time was obtained as

824.6 and, interestingly, the steady-state behavior was never

oscillatory. This clearly shows the power of letting the tuning

factor be time-dependent. Figures 1 and 2 depict the state of

the system at time k0 for some sample initial states under the

SG algorithm with ε = 0.5 and the ASG algorithm with the

above-mentioned tuning factor εk, respectively. Observe that

the steady-state behavior of the system plotted in Figure 1

is oscillatory with probability 1, whereas the system plotted

in Figure 2 has reached an equilibrium point. Furthermore,

most of the points in Figure 2 are in the close vicinity of the

average xave.
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Fig. 3. The state of the system at time k0 for some sample initial state
under the SG algorithm with ε = 0.5.
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Fig. 4. The state of the system at time k0 for some sample initial state
under the ASG algorithm with εk specified in (28).

V. CONCLUSIONS

This paper tackles the average consensus problem over

a connected weighted graph subject to a quantization con-

straint. It is assumed that each pair of vertices can be chosen

with a certain probability to update their numbers in term of

the quantized data being exchanged between them. It was

shown in our recent paper that the quantized consensus is
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reached under a certain updating algorithm, which utilizes a

fixed tuning factor. The present paper generalizes the results

to the case when this factor can be time-varying. There are

two main motivations for this extension. First, it is important

to study the numerical stability of the algorithm with a fixed

tuning factor when this parameter is subject to numerical

errors. Moreover, the asynchronous nature of the algorithm

and some other technical reasons demand the adjustment of

this tuning factor at each time update based on the previous

state of the system. The convergence proof provided in

the paper is technically far more complicated than the one

proposed in our recent paper, because letting the tuning factor

be time-varying converts a finite Markov chain to an infinite

Markov chain with an uncountable state space.
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