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Abstract

This paper considers control design for systems with in-
put magnitude saturation. Four examples, 2 SISO and 2
MIMO, are used to illustrate the properties of several ex-
isting schemes. A new method based on a modification of
conventional antiwindup compensation is introduced. It is
assumed that the reader is familiar with the problem of inte-
gral windup for saturating plants and conventional schemes
for dealing with it.

Introduction

Nearly all systems have some type of control input sat-
uration, and often it is the dominant nonlinearity. The
focus of this paper is on otherwise linear systems which
have an input magnitude saturation. We assume a linear
controller already exists which produces "ideal" behavior
on the unsaturated plant. The objective is to design addi-
tional compensation that leaves the original linear behav-
ior unchanged but provides graceful degradation of system
performance under saturation. There is very little formal
theory that addresses this objective, but there are several
somewhat ad hoc schemes and many working systems. This
paper aims to begin the development of more systematic
methods.

The existing schemnes briefly reviewed here are Inter-
nal Model Control (IMC) [M], a method suggested by
Horowitz (H) [H], and a version of conventional antiwindup
(CAW). Adding no additional antiwindup compensation is,
of course, a fourth alternative. IMC and H insure stability
under saturation, but are not really intended to be anti-
windup schemes and as such do not provide effective anti-
windup. This can give poor performance, as is shown in
the first SISO example. It must be emphasized that this
is not a new result and neither method is intended to be
an antiwindup scheme. They are considered here merely to
provide a comparison with CAW. Because of space limita-
tions, many details about the schemes discussed here will
not be given.
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CAW is much more effective than the alternatives on the
first example, but can lead to instability, as shown in the
second SISO example. CAW also performs very poorly in
the MIMO examples, giving little improvement over do-
ing nothing. The second MIMO example is unstable with
or without CAW. A modified antiwindup scheme (MAW)
is introduced which provides substantial improvement. A
new nonlinear extension to A analysis is used to prove the
stability and robustness of MAW for the MIMO examples
[D].

Motivation for this research comes from many practi-
cal problems, but particularly from a multivariable he-
licopter flight control problem where conventional anti-
winduip schemes were inadequate. The examples them-
selves are not directly based on any specific physical sys-
tems, but are intended to illustrate some issues that could
arise in practical applications. They are simple enough that
the behavior they exhibit should not require much comment
in order to be understood. Many practical considerations
that are essentially driven by implemnentation issues will nct
be discussed.

Siso Examples

The four example systems to be studied are all posed as dis-
turbance rejection problems with input saturation as shown
in Figure 1, where P is the plant and the controller K is
given. The various methods will be described as the first
example is introduced. It is assumed throughout that the
saturation block represents, in each channel

1=
I-= C,

t _l

if c > 1;
if -1 < c < 1;
if c < -1;

that the output of the saturation is available as a measure-
ment, and that there is no uacertainty in the saturation
itself. This arrangement greatly simplifies the exposition
and is not a practical limitation, but space precludes a full
justification. Skeptics are encouraged to think of the sat-
uration as occuring internally in the controller as part of
an antiwindup scheme against a saturating elernent in the
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plant.

For the first controller,

P = (.1 + s)/2s, and K = 2/(.1 + s),

giving a loop transfer function L = PK = 1/s. The re-
sponse of e and c to a unit step in d is shown in Figure 5a.
The error e has an overshoot not present in the linear re-
sponse because c exhibits classical windup. As can be seen
here, K need not have integrators to produce windup. It
merely needs relatively slow dynamics that are driven by
the error when the system is in saturation.

The method of Horowitz is based on Figure 2. He em-
phasizes the role of the the loop transfer function L =
H + GP around the nonlinear saturation element and sug-
gests, among other things, designing L4 to have large gain
and bandwidth relative to L. G and H are chosen to pro-
duce the desired L and L,.For L = 10/s, we get

2(10 +s) -10
G= (1+s)(1+s)' and H=-.

This does not stop windup or overshoot as is shown in the
response in Figure Sb. Larger L, do not improve the re-
sponse.

The IMC method is shown in Figure 3. In practice the
input to Po is c and P0 contains a model of the saturation.
The response of the IMC method is shown in Figure 5c.
Translation of the original system into the IMC franework
gives

2s
Q =1s(l5(.1 + s5)(1 + s)

and P0 = P. The controller output c is identical to the
linear case, a characteristic of IMC. In this case an error
offset exists.

Figure 4 shows a version of the CAW scheme. There are
many alternative configurations which achieve the same ef-
fect, but this one is particularly easy to understand and
compare with the other approaches. The difference be-
tween the controller output and the plant input is fed back
through X into some coprime factorization K = V-1U. If
the associated loop transfer function Lx = V-'X has gain
and bandwidth much higher than that of L, this prevents
the windup. For X = 10 and V-1 - K, the response is
shown in Figure 5d. There is neither windup nor overshoot.

On this example, CAW is clearly superior to IMC and H',
and would continue to be so on other inputs. Of course,
this is not surprising as neither IMC nor H are antiwindup
schemes. Indeed, this phenomena is well-known to IMC
aficianados and they suggest the addition of CAW to IMC,
which is easily done. CAW cannot be added to H as they are
fundamentally incompatible. Since, Lx = (L - Ln)/(I +
L) and L, = (L - Lx)/(I + Lx) it is not possible for

both Lx and Ln to have higher gain and bandwidth than
L. To be fair, Horowitz might object that he would never
design L, as we have done here and that we have totally
misunderstood his methodology. While this is likely, [HI
seems pretty clear about problems of this type.

One obvious advantage that 1MC and H have over CAW is
that for stable P, they guarantee closed-loop stability even
under saturation. Horowitz emphasizes that stability under
saturation is determined by L,, and designs it accordingly.
IMC actually produces L,=0,0so it cannot be unstable
under saturation. Since CAW focuses on Lx it may pro-
duce an Ln that leads to instability. CAW as implemented
here is also highly sensitive to uncertainty in the saturating
element. Alternative implementations can eliminate this
sensitivity, but space precludes further treatment here.

Although CAW is stable and yields good performance on
the first example, naive application of CAW to the second
example leads to instability. The plant is a fourth order
lag-lead butterworth,

P = 0.2
s + 2qwi + w, ) + 252wl + wI
.52~+ 2lw2 + w2 S2 + 2S2w2 + W2

where wl = .2115,w2 = .0473,l - .3827 and ¢2 = .9239.
The controller is K = 5/s. This system has substantially
greater low-frequency disturbance rejection than one with
L = 1/s, which has the same bandwidth. The price paid
for this is conditional stability and poorer disturbance re-
jection in frequencies just below crossover. The linear (no
saturation) response to a step input of unit amplitude is
oscillatory and is shown in Figure 6a. When the plant in-
put saturation is included the system is driven into a limit
cycle as shown in Figure 6b.

When CAW with X = 10 and V-1 - K is applied the
step response is stable and well behaved as shown in Fig-
ure 6c. Unfortunately, the system is driven to a limit cycle
by a disturbance input with a unit step at time t = 0 and
a switch to -1 at t = 4 (Figure 6d). The IMC and H
schemes will stabilize this plant but with much poorer step
responses than CAW. The ideal saturation compensation
scheme is probably some tradeoff between these methods,
but at present there is no formal methodology for optimiz-
ing performance while guaranteeing system stability. Ex-
amination of L and L, using standard describing function
and small gain ideas correctly predicts the stability charac-
teristics for this example so it seems likely that with some
work, improvements can be made. While this example is-
admittedly a little weird, a general methodology should be
developed which can handle such cases.

Mimo Examples

The first MIMO example has

P= 4(0.1-s)R1 and R-(4 5)
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The controller K = kR with k ' gives L =

PK = (1/s)I and a nominally decoupled response e/d =

(I + L)-1 = s/(s + 1)1. The response (with saturation)
to a worst-case direction step disturbance of amplitude
d = (.61 .79)T is shown in Figure 7a. The response for
CAW with X = 1001, U = R, and V1 = kI is shown in
Figure 7b. The overshoot, characteristic of windup, is no
longer present but the error is still large.

The MAW design (Figure 8) gives the response in Figure
7c. The feedback element a is a scalar multiplying the
controller output vector c given by

c 0)aY= 10

if jjc[ Oo < 1 - e
if IlcIIm > 1 - C

with c = .02. It is equivalent to a version of CAW for
the scalar case. The operation of this type of antiwindup
scheme can easily be seen by comparing the first two sec-
onds of the CAW response (Figure 7d) to the MAW re-
sponse (Figure 7e). The linear responses are, of course,
identical until c1 saturates at 1.12 seconds. With CAW this
saturation produces a change in the direction of c which in-
teracts with the asymmetry in P to produce a large error.
Analysis using , shows that while this system is robustly
stable for large independent gain changes in each channel
as are produced by saturation, the performance suffers dra-
matically. This is entirely consistent with the simulations.
Robust stability problems would also arise for uncertainty
at the outputs. The MAW controller prevents this direction
change in c while still preventing windup.

A slightly different example provides an even more dramatic
contrast. Here P = PlPo,

2(10 - s)

pO =
4(0.1 -+ s) R-11 pI =

(10 + s)
Is

0

(5-s)
(5 + s)

and K is as above. Note that L = (1/s)P1 is still diago-
nal but with different elements on the diagonal. The sys-
tem is unstable following a step disturbance of amplitude
d = (.36 .93)T (Figure 9a). With CAW implemented as in
Example 1 the system is also unstable (Figure 9b). Simple
A analysis shows that this system has serious robust stabil-
ity problems for diagonal input uncertainty so this is not
surprising.

The system can be stabilized with MAW implemented as
in the first example. Figure 9c shows the well-behaved re-
sponse of this scheme to the above step disturbance. Intu-
itively, this is expected, because the "gain change" at the
input produced by MAW is effectively the same in both
channels and the system is robustly stable with respect to
input uncertainty of this type. Of course, MAW is non-
linear so standard p analysis does not, strictly speaking,
apply, and conventional nonlinear small gain theory cannot

exploit the structure inherent in MAW. Fortunately, a new
nonlinear extension to a analysis can treat this problem
[D).
Space limitations preclude including the details from [D],
so the results are summarized. The nominal system with
MAW is shown to be stable under saturation. MAW also
insures graceful degradation of robustness. If a full block
of uncertainty wA with U(A) < 1 is connected from d to e,
the smallest w, say wo, that produces instability is a mea-
sure of multivariable stability margins at the output. For
no saturation wo = .72 and under saturation, wo = .69.
Thus MAW preserves not only stability, but also the robust-
ness to uncertainty at the output. If the system were LTI,
this would also have a robust performance interpretation as

1//wo is the worst-case "sensitivity" ISloo, S = (I + L)-1.
Because the system is nonlinear, such an interpretation is
not entirely correct, but the simulatio are consis-
tent with it.

Conclusions

The problem of plant input saturation has been considered
through the study of four simple examples. The examples
are somewhat extreme but do highlight the deficiencies in
existing schemes and point to directions for future research.
The MIMO examples presented here illustrate in this con-
text the recurring theme that, unlike SISO systems, MIMO
systems have additional difficulties created by plant direc-
tionality.

Several schemes exist for enhancing the stability and per-
formance of systems subject to saturation. Unfortunately,
there is no formal methodology for guaranteeing stability
and at the same providing graceful degradation of perfor-
mance. Conventional antiwindup (CAW) is effective for
many systems, but naive application can lead to instability
in some situations.

For multivariable plants exhibiting high directionality, a
naive application of CAW can have poor performance or
even be unstable. This was illustrated by the two MIMO
examples. A modified antiwindup (MAW) scheme was in-
troduced which was very effective for these two examples,
and could be proven so using a new nonlinear extension to
At analysis [DI. While this suggests some possibilities for
a general methodology, there remains many unanswered
questions. It should not be difficult to construct examples
where naive use of the MAW scheme presented here would
also fail.

Many practicing engineers have developed good intuition
on the effects of saturation and methods for handling it.
This intuition is typically based on simple SISO problems
for which CAW works well. Practical multivariable control
problems are becoming more common and more complex.
While much progress has been made in the development
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of applicable multivariable control theory, some important
issues have been neglected. The techniques for handling
input saturation will have to keep pace with the other de-
velopments in multivariable control theory if the new theory
is to be generally applicable. It is hoped that this paper,
along with [D}, will provide the beginning
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Figure c. Siso Example 1
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Modified Antiwindup Scheme

4

o-

0 10 2C 30 40

time (seconds)

Figure e. MimO Example 1

Modified Astiwindup - detail

~~~I
-~~~-I

0.0 2i. 150

time (seconds)

Figure 7d. Mii Example 1

Conventional Antivadup - detail

052.S10 1.5 2.0

t ime (seconds)

Figure 9a Mine Example 2

Uncoapensated system response

-20

- C1 > C2

0 0 10 10 20

time tseconds)

Figure 8. Modified Antiwindup Structure for MIMO Systems

d

Figure 4b. Kim Example 2

Conventional Antivindup scheme
20-

10

210 tim 10

se1Qd 52s

tiie seconds

Figure 9c. hom Example 2

Modified Aitivindup scheme

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-4~~~ ~~~~~~ ~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

-j

C 5 10 15 20

time (seconds)

1039

..- ll.-
-1

- Z.I- --
-m -

-11 -L- .I

.i

I


