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Abstract 
In this paper we present a control law for globally asymptotically sta- 
bilizing a class of controllable nonlinear systems without drift. The 
control law combines earlier work in steering nonholonomic systems us- 
ing sinusoids a t  integrally related frequencies, with the ideas in recent 
results on globally stabilizing linear and nonlinear systems through the 
use of saturation functions. Simulation results for stabilizing a simple 
kinematic model of an automobile are included. 

1 Introduction 
This paper focuses on the problem of point stabilization lor a cont,rol 
system of the form 

where each g, is a smooth vector field on R" and the gz's are linearly 
independent for all x E R". Systems of this form arise in the study 
of mechanical systems with velocity constraints and have received re- 
newed attention as an example of strongly nonlinear systems. For such 
systems, control methods based on linearization cannot he applied and 
nonlinear techniques must be utilized. We are part,icularly interested 
in the case where the nonlinear system ( 1 )  is completely controllable, 
corresponding to a set of maximally nonholonomic constraints which 
do  not restrict the state of the system to a submanifold of the state 
space. See [12] for a more detailed derivation and motivation. We refer 
to  a system with these properties as a nonholonomir control system. 

A fundamental problem in the study of nonholonomic control sys- 
tems is the generation of open-loop trajectories connecting two states. 
That  is, given an initial state xo and a final state 1 1 ,  find an input u ( t ) ,  
t E [0,1] such that x ( 0 )  = 10 and x( 1) = X I .  Such an input induces 
a feasible state trajectory which automatically satisfies the constraints 
on the system. The condition for the existence of a path between two 
configurations is given by Chow's theorem. We let [f,,y] be the Lie 
bracket between two vector fields, 

and define the involutive closure of a distribution A as the closure of 
A under Lie bracketing. Briefly, Chow's theorem states that if the in- 
volutive closure of the distribution associated with equation ( I )  spans 
R" a t  each configuration, the system can be steered between an.y two 
configurations. Initial work in constructing paths between configura- 
tions includes [S, lo], [ I l l ,  and [9, 171, as well as [12, 131. In this paper 
we concentrate on a different problem: stabilization to  a point. 

A control law U = k ( x , t )  stabilizes a point x o  E R" if x ( t )  - xo 
as t --t 00 for all initial conditions of the system. For a nonholonomir 
control system, the dependence of a stabilizing control law on time is 
essential since the system (1) does not satisfy Brockett's necessary con- 
dition for smooth stabilization [l]. Hence there does not exist a smooth 
static state feedback law which stabilizes the system to  a point. Recent 
work by Coron has shown that it is possible to  stabilize a nonholonornir 
system using time-varying feedback [3]. Constructive approaches have 
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been presented by Samson [15] and Pomet [14]. In this paper we present 
some new control laws for a specific class of systems, namely those in 
so-called chained form [13]. These control laws are based on earlier 
work using sinusoids for open-loop planning and have connections with 
the recent work in [17]. 

Chained systems. We restrict attention to a special class of non- 
holonomic systems, called chained systems [13]. A two-input system 
with a single chain has the form: 

F5 = G - I U I .  

This system is controllable using the input vector fields and Lie 
brackets of the form ad,klgz, where ad jg  is the iterated Lie bracket 

Under some conditions, it is possible to convert a two-input non- 
holonomic system into a system with the form of equation (2)  using 
feedback transformations. Sufficient conditions for doing this are pre- 
sented in [13]. In particular, it can be shown that under certain reg- 
ularity conditions all two-input nonholonomic systems in R3 can be 
put into this form. More complicated examples of nonholonomic sys- 
tems which are locally feedback equivalent t o  a chained form include 
kinematic models of an automobile and an automobile towing a trailer. 

Chained systems can be steered between two arbitrary configura- 
tions using the following algorithm. 

Algorithm 1 

[f, [f,. . . , [f, SI. .  . , I ]  (k copies of f). 

1. Steer (1 and (2 to  their desired values. 
2. For each &+2, k 2 1, steer &+> to  its f ind d u e  using ~1 = a sin t ,  

vz = bcos k t ,  where a and b satisfy 

This algorithm uses n path segments to steer the system. It is also 
possible t o  steer the system using a linear combination of sinusoidal 
terms a t  different frequencies by solving a polynomial equation for the 
coefficients of the sinusoids. 

Power form. 
which we refer to  as "power form": 

Related to chained form is a second canonical form 

(3 )  

x, = 1 x n - z  
(n-Z)! 1 w. 

Like chained form, the control Lie algebra for this system is spanned 
by the input vector fields and Lie products of the form adjlg,. The 
power form is related to the chained form through a global coordinate 
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transformation: which is approximately given by 
Tl = -T”3(”1 - w2) 
7i2 = - ~ ~ 3 ( ~ 1 + 2 0 2 ) ,  

The dynamics of the system evaluated on the center manifold are (ap- 
proximately) given by 

(4) 

The advantage of using power form over chained form is that given 
u1 and uz,  we can quickly solve for the motion of any of the state 
variables using only the trajectory of XI and the function u ~ .  This 
canonical form also arises in the work of Grayson and Grossman in the 
context of generating systems of vector fields which realize a nilpotent 
control Lie algebra of a given order [4]. It is also worthwhile t o  note 
that this form satisfies some of the simplifying assumptions used by 
Pomet t o  generate controllers for more general nonholonomic control 
systems [14]. 

In the sequel, we will restrict our results to those that apply to 
systems in chained form or, equivalently, power form. The are several 
reasons for taking this action. Systems which are in chained form char- 
acterize the fundamental difficulties of nonholonomic systems in a very 
simple and useful form. By understanding the geometry of controllers 
applied to  chained form, we hope to understand the geometry of con- 
trollers applied to  more general nonholonomic systems. This point of 
view has been used very successfully by Sussmann, who has shown 
how results applied to  a “symbolic” representation of the control sys- 
tem can be used to  understand systems with a compatible control Lie 
algebra [9]. Chained systems can be regarded as a realization of a class 
of “symbolic” control systems with a particular Lie algebraic structure. 

The goal of this paper is to present a class of control laws with 
strong geometric intuition which asymptotically stabilize an arbitrary 
chained system with two inputs and a single chain. We are optimistic 
that the stabilizing controllers presented here can be extended to the 
more general case and that by understanding their action on a canonical 
system we can understand their extension to  systems with a similar Lie 
algebraic structure. 

2 Local Stabilization 
In this section we propose a class of locally stabilizing inputs for (3). 
To motivate our approach, we consider first the simplest such system: 

( 5 )  

F’rom the discussion of chained systems above, we know that motion 
in the 23 direction can be achieved using sinusoidal inputs u1 = a sin t 
and u2 = bcost. Integrating the differential equations over one period, 
the resulting motion is a closed curve in x1 and 22 and a net motion 
of -(ab)* in x3. This suggests that the following control law 

U, = -21 - x i s in t  
U2 = - 2 2  - x3cost 

might be used to  stabilize the system. The intuition is that if 23 is 
slowly varying then the average motion (over one period) in the 23 

coordinate can be approximated by setting a = -xi, b = -23 which 
would give a net motion in 23 of - x ~ K ,  i.e., 23 would converge to zero. 

To prove stability in a more rigorous fashion we make use of center 
manifold theory and averaging. For the purposes of the proof, we 
realize the time-varying feedback law by augmenting the controller with 
an exosystem 

(6) 

till = w2 W l ( 0 )  = 0 
w 2  = -201 wz(0) = 1 ,  

U] = -2, -xZw1 
and write the control law as 

112 = -x 2 - 53%. 

The closed loop system (including exosystem) has a local center man- 
ifold given by 

x1 = K 1 ( x 3 ,  wl, w2) 

2 2  = *2(23rwl,w2), 

1 
4 53 = --xi(w1 - w2)2. 

An averaging-like coordinate change can then be made to  show that 
the complete system is locally, asymptotically stable to the origin. For 
x3 small, the higher order nature of xi plays the role of the small 
parameter c usually found in averaging results. 

We now consider the stabilization of an arbitrary system in power 
form. We begin with a local result and extend the controller t o  provide 
global convergence in the next section. 
Theorem 2.1 Every pair of inputs 

with cl > 0 locally asymptotically stabilizes the origin of (3). 
Remark. The control law given in theorem 2.1 is a generalization 

of the simple controller presented earlier. We have added a cosine term 
to  u1 to  make the proof tractable. It can be seen that, for the simple 
example, this extra term adds a term on the manifold of zero average. 
Sinusoids a t  integrally related frequencies are used to  generate motion 
in the different bracket directions in such a way as t o  stabilize the 
system to  the origin. We note that the control law requires neither the 
use of high-frequency sinusoids, such as those used by Sussmann and 
Liu for open loop steering [17] (see also [18]), nor does it require the 
use of a leading c coefficient as typically used when applying averaging 
techniques. Likewise, compared to the work of I?], even though we 
employ an averaging like analysis, we do not require high-frequency 
sinusoids and we do not settle for stabilization to an arbitrarily small 
set. Furthermore, the weights cl can be adjusted to  control the rate of 
convergence in the different coordinate directions in a straightforward 
manner. 

Proof of theorem 2.1. The proof of theorem 2.1 will require appli- 
cations of center manifold theory (see [2]), techniques used in averaging 
theory (see (51 or [7]) and a case specific Lyapunov result, Center mani- 
fold theory does not apply directly to  (3), (7) because the timevarying 
terms in (7) are O(1). Nevertheless, we can demonstrate the following 
lemma regarding a class of systems to  which (3), (7) can be trans- 
formed. We use the notation of [2] RO that f’(O,O,w) refers to the 
partial derivative of f with respect t o  all variables and evaluated at  

Lemma 2.1 (“Time-varying” Center Manifold) Consider the 
system 

(Y, z, w )  = (O,& w ) .  

Y = BY + g ( Y , z , w )  
i = A z + f ( y , z , w )  (8) w = sw 

with y f R”, z f R”, w E RP and where the eigenvalues of B have 
negative real part and the eigenvalues of A and S haw zem real part. 
The functions f,g and h are C z  with f(O,O,w) = 0 ,  f ‘ ( O , O ,  w )  = 0, 
g(O,O, w )  = 0,  and g’(O,O, w )  = 0 .  Then, given M > 0 ,  there ezists 
a center manifold for (8), y = h ( t , w )  for IwI < M ,  IzI < 6 ( M ) ,  for 
some 6 > 0 and dependent on M ,  where h is Cz and h(0,w) = 0 ,  
h’(0,w) = 0. 

Proof. See appendix. 
To transform (3), (7) into a system for which lemma 2.1 applies, 

we begin by defining n - 2 linear oscillators which will generate the 
time-varying terms of (7). Let 

We choose w l j ( 0 )  = 0, w ~ j ( 0 )  = 1 so that wlj = sin(jt) and wzj = 
cosjt.  If we define the vector 

20 = [ eo] . . .  wn-p 1’ 
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we have 

where S is a block diagonal matrix with the J th  block given by SJ l .  
Next, partition the original state space as 

w = SUI (10) 

r 1 

so that y E R2 and I E RnL with n z  3 n ~ 2. For the rlosed loop system 
we have 

y, = -yl - W~ 1 k 7  

(12) 
y2 = -y2  - IIlTC'2 

i = J(y,z,u11 
d = sur 

where f is Cz with f ( O , O , w )  = 0 and / ' ( O , O , w )  = 0. The matrix 
C 6 Rzmxm IS block diagonal with the Jth block given by the column 
vector . .  

and D E RZm is given by 

(1.1) 

We then make a coordinate changp in y2 to rliriiinate the linear time- 
varying dependence of z in the y2 equation. We choose y z  = gz-zTIIztr! 
where II, solves the matrix equation 

D =  [ . . .  o ~ 7  

n,s = -~~f I Iz  c' (1r5) 

(The solution to this matrix equation always exists because the spec- 
trum of S is disjoint from the spectruni of I . )  WP then have 

y, = y, - 2Tn2u', - iT I Izw 

(16) 
= 
= 

-1/2 - zTCTw - z T I I ~ S ~ v  - J T ( y , z , w ) n 2 w  
-yz + zTIIzw - J r (  y.  2, I C ) I I Z I C  

= -1/2 t g,(Y, 2, m) 

where gZ(O,O,w) = 0 and g ; ( O , O , w )  = 0. We niake the same kind of 
coordinate change for y1. We choose y1 = gl - zT i I I lu i  where 111 solves 
the matrix equation 

(17 )  
We then have 

IIlS = -1II1 - D' 

y, = y1 - zT2n1tu - 2zTtJT,a1 

(18) 
= -y1 - z l z D T w  - zTzIllSw - 2z? ' f (y? z ,  w)IIlul 
= -y1 t Z T Z r I , Z L :  - 2 z T f ( y . z , w ) n , l a  
= -Y1 + 9 1 ( Y , 2 , w )  

where gl(O,O. w )  = 0, gi(O.0, w )  = 0 and g;'(0.0. tu) = 0. 

6, IwI < M for 
Now, from lemma 2.1 there is a center manifold 5 = h ( z ,  w),lzl < 

Y = - f Y t g ( Y . z , w )  

li, = sw 
i = j ( Y . 2 .  11') (19) 

where h(0, w) = 0 and h'( 0, w)  = 0. In fact, since g;( O , O ,  w )  = 0, one 
can use an approximatioil theorem [2,  theorem 31 or calculate to  show 
that h;'(O,w) = 0 (where h = [hl.h,IT).  Now it is sufficient. to analyze 
the dynamics of the reduced system 

Further, since h(0 ,  w )  = 0 and the dyrtarnics of w are autonomous with 
Iw(l)l < M for all t 1 0 for some M > 0, it is sufficient to  check the 
stability of z = 0 for the following "time-varying" nonlinear differential 
equation: 

il = ( h ,  t t T z n , w ) ( - h z  + W T S T I I T Z )  

(21) 
2, = $(hl t tTzIIlw)"'((-hz + wrSTII:z) 

First, becausc h(0. w )  = 0, h'(0,  w )  = 0 and hy(0, w )  = 0 we can write 
the dynamics of z as 

il = ( ? Z I I ~ U ~ ) Z ~ I I ~ S ~  + 0(214  

t, = ; ( z T z n l w ) 2 ( z T n z s w ) t  0 ( 2 ) 6  

i, = $(zTznlw)m(ZTrIzsw) + O(t)2(m+') 

(22) 

Now we determine expressions for n, and rI2  t o  examine the explicit 
time dependence of ( 2 2 ) .  From the block structure of S and C it 
foUows that II, also has a block structure where the j t h  block satisfies 
the matrix equation 

nzlJsJ, = -IIIz, - c;; 

n2,, = [ - *c j  -& ] 

1 1 2 , , S I I  = [ i & S J  -65 ] 

It can be shown that 

and, hence, 

Thus we have 

Now from (17)  it can be shown that 

n ,  - [ 0 1 o . . .  0 1  
so that zTzIIlvr = z T z c o s ( t ) .  LVe now consider thp product 

I-(zTz", w ) [ (  UlTS"n;*) 
i! 

given by 

Using the identity 

1 
2 

cos(t)cos(kt) = _[cos( (k  - 1 ) t )  t ros((lc+ 1)t)l  

it can be shown that 
Y 

cos ' ( t )  = 1 a,kcos([i ~ 2 ( k  ~ l ) ] t )  
k= I 

where a , k  > 0 and C = + t 1 if i is evcn and if i is odd. 
At this point, we would like to apply averaging to the terms in (24) 

to conclude asymptotic stability. Howev-er, since we are not using high 
frequency sinusoids and we do not have exponential stability for the 
averaged system, general averaging results do not apply. Nevertheless, 
a very specific averaging result which covers the class of systems we 
have can be asserted. We describe this result in the next two lemmas. 
The uniformly higher order characteristic of our equations eliminates 
the need for a small parameter (or alternatively. very high frequencies). 
We are able to  find a case specific Lyapunov functiori that  demonstrates 
asymptotic stability in the presence of small time-varying disturbances 
without requiring exponential stability. 

Lemma 2.2 ("Averaging" transformation) C h s i d e r  the tzme- 
varying nonlinear system 

1: = J ( x , t )  (26) 
where f is of period T in t and is C' and the i th entry of the vector 
f satisfies fi = O ( X ) ~ ' + ' .  Then there exists Q C' local change of 
coordinates x = y + 'J!.(y, 1 )  under which (26) becomes 

(27) Y = f ( y )  + j ( y 7 t )  

where f is the time avrrage of J and j,( y, t )  = O( 
T in  t.  

and of period 

Proof. See appendix. 
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Lemma 2.3 (Case Specific Lyapunov result) Consider the sys- 
tem 

Y =  J ( Y ) + I ( Y , t )  (28) 

IIXY,t)l 5 J*llYl12”+z) (29) 

f ( y ) =  ’ M Y )  (30) 

M Y )  = Y l l l Y l l Z *  (31) 

where y E R“. If 

for all y zn some open neaghborhmd of the ongzn and 

where A IS a square lower traangular matrar wath a,, < 0 for a = 1, .  . . , n 
and 

then the ortgan of (28) ts locally asymptotacally stable. 

Proof. See appendix. 
Now we make the coordinate transformation of lemma 2.2 to pull 

out the lowest order terms on each line of equation (22) with nonzero 
average. Using (24) and (25) we can show that this transformation 
yields a system possessing the (triangular) structure of the system in 
lemma 2.3. In fact, the aJ3’s of lemma 2.3 are given by 

Since a, l ,c ,  > 0, the local asymptotic stability of the origin of (3) ,  (7) 
then follows from lemma 2.3. U 

3 Global Stabilization 
In this section we propose a class of smooth, time-varying, globally 
stabilizing inputs for (3). Near the origin these control laws will ex- 
actly match the locally stabilizing control laws proposed in section 2. 
We introduce saturation functions in these control laws to eliminate 
destabilizing effects that take place away from the origin. 

Theorem 3.1 Given any pair of inputs 

(32) 
u1 = -XI - U(:?;;; z:+2)+)2(sin(t) - cos(t)) 
U2 = - 2 2  - Cj,l cjU(zj+z) cos($) 

with c, > 0 and with U : R -+ R a nondecreasing C3 function satisfying 

1. ~ ( s )  = s when Is1 5 6 
2. Iu(s)I 5 c for all s E R 

for some 0 < d < c, 3co such that ij 6 < co then thw origin of (3) is 
globally asymptotically stable. 

Proof of theorem 3.1. The proof of theorem 3.1 is very much in 
the spirit of the proof of theorem 2.1. We begin by defining the same 
oscillators as in (9) and we make the same partition of the state space 
as in (11). For (3), (32) we have 

= -Y1 - w T w l l z l l ) z  
(33) 

y2 = -y2 - W=Cu(z) 
5 = f(Y,Z,W) 
.2iJ = sw 

where 
B ( z ) =  [ o(z1) .“ U ( & )  1’ 

The matrices C and D are as defined in (13) and (14) respectively. 
We make the coordinate change 

Yl = Y1 - 411zll)2nlw 
yz = yz - a=(z)IIzw 

where II1 and IIz satisfy (17) and (15) respectively. 
We then have 

5,  = -GI - ~ ~ ( l l ~ l l ) ~ l l z l l - ’ 2 T f ( y ,  z , w ) n l w  

y, = -yz  - fT(y,z ,w)$Tnzw (34) 
= -?h + S l ( i ,  2. w )  

-62  + s z ( i ,  2, w) = 

We now wish to  show that given c sufficiently small, there is a center 
manifold J = h(z,w),  z E R”, lwl < M for 

y = - I i + g ( i , z , w )  
i =  f ( i 3  z ,  p.1 (35) 
2ir = sw 

where h(0,w) = 0 and h’(0,w) = 0. To do so, following the proof of 
[2, theorem 11, we must show that given M > 0 and for c sufficiently 
small, there exists a continuous function ~ ( c )  with ~ ( 0 )  = 0 such that 

l f ( i ,  2. w)l + MY, 2, w)l I 4 6 )  

i If(s, 2, w) - f($, z‘,  w’)l 5 K ( C )  

IS(& Z, W) - g(Y’, z‘, w’)l 

- i ’ l  + 13 - 2‘1 -k Iw - w’l 

li - 5’1 + Iz - 2’1 -t- Iw - W’I I 
(36) 

i 
for all z , ~ ’  E R ” ,  and all w,w’ E RP with IwI,lw’l < M and all y,y’ E 
R” with lyl, Iy’I < c. It can be shown that f satisfies this relationship, 
since every dependence on z in f is t s  the argument of a saturation 
function bounded by c. Then, since f satisfies these relationships, it 
follows from (34) that g also satisfies these relationships by noting that 
U is C3 and hence its partials are bounded and \,,$,,I 5 b for some 
positive constant b. 

Next we show that, for c sufficiently small, the manifold h(z ,  w) 
is globally attractive. First, observe that the dynamics of y are of an 
exponentially stable linear system perturbed by bounded disturbances 
of magnitude proportional t o  E. Consequently, after some finite time y 
is contained in a ball of radius proportional to E. Then, by the nature of 
the coordinate change from y to ij, ij is also contained in a ball of radius 
proportional t o  c. Now we know that the manifold is locally attractive, 
so for c sufficiently small the c ball is contained in the basin of attraction 
for h(z,  w). Hence, the manifold h ( z ,  w) is globally attractive. 

We will eventually establish that the dynamics 

i = f(h(z, PO) + ( i  - h(z, U)), 2, w) (37) 
have the “converging input bounded state” property of [16] with e I 
j - h(z, w) as input. Then, since h(0, w) = 0 it is sufficient t o  consider 
the dynamics of 

For now, we simply consider the global stability property of (38). To 
do so, we begin by establishing a bound on h(z ,w) .  We follow the 
approximation of center manifolds in [2]. As in [2], for functions 9 : 
Rn x RP -+ R2 which are C’ in a neighborhood of the origin we define 
the operator N t o  be 

i = j (h(2 ,  w), 2, w) (38) 

a@ - ad (Nd)(l ,  w) = aff(d(Z’W),  2 7  w) + &sw + IdJ(2, w) - g(#J(z,w), 2, w) 

where g is defined in (34). We choose to approximate h(z ,w)  by the 
function #(z ,  w) 0. We then have 

(Nd)(z, w) = - d o ,  2920) 

Itfollowsfrom(34)andjthat(Nq5)(z,w)= O ( ~ ( l l r 1 ( ) ~ ) f o r a l l z  E Rm 
and all w E RP with ( w I  < M. We can then mimic the proof of [2, 
theorem 31 t o  establish that 

Ih(z,w) - $(z,w)I = Ih(z,w)l = ~ ( ~ ( l l z 1 1 ) 3 )  (39) 
for all z E R” and all 20 E RP with Iwl < M. 

We are now ready to  establish lemmas similar to lemmas 2.1 and 
2.2 that apply t o  the global stability problem. 
Lemma 3.1 (Global “Averaging” transformation) Consider the 
nonlinear time-varying system 

x =  f (x , t )  (40) 
where f is of period T in t and as C’ and where the ith entry of the 
vector f satisfies f, = O ( U ( ~ ~ Z [ ~ ) ~ ~ + ~ ) .  If the c associated with the 
saturation function U is sujiciently small, then there ezists a C’ global 
change of coordinates x = y + @(y, 1) under which (40) becomes 

G = f (Y) + f(Y, t) (41) 
where f is the time average off and f is of period T in t with f;(y, t )  = 
O ( 4 l  IYI 
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Proof. See appendix. 

Lemma 3.2 (Global Case Specific Lyapunov result) Consider 
the system 

where y E Fa". If 

Y = f ( y )  + f ( Y , t )  (42)  

If ,(Y,t) l  I A 4 1 Y l l ) z ( 1 + ' 1  (43 )  

f ( y )  = Alj:(y) (44) 

Pi(y) = u ( y t ) o ( I I ~ i I ) ~ ~  (45)  

for all y E R" and 

where A is a square 1ou:er triangular matrix with a,, < 0 fo r i  = 1,. . . , n 
and 

then, for t suficiently small, the origin of (42) is globally USym]JtoticQlly 
stable. 

Proof. See appendix. 
Now using the expression for IIl atid IIz from the proof of theo- 

rem 2.1 we can show that these lemmas apply and thus the reduced 
dynamics are globally asymptotically stable. It remains to verify that 
the z dynam-ics have the "converging input bounded state" property of 
[16]. Since f is bounded for bounded t .  and hence z is bounded for all 
finite time, it is sufficient to prove the following result: 

Lemma 3.3 (Converging input bounded state) Under the con- 
ditions of lemma 3.2. if the perturbation in  the equation 

Y = f ( Y )  + i ( Y ,  t )  t P ( t )  (46) 

satisfies lp(t)l 5 v ,  then, for v suficiently small, y satisfies Iy(t)l 5 C 
for all t 2 0 for some G > 0 .  

Proof. See appendix. 
Now the main theorem of [16] provides global asymptotic stability 

for the system (3) ,  (32). 0 
It is also possible to deduce a locally stabilizing control law for (2 )  

without using the transformation to  power form given in (4) .  

Corollary 3.1 Every pair of inputs 

(47 )  D l  = -ti - (Cy:: t:+2)(sin(t) - ( :os( t ) )  
v2 = 4 2  - C~~:(-1).'C3F3+2cOS(jt) 

with cI > 0 locally asymptotically stabilizes the origin of (Z), 

Proof of corollary 3.1. Let the transformation (4)  that takes us 
from chain form to  power form be written as x = a(() = Tt + & ( E )  
where 6 ( t )  is higher order. Let U&,,( , )  denote the controls given by 
(47) and let tipower(.) denote the controls given by 7. Then we have 
v,h,,,(t) = upower(T-'z). For ( 2 ) .  (47) if we make the transformation 
x = a((), we have a power form system ( 3 )  with controls given by 
(7) plus higher order terms. Now the proof is exactly equivalent to 
the proof of theorem 2.1 since the higher order terms would simply 
contribute higher order terms on t,he nianifold which were shown to be 
unimportant. 0 

4 Example: an automobile 
Our example system will be a simple kinematic model of an automobile 
as shown in figure 1. This system is controllable using two levels of Lie 
Brackets. A derivation of the kinematic equations may be found in [12]. 
A sketch of the car is found in Figure 1 

where (z,y) is the position of the car in the plane, 4 is the angle of 
the front wheels with respect to  the car (or the steering wheel angle), 
0 is the orientation of the car with respect to  some reference frame, 
and the constant L is the length of the wheel base. For simplicity, we 
choose L = 1. 

Figure 1: Kinematic model of the car 
Y 

0 0  

_- 

Figure 2: Phase plane plot. I versus y, of the two simulations. Note 
the effects of the saturation function on the limits of travel in the x 
direction. 

The following change of roordinates will put the car into power 
form coordinates, locally: 

.c, = 1' 

x L  = s e c 3 ( ~ ) t a n ( q )  
x3 = ssec'(8) tan(b)  - tan(B) 

.z4 = y t fxz  sec3(0) tan(6)  - x tan(0) L 
with the following input transformation: 

u1 = q s e c ( 0 )  
u2 = -301 ser(0) sin2(d) tan(8) t 02 c0s3(0) cosz(+) 

The control law used for the simulation was: 

q = - 2 1  - 0 2  (JG) (sin(t) - cos(t)) 

02 = -L .L  ~ ku(s3)cos(t)  - ku(I4)C0~(2f) 

The gain k was chosen to be 2, and the t of the saturating function 
U ( . )  was chosen to  be 6 = 0.5. The initial conditions chosen for these 
two simulations were (O,+l,O.O). The plot demonstrates the effect 
using a saturation function. At first the error is large enough to cause 
the saturation functions to  limit the magnitude of the input sinusoids, 
hence limiting the x and 4 travel of of the car. After the error drops 
sufficiently, the controls are no longer saturated and the range of travel 
drops. 

5 ~ Summary and Discussion 
We have presented a control law which globally asymptotically stahi- 
lizes a system in power form. This control law uses sinusoids a t  in- 
tegrally related frequencies to  achieve motion in bracketing directions 
and saturation functions to achieve globally convergence. Convergence 
in the coordinate directions can be adjusted by setting the appropriate 
weights in the control law. By making use of a feedback transformation 
to  convert a nonholonomic system into power form, we have applied 
this control law to a kinematic model of an automobile. 

The primary limitation of the control law presented here is that 
it can only be applied to  systems which are feedback equivalent to a 
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system in power form. However, there is strong evidence to  suggest that 
control laws of this form can be extended to 'more general nonholonomic 
systems by using an "extended system" such as that used by Sussmann 
and co-workers [9, 171. The generalization of the results presented here 
would be to  systems which are controllable through the input vector 
fields and Lie products of the form ad,k,gz. Controllers for this same 
basic class of systems can be found in the recent work of Pomet [14]. 
The extension of the ideas presented here to this more general situation 
is the subject of current research. 

6 Appendix 
6.1 Proof of lemma 2.1 
The proof of lemma 2.1 mimics the proof of [2, Theorem 1, pp. 16-19]. 
Accordingly, let 11 : R+ -+ [0,1] be a C" function with +(s) = 1 when 
s I 1 and +(s) = 0 when s 2 2. Then for t, M > 0 define F and G by 

F(Y7GW) = f(Y,211(!),W#)) 
G ( y , z , w )  = dY,Z?@),W11(#)) 

We prove that, given M > 0, the system 

(49) 

has a center manifold y = h ( z , w ) ,  z E R", w E RP for t sufficiently 
small. Then since F and G agree with f and g for all IzI < t and 
for all IwI < M, this proves the existence of a local center manifold 
for (8). The existence of the global center manifold for (49) can be 
demonstrated using the same contraction mapping calculations as in 
the proof of [2, theorem 11 since we can show, as was needed in [2], 
that there is a continuous funrtion ~ ( t )  with ~ ( 0 )  = 0 such that 

IF(Y, z ,  w)l+ MY, z, w)l I t 4 t )  

1 IF(y ,z ,w)-F(y ' , t ' ,w ' l  I K(t)  ly-Y'l+Iz-z'1+Iw-wU)(I 
I G ( y , z , w ) - G ( y ' , z , W (  I K(c) lY-Y' l+Iz-z '1+Iw-w' l  

, ,  

for all z ,  z' E R", and all 20, w' E RP and all y, y' E R" with lyl, < t. 
Following [2], these inequalities yield a center manifold y = h(r ,  w) with 
h(0, w )  = 0 and h'(0, w) = 0. 0 

6.2 Proof of lemma 2.2 
The proof of this lemma follows closely the exposition of [5, pp. 168- 
1691. We split f(r,l) as 

f(l,t) = f(5) + f(z,  4 
where f is the mean of f and f is its oscillating part. Now we make 
the coordinate change 

= Y + Q(Y,t) 
where * will be specified. (We will show Y t o  be strictly higher order 
so that this is a valid coordinate change locally.) Differentiating we 
have 

[ Z + D , ' @ I i + , t = i  = f ( y + Y ) + f ( y + @ , t )  (51) 
aY 

Reorganizing we get 

ay. 
i = [I + Du*]-'l[f(Y + *) + f ( ~  + @, t )  - z] (52) 

We now choose Y such that 

(Since p has zero mean, P is bounded as a function of time.) This 
choice produces 

i = [ I +  Dy*I-'[f(Y) + f(Y + * , t )  - f(Y,t)l (53) 
Expanding with respect t o  !P we have 

Now we check the order of Ii. The first term we consider is the term 

W Y  + *,t) - f (Y,41  

Dyf . *  
It suffices to check the order of the i th  entry of 

Accordingly, the entries of the ith row of D, f are of order 2i. Further, 
since 

a@, 
= fi(Y,l) 

it follows that Vi is of order 1 + 22 in y. Hence, the lowest order in w 
is 3 ( i= l )  and the product yields terms of order 2i + 3. 

The final terms we need to  consider are given by D,YN(y, t )  where 

Ni(y,t) e f ; ( ~ ) + f i ( y + Y , t ) - f i ( y , t )  

By assumption, we know that N,(y, t) is of order 1 + 2i in y. Since @ i  
is of order 1 + 2i it follows that the entries of the i th  row of DyY are of 
order 2i. The lowest order in N ( y , t )  is 3 ( i  = 1) and so the ith entry 
of DyQ N(y, t) is of order 2i + 3. 0 

6.3 Proof of lemma 2.3 
Consider the Lyapunov function 

where the a,'s will be specified later. The derivative of V along the 
trajectories of (28) 1s given by 

(56) 
i. = cel"n-"+'[f,(Y) + ii(Y,t)I 

5 [CL a:Y, Z(fL-t)+I A,ll(Y)l+ ?llY112(n+1)+1 
where A, is the 8th row of the matrix A and y is a constant that depends 
on a,, /3, for z = 1,. . . , R. We claim that the at's can be chosen such 
that 

S ( y )  E C c ~ ~ y ~ ( " - ' ) + ~ A , ~ ( y )  5 - ( I Y J ~ ~ ( " + ' )  
n 

(57) 

(58) 

,=I  

This will give 

and hence asymptotic stability of the origin for llyll sufficiently small. 
The proof of this claim will involve an iterative process of completing 
squares, bookkeeping coefficients and judiciously choosing the a,'s. 

We begin by multiplying the tth term ( i  = 1,. . . ,n )  in the sum- 
mation S( y) by 

i. I -(I - ~llYll)llYl12(n+') 

for llyll # 0. This yields 

Now we begin to  complete squares by first considering the quadratic 
terms (i.e. those terms generated by i = n in the summation). Doing 
so, we have 

Here cn, are positive constants that depend on ann,anJr ahd n. Now, 
by the definition of Ilyll, we have 

(61) Y;t = I IYIIZ - Y: - . . . - Y L l  
and choosing 

4 

ann 
(2 n -  

we have 



with the ii,,'s appropriately redefined positive constants. 

summation. Again completing squares, and using the fact that 
Now we consider the quartic terms generated by d = TZ - 1 in the 

we have 

(64) 
We now choose sufficiently large 50 that 

In fact, we continue this process of completing squares and choosing (Y; 

large enough such that all the terms involving yt are hounded by A. 
This can always be done because of the triangular structure. Finally 
we have tha t  

(66) 
1 n-1 

'(y) 5 -2 t ~ I - 1  
, = I  n - 1 

From this we conclude that 

S(y) 5 - l l Y 1 / 2 ( n + ' J  (67) 

for llyll # 0 and our claim is established. 0 

6.4 Proof of lemma 3.1 
The proof of this lemma is a virtual duplication of the proof of lemma. 
2.2. We split f as before and make a similar coordinate change 

2 = Y t *(Y, t )  (68) 

This time we will establish that for t sufficiently small, this is a globally 
valid coordinate transformation. In fact, we again pick 

(69) 

Since f,(y,t) = O ( ~ ( l l y J 1 ) ~ ' ~ ' )  and U is C 3  ~t follows th<it P = 
O(u(lly11)*'+') and D,I = O(u( l l~11)~ ' ) .  Wecan now use the same kind 
of bookkeeping as in the proof of lemma 2.2 to establish the result.0 

6.5 Proof of lemma 3.2 
The proof of this lemma is a virtual duplication of the proof of lemma 
2.3. This time we start with the Lyapunov function 

where the ai's will be specified. The derivative along the trajectories 
of (42) is given by 

where A, is the zth row of the matrix A and 7 is a constant that depends 
on a,, @, for z  = 1, .  . . , n .  We claim that the a,'s can be chosen such 
that 

S ( y )  = Cr,u+4+1 ( Y , ) A , ~ Y )  I - ~ I I Y I I ) ~ ( ~ + ~ )  (72)  
n 

,=I  

This will give , 

(73) 
and hence global asymptotic stability of the origin for c sufficiently 
small. To prove this claim we now follow the proof of lemma 2.3. 
everywhere replacing lly(lk by ~ ( l l y l l ) ~  and y,k by ~ ( y ~ ) ~ .  The only dif- 
ficulty we have is that the equality (61) does not carry over. However, 
it is sufficient to have the inequality 

V I -(I - 7~(l lYl l))~(l lul l)2(n+') 

4 Y d 2  2 o(llYll)z - o(Y1)2 - . " - 4 Y n - l ) 2  (74)  

Completely squares and judiciously choosing the 0,'s again produces 
the result. 0 

6.6 Proof of lemma 3.3 
The proof of this lemma follows from the proof of lemma 3.2. We use 
the same Lyapunov function I/ as in (70). From lemma 3.2 and from 
the nature of the partial derivative of V with respect to  y, we have, 
for t sufficiently small, that  the derivative of V along the trajectories 
of the perturbed system satisfies 

Since we are simply trying to establish that y is bounded we can as- 
sume without loss of generality that ~5~("+')  < ~ ( ~ ~ y ~ ~ ) ~ ( " + ~ )  < c2("+l).  

Therefore we see that if 

then < 0 for IyI sufficiently large. Since V is proper, this implies 
that IyI is bounded. We see that. given c such that 1 - -yc > 0, (76) is 
satisfied for all v satisfying 

(77) 

0 
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