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ABSTRACT 

In this paper we give a formulation of differen- 
tial flatness-a concept originally introduced by Fliess, 
Levine, Martin, and Rouchon-in terms of absolute equiv- 
alence between exterior differential systems. Systems 
which are differentially flat have several useful proper- 
ties which can be exploited to generate effective control 
strategies for nonlinear systems. The original definition 
of flatness was given in the context of differential algebra, 
and required that all mappings be meromorphic functions. 
Our formulation of flatness does not require any algebraic 
structure and allows one to  use tools from exterior differ- 
ential systems to  help characterize differentially flat sys- 
tems. In particular, we show that in the case of single in- 
put control systems (i.e., codimension 2 Pfaffian systems), 
a system is differentially flat if and only if it is feedback 
linearizable via static state feedback. However, in higher 
codimensions feedback linearizability and flatness are not 
equivalent: one must be careful with the role of time as 
well the use of prolongations which may not be realizable 
as dynamic feedbacks in a control setting. Applications of 
differential flatness to nonlinear control systems and open 
questions are also discussed. 

1. INTRODUCTION 

The problem of feedback linearization is traditionally 
approached in the context of differential geometry [lo, 151. 
A complete characterization of static feedback lineariz- 
ability in the multi-input case is available, and for single 
input systems it has been shown that static and dynamic 
feedback linearizability are equivalent [4). Some special 
results have been obtained for dynamic feedback lineariz- 
ability of multi-input systems, but the general problem 
remains unsolved. Typically, the conditions for feedback 
linearizability are expressed in terms of the involutivity of 
distributions on a manifold. 

More recently it has been shown that the conditions 
on distributions have a natural interpretation in terms of 
exterior differential systems [7, 161. In exterior differential 
systems. a control system is viewed as a Pfaffian module. 
Some of the advantages of this approach are the wealth 
ot tools available and the fact that implicit equations and 
nun-affine systems can be treated in a unified framework. 
For an extensive treatment of exterior differential systems 
w' rcfer to [I]. 

Fliess a d  coworkers [5, 111 studied the feedback lin- 
earization problem in the context of differential algebra 
and introduced the concept of dzflerential flatness. In dif- 
fwcntial aigebra. a system is viewed as a differential field 
generated by a set of variables (states and inputs). The 
system is said to be differentially flat if one can find a set 
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of variables, called the flat outputs, such that the system 
is (non-differentially) algebraic over the differential field 
generated by the set of flat outputs. Roughly speaking, 
a system is flat if we can find a set of outputs (equal in 
number to the number of inputs) such that all states and 
inputs can be determined from these outputs without in- 
tegration. More precisely, if the system has states x E R", 
and inputs U E Rm then the system is flat if we can find 
outputs y E Itm of the form 

y = y(x,u, ti,. . . , ?PJ) 

x =z(y,Y, . . . , y ( P J )  

U = y(y,Y,. . . ,y(V'). 

(1) 
such that, 

(2) 

Differentially flat systems are useful in situations 
where explicit trajectory generation is required. Since the 
behaviour of flat system is determined by the flat outputs. 
we can plan trajectories in output space. and then inap 
these to appropriate inputs. A common example is the 
kinematic car with trailers, where the xy position of t h !  
last trailer provides flat outputs 1131. This implies that 
all feasible trajectories of the system can be determined 
by specifying only the trajectory of the last trailer. Uii- 

like other approaches in the literature (such iu converting 
the kinematics into a noriiial forni). this twhnicliic. works 
globally. 

A limitation of the differential idgt!braic: sc!tt.ing is 
that it does not provide tools for regularity aiialysis. The 
results are given in terms of differential polynomials in the: 
variables, without characterizing the solutions. In par- 
ticular, solutions to the differential polynoniids may w t .  
exist. For example, the system : 

i, = U  

2 2  = X I ,  

is flat in the differentially algebraic seiise with flat output 
y = 5 2 .  However, it is clear that the derivative of 2 2  

always has to be positive. and therefore we ranilot. follow 
an arbitrary trajectory in y space. 

In differential algebra the coefficic!iits of the polyno- 
mials are allowed to be meromorphic functions of t i r n t . .  
However, to treat time as a special variable in the rela- 
tions (2) ,  one needs to resort to LieBacklund transfortila- 
tions on infinite dinierisional spaces [SI. Also, the iiotioii of 
flatness is more general than (dynamic) feedback liiieariz- 
ability, as is shown by the example of a rolling penny. and 
its promising applications in  traject,ory generation justify 
a deeper study. 

In the beginning of this century, the French geomett-r 
E. Cartan developed a set of powerful tools for the study 
of equivalence of systems of differential equations 12. 3. 
161. Equivalence need not be restricted to systems of equal 
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dimetisioiis. III particular a system can be prolonged to  
il bigger system on a bigger manifold, and equivalence 
IJ(:tWWli these prolotigat.ions (:an bf! studied. This is the 
c:otic:ept of absolute equzvulence of systems. Prolonging a 
system corresponds to dyrianiic feedback, and it is clear 
that we can benefit from the tools developed by Cartan 
to study the feedback linearization problem. 

In this paper we reinterpret flatness in a differential 
geometric: setting. We make extensive use of the tools 
offered by exterior differential systems, and the ideas of 
Cartali. This approach allows us to study some of the reg- 
ularity issues, and also to  give a more explicit treatment 
of titiic tlepc!tidencc:. Moreover, we can easily make con- 
iie.c:tioiis to the extetisive body of theory that exists in dif- 
f(trc!iitial gcwiiicitry. We show how to recover the differen- 
tially algebraic: definition, and give an exterior differential 
systems proof for a result proven by Martin [ l l ,  12) in dif- 
fcrciitial algebra: a flat system can be put into Brunovsky 
iiortiiiil foriii by dynaixiic: fwdback in an open and dense 
st,t. This set need not coiitaiii an equilibrium point. 

Wc ills0 givci a coiiiylet,e characterization of flatness 
for systeiiis with a sitiglc iiiput. In this case, flatness 
i i i  tlici iiciR1il)orhootl o f  an equilibrium point is equiva- 
loiit. to liriearizability by static: state feedback around that  
poiiit. This result is stronger than linearizability by en- 
dogenous focidback as iritlicated by Martin, since the latter 
oiily holds iii an open arid dense set. We also treat the 
caw of time varying versus time invariant flat outputs, 
aiid show that in the case of a single input, autonomous 
systmi the flat output can always be chosen time inde- 
periderit. In exterior differential systems, the special role 
of the time coordinate is expressed as an independence 
condition. i.e.. a one-form that  is not allowed to  vanish 
on any of the solutioii curves. A fundamental problem 
with exterior differential systems is that  most results only 
hold on open dense sets. See for example [8]. It requires 
sotne special effort to  obtain results in the neighborhood 
of a point,, see for example [14] 

The organization of the paper is as follows. In Sec- 
tion 2 we introduce the definitions pertaining to  absolute 
equivalence and their interpretation in control theory. In 
Section 3 we introduce our definition of differential flat- 
iiws aiid show how to recover the differential algebraic 
results. 111 Section 4 we present our main theorems char- 
acterizing flatness for single input systems, and in Sec- 
tion 5 we summarize our results and point out some open 
questions. 

2. PROLONGATIONS A N D  CONTROL THEORY 

This section introduces the concept of prolongations, 
and states some basic theorems. It relates these concepts 
to  control theory. Proofs of most of these results can be 
found in Sluis [IS]. 

Defini t ion 1. A Pfufiun system Z on a manifold M is a 
submodule of the module of differential one-forms R'(M) 
over the commutative ring of smooth functions Cm(M). 
The Pfaffian system is generated by a set of one-forms 
{w ' ,  . . .  ,U"}, and I =  {Cfp,wklfk E C - ( M ) } .  

People are often careless about this definition and call 
the set of generators, or the ideal Z in A ( M )  generated 
by I ,  a Pfaffian system. Since we are only dealing with 

Pfaffian systems the term system will hericeforth I I I C ~ I I  it 

Pfaffian system. 

A s s u m p t i o n  1. We will assurrie throughout this pitper 
that  the system is regular, i.e., that both the systerri aiitl 

the set of exterior derivatives of all generators in the sys- 
tem have constant dimension. 

For a Pfaffian system we can define its dertved .sys- 
t e m  Z(') as I ( ' )  = {U E Z(dw 0 mod I } .  The derivcd 
system is itself a Pfaffian system, so we cap defirie the se- 
quence I ,  I('), I ( 2 ) ,  . . . which is called the derived Pug of 
I .  If the system is regular this sequence is decreasing. SIJ 

there will be an N such that I ( N )  = This Z'.') is 
called the bottom derived system. 

Defini t ion 2. Let I be a Pfaffian system on a manifold 
M .  Let B be a manifold such that  A : B + M is a fiber 
bundle. A Pfaffian system J on B is a Cartun prolongutzon 
of the system Z if the following hold. 

(2) For every integral curve c : ( - e .  e )  --t M. there is a 
unique lift E : ( - e ,  e )  + B with A o 2. = L. 

Note that  the above definition implies that  there is 
a smooth 1-1 correspondence between solutions of a sys- 
tem and its Cartan prolongation. Cartan prolongations 
are useful to  study equivalence between systems of differ- 
ential equations that  are defined on manifolds of different 
dimensions. This occurs in dynamic feedback extensions 
of control systems. We increase the dimension of the state 
by adding dynamic feedback, but the extended system is 
still in some sense equivalent t o  the original system. 

This allows us to  define the concept of absolute equiv- 
alence introduced by Elie Cartan: 

Defini t ion 3. Two systems Z1,Zz are called absolutely 
equivalent if they have Cartan prolongations JI , JZ respec- 
tively that  are equivalent in the usual sense, i.e., there 
exists a diffeomorphism 4 such that  d' (52) = J1. This is 
illustrated in the following diagram: 

When one studies the system of one-forms corre- 
sponding to  a system of differential equations. the inde- 
pendent variable time becomes just another coordinate on 
the manifold along with the dependent variables. Hence 
the notion of an independent variable i s  lost. If z de- 
notes the dependent variables, a solution to  such a system 
c : s + ( t ( s ) , z ( s ) )  is a curve on the manifold. But we 
are only interested in solution curves which correspond 
to  graphs of functions ~ ( 1 ) .  Hence we need to reject solu- 
tions for which 2 vanishes a t  some point. This is done by 
introducing dt as an independence conditron, i.e., a one- 
form that  is not allowed to  vanish on any of the solution 
curves. An independence condition is well defined only 
up to a nonvanishing multiple and modulo I .  We will 
write a system with independence condition T as ( Z , T ) .  
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All prolongations are required to  preserve the indepen- 
dence condition, i.e., r can never become a one-form in 
the prolonged system. 

An interesting subclass of Cartan prolongations is 
formed by proZongations b y  diflerentiation: If ( 1 , ~ )  is a 
system with independence condition on M, and d u  an ex- 
act one-form on M that  is independent of {I,T}, and if 
y is a fiber coordinate of B, then { Z , d u  - YT} is called 
a prolongation by differentiation of Z .  Note that we have 
omitted writing u'(du - y7) where ?r : B + M is the sur- 
jective submersion. We will make this abuse in the rest 
of the paper for notational convenience. Prolongations by 
differentiation Correspond to  adding integrators to a sys- 
tem. The coordinate U is the input that  is differentiated. 

If we add integrators to  all controls, we obtain a total 
prolongation: Let ( I ,  d t )  be a system with independence 
condition, where dim I = n. Let dimM = n + p + 1. 
Let u1,. . . ,U, be coordinates such that  dul,. . . ,nu, are 
independent of { I , d t } ,  and let m,. . . , yp be fiber coordi- 
nates of B, then {I, dul - y l d t ,  . . . , du,  - y,dt}  is called a 
total prolongation of I .  Total prolongations can be defined 
independent of coordinates, and are therefore intrinsic ge- 
ometric objects. I t  can be shown that  in codimension 2 
(i.e.. a system with n generators on an n + 2 dimensional 
manifold), all Cartan prolongations are locally equivalent 
to total prolongations. 

Cartan prolongations provide an intrinsic geometric 
way to study dynamic feedbacks. We shall show that  Car- 
tan prolongations that extend a control system to another 
control system can be expressed as dynamic feedbacks in 
local coordinates. 

We can view a control system as a Pfaffian system 

I =  { d ~ ~ - f i ( ~ , ~ , t ) d t , . . -  , d x n - f n ( z , u , t ) d t }  (4) 
with states {xl,. . . ,zn} and inputs {U*, . . . ,up}. Note 
that a control system is always assumed t o  have indepen- 
dence condition dt .  If the functions f are independent 
of time then we speak of an autonomous control system. 
Clearly, {I, d t }  is integrable. The converse also holds: i.e., 
if { I , & }  is integrable, then I can locally be written as a 
control system (see [16]). 

We will call dynamic feedback a feedback of the form 
t = a ( x ,  z ,  U, t )  

If t does not appear in (a, b) we call (a ,  b)  an autonomous 
dynamic feedback. An important question is what type of 
dynamic feedback corresponds to what type of prolonga- 
tion. Clearly, prolongations by differentiation correspond 
to dynamic extension (adding integrators to the inputs). 
The followirig example shows that not every dynamic feed- 
hack corresponds to a Cartan prolongation: 

Example 1. Consider the control system 

with feedback 

U = b ( x , z , u , t ) .  (5) 

X I  =u, 

21 = z2 

'11 = g(z)v. 
a2 = -2, 

This dynamic feedback introduces harmonic components 
which can he used to asymptotically stabilize nonholo- 
riomic systems 191. It is not a Cartan prolongation since 
(2. canriot, he uniquely determined from (2. U). 

I t  must be said that the feedback in Example 1 is 
somewhat unusual, in that  most theorems concerning dy- 
namic feedback are restricted to adding some type of in- 
tegrator to the inputs of the system. 

Definition 4. Let x = f ( 2 ,  U, t )  be a control system. 
The dynamic feedback in equation (5) is said to be en- 
dogenous if z and U can be expressed as functions of x ,  U, t 
and a finite number of their derivatives: 

z = + , U , .  . . ,u(p), t )  

v = /3(z,u,. . . , U ( P ) , t ) .  

Note that this differs slightly from the definition 
given in [ll] due t o  the explicit time dependence used 
here. The relationship between Cartan prolongations and 
endogenous dynamic feedback is given by the following 
two theorems. The first says that  endogenous feedback 
with b a submersion corresponds to Cartan prolongation. 

Theorem 1. Let Z be a control system on an open set 
T x X x U which in coordinates ( t , z , u )  is given b y  x = 
f ( x , u , t ) .  Let J denote the control system on the open set 
T x X x 2 x V which is obtained from the above system 
by including a dynamic feedback yiuen b y  equation ( 5 ) .  
Suppose further that the feedback is endogenous and that 
a b / a ( z , u )  i s  f u l l  rank. Then J is a Cartun prvlvnyaticirr 
OfI. 

Proof. Define the mapping F : T x X x 2 x V + T x X x U 
by F ( t , x ,  z, v) = ( t .  x ,  b ( z ,  z. v, t ) ) .  Since b is a subnier- 
sion so is F. Furthermore b is surjective since the feecl- 
back is endogenous. Therefore F is surjective too. Since 
F is a surjective submersion T x X x 2 x V is fibered over 
T x X x  U .  Hence we have that solutions ( t ,  z ( t ) ,  z ( t ) ,  u ( t ) )  
of J project down to solutions (t,z(t),b(x(t),z(t).v(t),t)) 
of I .  Therefore the first requirement of being a Car- 
tan prolongation is satisfied. The second requircmcnt of 
unique lifting property is trivially satisfied by the fact tliirt 

0 

Conversely, a Cartan prolongatiou can be realized by 
endogenous dynamic feedback, if the resulting prolonga- 
tion is a control system: 

Theorem 2.  Let Z be a control system on a manifold M 
with p inputs, { u1, . . . , 7 i P } .  Every Cartan prolongation 
J = { I ,  W I ,  . . . , w,} on B with tndeperrderrce conditiorr 
dt such that J i s  again U control system is realizabk b y  
endogenous feedback. 

Proof. Let r denote the fiber dimension of B ovcr M. arid 
let {wl,. . . , w,} denote the fiber c:oordixiatc:s. Sincc I is 
a control system, ( I . & )  is integrable. aid wt: can fiiiti 

n first integrals x i , .  . . ,z,,. Integrability of { J . d t )  irieans 
that  we can find T extra functions a l . .  . . , ur such that J = 
{ Z , d z l  - a l d t , .  . . . d z ,  - a , & } .  Pick p coordiiiates v(u.w) 
such that { t , z , z , v }  form a set of coordinates of B. The 
v coordinates are the new control inputs. Clearly a,  = 
a i ( z ,  z, v, t )  since we have no other coordinates. Also since 
{ t ,  x ,  z ,  v} form coordinates for B, and U is defined 0x1 B. 
there has to  be a function b such that 'U = b ( z ,  z. v ,  t ) .  This 
recovers the form of equation (5). Since J is a Cartan 
prolongation, every (2, U, t )  lifts to a unique (z, t, 11, t ) .  
From Lemma 1 , to he presented in a later section. it 
then follows that we can express ( z , u )  as functions of 3; 

z and U are obtained uniquely by equation (6). 
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arid ‘II and its derivatives. We thus obtain the form of 
equation (6). 0 

3. DIFFERENTIALLY FLAT SYSTEMS 

In this section we present a definition of flatness in 
terms of prolongations. This definition captures the spirit 
of thc: original definition in terms differential algebra [5]. 
Our definition makes use of the concept of an absolute 
niorphisni, introduced by Sluis [l6]. 

Definit ion 5 .  An absolute morphism from a system 
( I l , ~ l )  on M I  to a systeni ( 1 2 , 7 2 )  on MZ consists of a 
Cartan prolongation (J1 .71)  on R : B1 + M I  together 
wit.11 surjrc:t.ive subriicrsioii 4 : BI + 
(1) d * ( [ ~ )  C J I ,  

( 2 )  d * ( T 2 )  = x 7, I l l O t l  . I , .  

where X is it sriiootti, nowhere vanishing function on B1. 
This is illust.riit.ed twlow: 

Ji 

such that 

l \dJ 

11 1 2  

Definition 6. Two systems (11.71) and ( 1 2 , ~ ~ )  are said 
to lw absolutely mor.phzc if there exist absolute morphisms 
froiii (11.71) to  ( 1 2 . 7 2 )  and from (12,722) to  ( 1 1 , ~ l ) .  This 
is illustratt!tl below: 

JI 

I1 I 2  

Two systems (11. 7 1  ) and ( 1 2 ,  7 2 )  are said to  be in- 
rwrtrbly nbsolutely morphzc if they are absolutely morphic 
slid tlic followiiig inversion property holds: let c1 ( t )  be an 
integral curve of 11 with i . 1  the (unique) integral curve of 
JI  such that c1 = x o 21, and let y ( t )  = 42 o &(t) be the 
projection of E l .  Then we require tha t  c l ( t )  = 41 o y ( t ) ,  
where + ( t )  is the lift of y from 1 2  to  J2. The same property 
must hold for solution curves of 1 2 .  

If two systems are invertibly absolutely morphic, then 
the integral curves of one system map to  the integral 
curves of the other and this process is invertible in the 
sense described above. If two systems are absolutely 
equivalent then they are also absolutely morphic, since 
they can both be prolonged to  systems of the same di- 
mension which are diffeomorphic t o  each other. However, 
for two systems to  be absolutely morphic we do not re- 
quire that any of the systems have the same dimension. 

A differentially flat system is one in which the “flat 
outputs” completely specify the integral curves of the sys- 
tem. More precisely: 

Definit ion 7 .  A system ( 1 , d t )  is diflerentially flat if it 
is invertibly absolutely morphic to  the trivial system I t  = 
( I o ) , d t ) .  

Notice that we require that the independence condi- 
tion be preserved by the absolute morphisms, and hence 
our notion of time is the same for both systems. However, 

we do allow time to enter into the absolute morphisxiis 
which map one system onto the other. 

If the system ( 1 , d t )  is defined on a manifold M .  then 
we can restrict the system to  a neighborhood around ii 

point in M ,  which is again itself a manifold. We will call 
a system flat in that neighborhood if the restricted system 
is flat. 

In order to  establish the relationship between our def- 
inition and the differential algebraic notion of flatness, we 
need the following lemma on the nature of the dependenco 
of the fiber coordinates of a Cartan prolongation on the 
coordinates of the base space: 
L e m m a  1. Let ( 1 , d t )  be a system on U manifold M uuth 
local coordinates ( t , x )  E W’ x W” and let ( J . d t )  be a Ca7- 
tan prolonyation on the manifold B with fiber coordtnate.~ 
y E R’. Assume the regularity ussumptions 1 hold. Then 
on un open dense set, each y ,  cun be uniquely determined 
from t , x  and a finite number of derivatives of x .  

Proof. By Theorem 24 in [16] there is a prolongation by 
differentiation, on an open and dense set, say 12. of J .  
with fiber coordinates z,, that  is also a prolongation by 
differentiation of the original system I ,  say with fiber CO- 

ordinates W,.  This means that the ( z , g , z , t )  are diffeo- 
morphic to  (2, w ,  t ) :  y = y ( z ,  w ,  t ) .  The w are derivatives 

0 

This lemma allows us to  explicitly characterize dif- 
ferentially flat systems in a local coordinate chart. Let a 
system in local coordinates ( t ,  z) be differentially flat and 
let the corresponding trivial system have local coordinates 
( t ,  y). Then there are surjective submersions h and g with 
the following property: Given any curve y ( t ) ,  then 

of z, and therefore the claim is proven. 

z ( t )  = g ( t , y ( t ) ,  . . . , Y [ q J ( t ) )  

y ( t )  = h ( t , x ( t ) , .  . . ,x ‘P’( t ) ) .  

is a solution of the original system and furthermore the 
curve y ( t )  can be obtained from x ( t )  by 

This follows from using definitions of absolute morphisms. 
the invertibility property, and Lemma 1, stating that fiber 
coordinates are functions of base coordinates and their 
derivatives and the independent coordinate. 

This local characterization of differential flatness cor- 
responds to  the differential algebraic definition except 
that  h and g need not be algebraic. Also, we do not re- 
quire the system equations to  be algebraic. The explicit 
time dependence corresponds to  the differential algebraic 
setting where the differential ground field is a field of func- 
tions and not merely a field of constants. The functions 
g and h now being surjective submersions enables us to 
link the concept of flatness to  geometric nonlinear control 
theory where we usually impose regularity. 

Finally, the following theorem allows us to  character- 
ize the notion of flatness in terms of absolute equivalence. 
Theorem 3 .  Two systems are invertibly absolutely mor- 
phic if and only if they are absolutely equivalent. 

Proof. The ‘if’ part is trivial. We shall prove the ‘only if’ 
part. For convenience we shall not mention independence 
conditions. But they are assumed to  be present and do not 
affect the proof. Let ZI on M I  and I 2  on M2 be invertibly 
absolutely morphic. Let JI  on B1 be the prolongation 
of 11 with xi : B1 + Mi and similarly J2 on B2 be the 

329 



prolongation of IZ with n2 : Bz + Mz. Let the absolute 
morphisms be 91 : BZ + MI and 92 : B1 + M z .  

We now argue that J.2 is a Cartan prolongation of I ]  
(and hence I1 and 12 are absolutely equivalent). By as- 
suniption 41 is a surjective submersion and every solution 
E l  of J2 projects down to  a solution c1 of 11 on MI. The 
only extra requirement for J2 on 91 : BZ + MI to be a 
(Cartan) prolongation is that  every solution CI of I1 has 
a unique Iift E2 (on 8 2 )  which is a solution of J z .  

To show existence of a lift, observe that for any given 
C I  which is a solution of I1, we can obtain its unique lift 
E t  on B1 (which solves J l ) ,  and get its projection cz on 
M2 (which solves Iz) and then consider its unique lift 22 

on B2. Now it follows from the invertibility property that 
61 U E2 = c1. In other words, ZZ projects down to c1. 

To see the uniqueness of this lift, suppose ZZ and E3 

which are solutions of JZ on Bz, both project down to c1 
on M I .  Consider their projections cz and c3 (respectively) 
on Mz. When we lift cz or c3 to Bz and project down 
to Mi we get c1. Which when lifted to  B1 gives, say 
E l .  By the requirement of the absolute morphisms being 
invertible E l  should project down to (via 4 2 )  C.L as well as 
c.3. Then uniqueness of projection implies that cz and c3 
are the same. Which implies Zz and E3 are the same. 

Hence J 2  is a Cartan prolongation of 11 as well. 
0 

Using this theorem we can completely characterize 
differential flatness in term of absolute equivalence: 

Corollary 1. A system ( I ,  dt) is diferentialiy frat if and 
only if it is absolutely equivalent to the trivial system It = 

Hence I1 and I2 are absolutely equivalent. 

({Ol,dt). 

It is clear that all feedback linearizable systems are 
flat. since we can put them into Brunovsky normal form. 
The converse only holds in an open and dense set, as is 
shown by the following theorem. An analogous result was 
proven by Martin in a differentially algebraic setting. 

Theorem 4. Every differentially frat system can be put 
into Brunovsky normal f o r m  tn an open and dense set 
through endogenous feedback. 

Pioof. Let J .  J ,  he the Cartan prolongations of I, I l  re- 
spectively. Then from Theorem 24 in [16], on an open 
and dense set. there is a prolongation by differentiation of 
.If  that is also a prolongation by differentiation of I t ,  say 
.I, I .  Let J1 he the corresponding Cartan prolongation of 
. J .  Then J1 is equivalent to J t l ,  which is in Brunovsky 
iiormal form. In particular, since .I1 is a Cartan prolon- 
Aation. it can he realized by endogenous feedback. 0 

Example 2. Consider the motion of a rolling penny, as 
shown in Figure 1. Let ( ~ 1 ~ 2 2 )  represent the zy position 
of t.he penny on the plane, 23 represent the heading angle 
of the penny relative to a fixed line on the plane, and 2 4  

represent. the rotational velocity of the angle of Lincoln’s 
head. i . c . ,  the rolling velocity. We restrict 2.3 E [0 ,  K) since 
wc cannot distinguish between a positive rolling velocity 
.I’I at, a heading angle 23 and a negative rolling velocity 
at i~ hciding angle ~3 + x .  

The, clyriariiics of tlie penny can be written as a Pfaf- 

Figure 1: Rolling penny 

fian system described by 

w 1  = sin 2 3  dzl - cos 2 3  dzz 

wz = cos 2 3  dx1 + sin 2 3  dx2 - xqdt 

w3 = dx3 - xsdt (7! 
w4 = dxq - uidt 

u5 = d z s  - uzdt 

where 25 = k3 is the velocity of the heading angle. The 
controls u1 and u2 correspond the the torques around the 
rolling and heading axes. We take dt as the indeperitlence 
condition. 

This system is differentially flat using the outputs X I  

and 1 2  plus knowledge of time. Given 21 and XI. we (:a11 
use w1 to solve uniquely for z3. Then given these thrw 
variables plus time, we can solve for all other variablw iii 

the system by differentiation with respect to time. This 
argument also shows that the system is time independent. 
differentially flat, since we only need to know y = ( 2 1 ,  ~ 2 )  

and derivatives of y up to order three in order to solvc! 
for all of the states of the system. Moreover. there are 110 

singularities in these equations, so we have a true equiv- 
alence. 

Notice that this system is not equivalent to a cliaiii 
of integrators. This is because 2.3 is detrrmincd from X I  

and 2 2  by a prolongation which is not a prolongatioii 11.v 
differentiation relative to the independence colidition dt  
(although it is still a Cartan prolongation). On(:(% 3:) .  3 : d  

and 23 are determined, the renrainiiig c:oortliriat,es arc I]( , -  

termined by differentiation and hence they cwresporitl t , r )  
a prolorigatiori by differentiation of the syst,cw ( { U ,  ) .  d l ) .  

Often we will bv int.erestcd in a iiiori! rt!stric.t,txl form 
of flatness that eliminates the explicit apptraraiicx: of tiitie 
that  appears i n  the geiierirl detinit.ioii. 

Definition 8. An absolute inorphism hetwetrii two i u i -  

tonomous control systems is a tdnce-independent a b . s o h t c J  
morphism if maps the states and inputs of (11. d t )  to t . 1 1 ~ ~  
states and inputs of (I2,dt)  and time is also preservtd. A 
system ( I ,  d t )  is t zme- independen t  d z f l e l ’ E 7 i t t d ~ ~ y  frat if  i t  
is differentially flat using t,iIiie-iiideperiderit. ahsolntc m o r -  
phisms. 

Note that the example given ahove is tinit.- 
independent differentially flat. One might be tmipt.t:d 
to think that if the control syst,em I is autonomoiis 
and knowing that the trivial system is autonomous. 
we can assume that the absolutx morphism x = 
+(t,y,:c/(l’. . . . ,y‘”) has to  be t , h e  independent as well. 
That, this is not true is illust.ratt!d by the following txxaiti- 
pit:. 
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E x a m p l e  3. Consider the system y = a y ,  and the co- 
ordinate transformation y = ~ ' e ' + ~ .  Then x = -. 
Both systems are autonomous, but the coordinate trans- 
formation depends 0x1 time. 

4. FLATNESS FOR SINGLE INPUT SYSTEMS 

For single input. control systems, the corresponding 
tliffert!ritial system has codiiriension 2. There are a number 
of results available in codimerision 2 which allow us to  
give. a c:ornplett,e c:haracterizatioxi of differentially flat single 
iiipit, c:oIitrol systems. III codirnension 2 every Cartan 
pro1oiigat.ioii is a trotsal prolongation around every point of 
t h i s  fi1)iwxl ixiaiiifoltl. This allows us to proof the following 
T h e o r e m  5.  Let I be u n  autonoirious control sys tem : 

I = { d z i  - f i ( z , , u ) d t , .  . . ,dx, ,  - f i t ( Z , U ) d t } ,  
,urhere U is U .scalar control, i.e., the sys tem has codimen- 
sion 2 .  If  I 2.9 tirrte-independeitt differentially f lat  around 
an equilibriunr point,  then  I is feedback linearirable by 
stutic autononious feedback ut that equilibrium point. 

P w o ~ .  Lest, I be! defiiicd on M with coordinates (z, U, t ) ,  
let tlict trivial systerri It be defined on Mt with coordinates 
(9 .  t ) .  let t h  prolo~igatioii of It be Jt , and let Jt be defined 
ou 0,. This is illustrated below : 

J Jt 

First, wc show that .It can h c .  taken as a Goursat nor- 
x i i d  forrii around the equilibriuni point. In codimension 
2. t'very Cartan prolongation is a repeated total prolonga- 
tioil in a neighborhood of every point of the fibered man- 
ifold [[lS], Theorem 5). Let Zto = I t , I t l , I t 2 , .  .. denote 
the total prolongations starting at I t ,  defined on fibered 
manifolds Bto = Bt, B t l . .  . . . If y2 denotes the fiber coor- 
dinate of Bt.1 over Bto, then It1 has the form Xdt + p d y i .  
Now, p # 0 a t  the equilibrium point, since y1 z c is a 
solution curve to  I t .  which would not have a lift t o  It1 if 
p = 0, since d t  is required to  remain the independence 
condition of all Cartan prolongations. From continuity 
p # 0 around the equilibrium point. So we can define 

:= - - A l p ,  and It1 can be written as d y l -  yzd t .  We can 
continue this process for every Cartan prolongation, both 
of It aud of I .  This brings Jt in Goursat normal form in 
a neighborhood of the equilibrium point. 

Now we will argue that we don't need to  prolong I to  
establish equivalence. Since J is a Cartan prolongation, 
and therefore a total prolongation, its first derived system 
will be equivalent to  the first derived system of Jt .  Con- 
tinuing this we establish equivalence between I and I t , ,  
where I t ,  = ( d y l  - y i d t , .  . . , d y ,  - y n + l d t } .  So we have 

Next we will show that y l ,  . . . , yn+l are independent 
of time, and that y l ,  ... , y n  are independent of U. By 
assumption yn+l is independent of time. Since the cor- 
responding derived systems on each side are equivalent, 
dy,+l - y,dt is equivalent to  the last one-form in the 
derived flag of I .  Since the differential d u  does not ap- 
pear in this one-form, yn+l is independent of U. Analo- 
gously, y l ,  z = 2..  . . , n are all independent of U. Since the 
y,, i = n, . . . , 1 are repeated derivatives of yn+l,  and since 

Y = ( ~ 1 7 . .  . , y n + l )  ~(zl.,t).  

I is autonomous. these coordinates are also independrrlt. 
of time. 

Therefore yz = y . ( z ) . i  = 2 , . . .  , n +  1.yi = yi(x.,tL) 
and the system J i  is just a chain of integrators with inI)ut 
y l .  The original system I is equivalent to  this linear sys- 
tem by a coordinate transformation on the states and a 
state dependent and autonomous feedback. This coordi- 
nate transformation is well defined around the equilibriurii 
point. It is therefore feedback linearizable by a static feetl- 
back that is autonomous. Note that 13yl/au # 0 because 
y1 is the only of the y variables that depends on U. 2 

w e  will now show that in the case of an ~utO~I(Jnl(J1i~ 
system, we don't need the assumption of time invariant 
flatness to conclude static feedback linearizability. 1Vct 
will require the following preliminary result : 

L e m m a  2. Given a one-form a = A , ( z . u ) d z ,  - 
A o ( x ,  u ) d t  (using implicit summat ion)  o n  a manifold 
Rn+' with coordinates ( x , u , t ) ,  and suppose we cun write 
a = d X ( z , u , t )  - U ( z , u , t ) d t .  T h e n  we can also w n t e  
a as a = d Y ( z )  - V ( z , u ) d t ,  i.e., we can take the func-  
t ion  X independent of t i m e  and the input ,  and we cun 
take U independent of t ime .  If we know in addition 
that a = A , ( z ) d z ,  - A o ( z ) d t ,  then  we can scale a a5 
a = d Y ( z )  - V ( z ) d t ,  i.e., we can take V independent of 
U as well. 

Proof. (based on a suggestion by W .  Sluis) Write Q = 
q - A o ( z , u ) d t ,  where q = A i ( z , u ) d z , ,  then 

a A d a  = T,I A d q  - Aodt A d q  - 7 A dAo A d t .  

We also know 

A d a  = - d X  A d U  A d t ,  

and from 

it  follows that 

and since q has no t or dt  dependence, 

a A d a  A d t  = 0 

q A d q  A d t  = 0,  

q A  d q =  0.  
Hence, q = N ( z ,  u ) d M ( z )  for some functions M, N ,  where 
N # 0 due to  our regularity assumption. And so 

a = N ( z ,  u ) d M ( z )  - A o ( z ,  u ) d t  

= N ( z , u ) ( d M ( z )  - A o ( z , u ) N - ' ( z , u ) d t )  (8) 

d M ( z )  - A o ( z ,  u)N- ' ( z ,  u ) d t  
=: d Y ( z )  - V ( z , u ) d t .  

Here N denotes equivalence of Pfaffian systems. in the 
sense that they generate the same ideal. The second part. 
follows since both q, and therefore N .  and Ao, are inde- 

Theorem 6. Let I be a differentially f lat ,  autonomous 
control sys tem (with a possibly t ime  varying f lat  output): 
I = { d z l  - f l ( z , u ) d t , .  . . , d z ,  - f , ( z , u ) d t ) ,  where U i s  a 
scalar control, i.e.. the sys tem has codimension 2. T h e n  
I i s  feedback linearizable by static autonomous feedback. 

Proof. Let { a i , i  = 1 ,... ,n}  and { ~ ; , i  = 1 ,... ,n}  be 
one-forms adapted to  the derived flag of I ,  It respectively. 
Thus, I ( ' )  = {a', . . .  ,an-'} and Iji) = {a: ,... ,a:-'}. 
Since I does not contain the differential d u ,  the forms 
a', . . . ,a"-' can be taken independent of U. Since I is 

pendent of U. L 
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autonomous. the forms 0 1 , .  . . ,an can be chosen inde- 
pendent of time. We can thus invoke the second part of 
Lemma 2 for the forms a’, . . . ,an-’. 

Assume n 2 2. As in Theorem 5 we have equivalence 
between a’ and a: = dyn+l ( z . t )  - y n ( z , t ) d t  (if n = 1 
we have yn = y,,(z,u,t)? which we will reach eventually) 
Since I is autonomous we can choose a1 time indepen- 
dent: a’ = A,(z)dzi - A o ( z ) d t .  From Lemma 2 we know 
that we can write a1 as dYn+l - Ynd t  where Yn+l,  Y, are 
functions of z only. 

Again according to  Lemma 2, we can write a* = 
dl’(z) - W ( z ) d t .  Now from, 

0 = da‘ A a1 A a’ 
= -dYn A d t  A dYn+l A dV 

we know V = V(Yn,Yn+1). And from 

0 # da’ A a1 A a’ 
= - d W  A dt A dYn+l A d V  

we know that T,, := aV/aY,, # 0. Then, writing yn+l := 
al.’/aY,+i, (and 2: denotes equivalence in the sense that 
both systems generate the same ideal), 

{a’,a*} 2 {dYn+1 - YndtYyndYn + yn+ldYn+1 - W d t }  
z {dYn+1 - Ynd t , yndYn  + rn+lYndt  - W d t }  
2: {dYn+1 - Y n d t , d Y n  - (-yn+lYn + W ) / y n d t }  

(9) := {dYn+l - Ynd t ,dYn  - Yn- ld t } .  
Where Y,,-1. defined to be  Yn-l = (-yn+lYn + W ) / y n ,  
is independent of ( t ,u )  since (yn,-yn+l, Y,, W )  are. One 
can continue this procedure, at each step defining a new 
coordinate Y,. In the last step the variable W = W ( z , u )  
(this will also be the first step if n = l), and therefore Y1 

depends on u nontrivially. Hence we obtain equivalence 
between I and {dYn+l - Y n d t ,  . . . , dY2 - Y l d t }  with Yi = 
l:(.c).z = 2 . .  . . .n + 1, and Yl = Yl(z ,u) ,  i.e., feedback 
linearizability by static autonomous feedback. 0 
Corollary 2.  A single input autonomous control system 
is rlzffercntzally f lat  zf and only if i t  as feedback linearizable 
b y  .stutzc. uutonomous feedback. 
Corollary 3. If a single tnput system is differentzally f iat  
we cun always take the f la t  output as a funct ion of the 
ytates only: y = y ( z ) .  

None of these results easily extend to  higher codi- 
mensions. The reason for this is that only in codimension 
2 every Cartan prolongation is a total prolongation. This 
is related to the well known fact that for SISO systems 
static linearizability is equivalent to dynamic linearixahil- 
ity. 

5 .  COSCLCDINC: H E M A R K S  

We have presented a definition of flatness in terms 
of the language of exterior differential systems and pro- 
longations. Our definition remains close to  the original 
definition due to Fliess 15j. But. it involves the notion of 
n Iireferred coordinate corresponding to the independent, 
variahle (usiially time). 

Using t,his framework we were able to recover all re- 
sii1t.s i n  difftirent,ial algebra. I n  particular we showed that 
fliitncss implies feedback liiiearizability in an open and 
dense set. This set need not contain an equilibrium point, 
and this linearizability is therefore of questionable utility. 

For a SISO flat system we resolved the regularity issue, 
and established feedback linearizability around an equi- 
librium point. We also resolved the time dependence of 
flat outputs in the SISO case. 

The rolling penny is an example of a system that is 
flat but not linearizable by dynamic feedback. Therefore 
flatness is more general than feedback linearizability, and 
a further study is warranted. The most important open 
question is a characterization of flatness in codimension 
higher than 2. 

Acknowledgements.  The authors would like to thank 
Willem Sluis for many fruitful and inspiring discussions 
and for introducing us to Cartan’s work and its applica- 
tions to  control theory. We also thank Shankar Sastry for 
valuable comments on this paper, and Philippe Martin 
for several useful discussions which led to a more corn- 
plete understanding of the relationship between endoge- 
nous feedback and differential flatness. 

REFEHENCTS 

[l] R.L. Bryant, S.S. Chern. R.B. Gardner. H.L. Gold- 
Schmidt, and P.A. Griffiths. Exterior Di&~renttal Sys- 
tems. Springer Verlag, 1991. 

[2] E. Cartan. Sur I’bquivalence absolue de certains systemes 
dequations differentielles et sur certaines familles de 
courbes. In U3uures Complites, volume 11. pages 1133 
1168. Gauthier-Villars, 1953. 

[3] E. Cartan. Sur I’integration de certains systhes  
indCterminCs d’equations differentielles. I n  (Eu,urc..s 
Complites,  volume 11. pages 1169--1174. Gauthier-Villars. 
1953. 

[4] B. Charlet, J. LCvine. and R. Marino. On dynaniic feed- 
back linearization. Systems and Control letters. 13:143 
151, 1989. 

[5] M. Fliess, J .  Levine, Ph. Martin, and P. Rouchon. On 
differentially flat nonlinear system. In NOLCOS.  pages 
408-412. 1992. 

[6] M. Fliess. J .  Levine, Ph. Martin. and P. Rouchun 
Linearisation par boilclage dynamique et trarisforiii;rtiiiiis 
de Lie-Backlund. 111 C.R. Acrid. Scz. Pr1r.r.s. t .  317. .S(;TII, 
I ,  pages 981-986, 1993. 

Tlw GS alpirittini 
for exact linearization to Brunuvsky ncirrnal forill l E E E  
“runs. on Autornutir: Curitruf, 37( 2):224 . Fi:hruary 199’. 

[8] A. Giaro, A .  Kumpt!ra. and C Ruia. Sur la lecture c:orrir’tc! 
d’un resultat d’Elie Cartari. C . R .  Acurf. Sc, 287 SiLriv 

[9] L. Gurvits and Z.X.  Li. Smooth tiIiit!-])iirir~[li(~ fi!cdbac:k 
solutions for nonholonomic: rnotion planning. 111 Z.X.  Li 
and J.  Canny, editors. Prugrcss rn Nonholoninzc. Motrorr 
Planning. Kluwer Acadeniic Puhlislir!rs. 1992. 

[IO] A.  Isidori. Nunltnear Control S ~ . S ~ ~ T ~ L . S .  Springer Vt:rlaa. 
1989. 

[ll] Ph. Martin. Coritrtbution U I’itude des sgstrirric:.~ 
dige’rentiellemant plats. PhD thesis, L’Ecolv Natiiinalv 
Superieure des Mines de Paris, 1993. 

1121 Ph. Martin. Endogenous feedhacks and eqiiivdi:ur.r. 111 
MTNS 93, Regensburg, Germany, August 1993. 

1131 Ph. Martin and P. Rouchon. Feedback linrarization and 
driftless systems Technical Report 446. CAS. . J U I I C ,  1993. 

1141 R.M. Murray. Nilpotent haws for a c.l;rss of ~ i i J t i - i ~ i t ~ ~ ~ r i ~ t ~ l ~ ~  

distributions wih applications to trajtrctory gt’nwation for 
nonholonomic systems. MCSS.  1994 ( i n  prvss) 

[ 151 H. Nijmeijtir and A.  van t l e I  Sc:haft. Norrlznrrir. D!yrraruzr.nl 
Control S y s t e m s .  Springer Vrrlag, 1990. 

[16] W. Sluis. Ab.solutr Equtualence and t t s  Appl icnt ions  tu  
Control Theory. PhD thesis. University of Waterloo, Wa- 
terloo, Ontario, 1992. 

[7] R.B. Gardiirr arid W.F. Shadwick. 

A:241 -- 244, 1978. 

332 


