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Abstract 

The notion of balanced realizations and balanced truncation model 
reduction, including guaranteed error bounds, is extended to general 
Q-stable Linear Fractional Transformations (LFTs). Since both mul
tidimensional and uncertain systems are naturally represented using 
LFTs, this can be interpreted either as doing state order reduction 
for multi-dimensional (MD) systems, or as uncertainty simplification 
in the case of uncertain systems. The role of Lyapunov equations in 
the 1-D theory is replaced by Linear Matrix Inequalities (LMis). All 
proofs are given in detail as they are very short and in fact, greatly 
simplify even the standard 1-d case. This illustrates the power and 
generality of the LFT / µ/LMI machinery used throughout this paper. 

1 Introduction 

This paper applies the machinery of Linear Fractional Transforma
tions (LFTs), the Structured Singular Value (µ), and Linear Matrix 
Inequalities (LMis) reviewed in [6] to the problem of model reduction. 
Consider the system shown in Figure 1. 

y u 

Figure 1: MD System 

Let the frequency /uncertainty structure ([6]) ti. E ~ be 

( 1) 

B~ ={ti. E ~: a(ti.) S: 1} (2) 

While we will only consider scalar times identity blocks in this paper, 
the generalization of the results to include full blocks is straightforward, 
though notationally cumbersome. For this paper, we will require the 
system to be Q stable ([6]), which will be reviewed below. 

This system may be interpreted in a number of ways, although 
the results are independent of these interpretations. The most obvious 
is to view the 6; as different transform variables in a multidimensional 
(MD) system ([10]) with transfer function :Fu(M, ti.). In this case, 
model reduction means state order reduction, similar to the standard 
1-d case. We would like to find reduced order models which match the 
full order model well at all values of the 6; on the polydisc led = 1, Vi. 
The results in this paper are directly relevant to this interpretation, as 
we obtain reduced order models :Fu(AI,6..) with guaranteed bounds of 
the form 

r ti 

IJ:Fu( M, li.) - :Fu(Af, fl)Jloo S: 2 L L Ujj (3) 
i=l i=k.+1 
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Although the exact meaning of this notation will require some devel
opment, we may note that in the 1-d case (3) reduces to the standard 
bound for balanced truncation ([7], [8], [9]). 

As in [6], we may also view one of the 6;, say 61 as the frequency 
variable (61 = 1/z) in an uncertain discrete-time system. The re
maining 6; are then viewed as norm-bounded perturbations. Model 
reduction in this context is aimed at simplifying the uncertainty de
scription as well as reducing the state dimension and is a more subtle 
issue. While (3) has a natural interpretation in this case similar to the 
MD case, we might prefer model reduction of a much different nature. 
For example, there might be instances where we would be happy with 
reduced models which "cover" our uncertainty, rather than matching 
it, as is implied by (3). We might seek methods which aggregate several 
uncertainties into a simpler but larger uncertainty, and so on. These 
issues are not addressed specifically in this paper, but it is hoped that 
the LFT machinery used herein will lead to additional methods. 

For one-dimensional systems with no uncertainty, there are a num
ber of model reduction methods and associated error bounds. Exam
ples include the balanced model reduction method and its additive 
H00 norm error bound ([12], [7], [8], [9]); the optimal Hankel norm 
model reduction method and its Hankel norm error bound ([8]); and 
the balanced stochastic truncation model reduction method and its 
relative H 00 norm error bound ([5], [15]). Previously, there have been 
no algorithms and associated error bounds available for MD system 
model reduction. A model reduction algorithm and error bound for 
2-dimensional systems have been developed in [14]. Unfortunately, the 
analysis techniques presented in [14] are applicable only to a special 
case of 2-dimensional systems. Using the machinery associated with 
LFTs, we extend the method of balanced model reduction to MD sys
tems. 

In Section 2, we review balanced realizations and the error bounds 
associated with model reduction for the 1-D case. The proofs are 
elementary and directly generalize to the MD case. In Section 3, the 
MD case is considered. Balanced realizations, gramians, and quadratic 
stability ( Q-stability) are defined for MD systems. The proofs for the 1-
D case are then extended in a natural way to the MD case. While only 
the discrete-time case is considered here, the continuous case follows 
immediately by simply transforming the results using the LFT for disk 
to half-plane. 

2 1-D systems 

In this section, we discuss balanced model reduction in the 1-D case, 
using machinary that directly generalizes to the M-D case. A new 
proof for the H 00 norm error bound is presented. 

2-1 Review of Balanced Realizations 

Suppose G = [ ~ I ~ ] is a discrete time system with A stable. Let Y 

and X be the controllability and observability gramians, respectively, 
which satisfy 
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AY A* - Y +BB* = 0 

A* X A - X + C*C = 0. 

(4) 

(5) 
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with Y ~ 0, X ~ 0. Standard results from the theory of Lyapunov 
equations state that the pair (A, B) is controllable if and only if Y > 0, 
and (C, A) is observable if and only if X > 0. 

Suppose the state is transformed by a nonsingular T to x = Tx 
to yield the realization 

Then the gramians are transformed to Y = TYT* and X 
(T-1 )* XT- 1. Consider the similarity transformation T which gives 
the eigenvector decomposition 

Then the columns of T are eigenvectors of Y X corresponding to the 
eigenvalues {A;}. Since Y ~ 0 and X ~ 0, it can be shown that Y X 
has a real diagonal Jordan form and that A ~ 0. 

Although the eigenvectors are not unique, in the case of a minimal 
realization they can always be chosen such that 

Y = TYT* = :E and X = (T-1)*XT-1 = :E, 

where E = diag( ui, u2 , ••• , Un) ~ 0 and E 2 = A. This new realization 
with controllability and observability gramians Y = X = E is referred 
to as a balanced realization. 

More generally, if the realization of a system is not minimal, then 
there is a transformation such that the controllability and observability 
gramians are diagonal and the controllable and observable subsystem 
is balanced. The following theorem is standard, so the proof is omitted. 

Theorem 1 For any stable system G = [ ~ I ~ ] there exists T such 

[ 
TAT-1 I TB] ll ·1· d b b·1· . that G = CT I D has contro ab1 1ty an o serva 1 1ty gram1-

ans given by 

respectively, with E1 , E2 , E3 diagonal and positive definite. 

Since the uncontrollable and unobservable modes of any system 
realization are not present in the corresponding system transfer func
tion, G(z), we can truncate the associated states, corresponding to the 
zeros in Y and X above, and obtain a minimal realization which has 
both grammians equal to E 1 • Thus this theorem implies that balanced 
realizations exist for all stable systems. This is stated as a corollary. 

Corollary 1 Every stable system G(z) has a minimal realization 
which is balanced. 

2.2 Discrete Balanced 1-D Model Reduction 

Using machinery developed for analyzing LFT systems, we present a 
short proof of the balanced truncation error bound associated with 
reducing discrete system models. This proof directly generalizes to the 
MD case, which is given later. 

Consider a stable discrete time system G( z) and assume that the 
transfer matrix has the following realization 

Let P and Q be two positive semi-definite symmetric matrices such 
that 

APA*-P+BB* SO 

A*QA-Q+C*C<O. 

(6) 

(7) 

Note that we have replaced the equalities in (6) and (7) with inequal
ities. The significance of this is that while the zero-valued eigenvalues 
of P or Q still have corresponding uncontrollable and/or unobservable 
states, the converse need not be true. Thus we can truncate states 
as suggested by Corollary 1 so that P and Q are balanced, exactly as 
before, but the resulting system may not be minimal. Still, we can 
assume without loss of generality that 

with 

1:1 diag( 0'1fs,, u2ls2 , ••• , O'rf•r) ~ 0 

E2 diag(ur+1fsr+I'O'r+2lsr+21···10'nfsn) ~ 0 

wheres; denotes the multiplicity of O'; and the partition is assumed to 
be compatible with the partition of the system. (Note that the singular 
values u; are not necessarily ordered.) 

The following results are standard, but the proof given here of the 
main result, Theorem 3, is elementary and can be directly generalized 
to the M-D case. The term balanced here is used in slightly nonstan
dard way, as this term is usually applied when equations (6) and (7) 
are equalities. In the equality case, the E1 is unique, whereas in the 
inequality case it is not. We will use the term balanced in the looser 
sense that includes the inequality case. 

Theorem 2 IJE 1 > 0, then the realization for the truncated subsystem 

is balanced and stable. 

Proof. The system parameters satisfy the following equations 

Ai1~1A11 - E1 + A;1E2A21 + c;c1::; 0 

But these equations imply that 

Ai1E1A11 - E1 + c;c1 ::; 0 

hold. The theorem then follows immediately. 

Theorem 3 Suppose Gr 

n 

In particular, llGlloc, S llDll + 2 I:: u;. 
i=l 

0 

Then 

The proof of Theorem 3 will be based on three simple lemmas, 
which will be proven first. Without loss of generality, we shall assume 
O'n = 1. We will prove that for E2 = O'nl = I, we have 

1234 

The theorem then follows by scaling and recursively applying this re
sult, since the reduced system Gr is still balanced. 

To simplify the formulas, let A = E~/2 • In the following a constant 
matrix Xis said to be contractive or a contraction if llXll = u (X) S 1, 
and strictly contractive if llXll < 1. 

The following well-known lemma ([4], [6]) establishes the relation
ship between the 1t00 norm of a transfer matrix and its realizations. 
\Ve will use only the if part, which is proven later in greater generality 
in Lemma 6. 



Lemma 1 Suppose G(z) E 1?,1{00 is a discrete time transfer matrix, 
then llG(z)ll00 < 1(~ 1) if and only if there is a realization of G(z) = 

[-m-J such that II [ ~ ~ ] II < 1(~ 1). 

We may rewrite (6) as 

from which it follows immediately that 

[ p-1/2 AP1/2 p-1/2 B ] 

is contractive. Similarly, (7) implies that 

[ 
Qt/2 AQ-1/2 ] 

cQ-112 

(8) 

(9) 

is contractive. The following lemma simply restates this in a form 
convenient for later use. 

Lemma 2 Suppose a realization of the transfer matrix G satisfies P = 
diag{A2,I} = Q, then 

[ 
A-1A12 A-1A11A A-1B1 

A22 A21A B2 

and 

are contractive. 

Proof. Since from (9) 

[ p-1/2 AP1/2 p-1/2 B ] 

[ 
A-1A12 A-1A11A A-1B1] [ 00/ OOI ~I l 

An A21A B2 

is a contraction, we have immediately that 

[ 
A-1A12 A-1A11A A-1B1 

An A21A B2 

is also a contraction. The second claim follows by a similar argument. 
D 

Finally, the following lemma shows that determining the contrac
tiveness of a large system matrix can be simplified by determining if 
two related, smaller matrices are contractive. 

Lemma 3 Suppose X = [ X~1 X12] 
X22 

and Y [ Y11 
Y21 1~2 ] are 

contractive {strictly contractive). Then 

M ~ [ ;);~' tzx11 
x,, l z ti:n 

Y21 7iY22 

is also contractive (strictly contractive). 

Proof. Dilate M to the following matrix 

o tzxu X12 

7zY11 Z 7zX22 

Y21 -72Y22 0 

0 

72x11 

0 

-Z 

Since X and Y are contractive, it is easy to verify that MJ Md ~ I, 
that is, Md is a contraction. 

We can now prove the theorem. 

Proof of Theorem 3. Note that 

!] 
Hence 

A11 0 0 0 ig, l 
~(G-Gr)= 

0 0 0 0 
0 0 A11 A12 1B1 

2 0 0 A21 A22 IB2 
-Ci 0 C1 C2 0 

Now apply the following similarity transformation 

r-A 
0 A 

; l r-' ~ ~ [ 
-A-1 

T = A~t 
-I 0 0 
0 A-1 A-1 

I 0 0 

to the realization of !(G - Gr) to get 

~(G-Gr) = 
2 

AA11A-1 

!A21A-1 

0 
lA21A-1 

!AA12 
!A22 

!A-1A12 
1 A22 

0 
!A21A 

A-1AuA 
1 A21A 

0 

0 
-I 
0 
I 

D 

A 

; j 

0 
A 

(10) 

0 

It is easy to verify that as a constant matrix the right hand side of the 
above realization for !( G - Gr) can be written as 

0 0 I 0 
0 1 I 0 0 

M [: 

0 0 0 ; l V72 1 I 0 721 I 0 0 0 V72 
0 721 0 0 0 I 0 

0 0 0 I 
0 0 0 0 

(11) 

where 

.• [ ;);A'.,A-' 
;T,A-'A,, A-'AuA A-'n, l 

A22 72-A21A -JiE2 
M - AA

11
A-1 7iAA12 0 0 

C1A-1 tzc2 o o 

(12) 

According to Lemma 1, the theorem follows if we can show that the 
realization for !( G-Gr) as a constant matrix is a contraction. However 

this is guaranteed if M is a contraction since both the right and left 
hand matrices in ( 11) are contractive. 

Finally the contractiveness of Kt follows from Lemmas 2 and 3 by 
identifying 

and 

[ y: y l = [ AAuA-
1 

AA12] 
21 22 C1A1-1 C2 

D 
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3 Balanced Model Reduction For MD Sys
tems 

We now consider a generalization of the balanced model reduction 
technique for 1-D systems to more general LFT systems. We will 
focus on the case where the A block is a diagonal matrix, which may 
be thought of as representing a multi-dimensional frequency structure. 
In this case, the LFT systems represent conventional multi-dimensional 
(MD) systems, and the terms will be used interchangeably. The results 
here generalize directly to A that include full blocks, but the notation is 
cumbersome so it will be omitted. Also, the full block version does not 
have any MD interpretation, although it maintains an interpretation 
as an uncertain system. 

3.1 Balanced MD Systems 

Consider the system in Figure 1 with the frequency structure A spec

ified from (1) and (2). Let M = [ ~ ~ ] be a complex matrix with 

A, B and C partitioned compatibly with the block structure A as 

_ [ A.11 : · · A~r ] · _ [ ~i ] · 
A- : ·. : , B- : , C= [Ci ··· Cr j. 

Ari Arr Br 

The input/output mapping for this MD system is given by 

y = F,,(M,!:!.)u 

where 
F,,(M,!:!.) = D + C!:!.(I - A!:!.)-i B. 

For MD systems, the concept of stability referred to in the follow
ing discussion of model reduction is that of Q-stability, which corre
sponds to the SSUB in [6]. 

Definition 1 The MD system F,,(M, A) is said to be Q-stable ifthere 
exists a non-singular matrix T such that TA = !:!.T V !:!. and 

Since A = diag[oilq,, · · ·, orlq,] where 6; E C, to satisfy the 
commutative condition Tl:!. = !:!.T, T must have the structure of 
T = diag[Ti, ···,Tr]. As in [6], we can express Q-stability in an LMI 
form. Define positive definite matrices P and Q by P = (TT*)-i and 
Q = T*T. Then P and Q have the structures of P = diag[Pi, ···,Pr] 
and Q = diag[Qi, ···,Qr]· Recall from [6] that 

u(TAT-i) < 1 
~ TAT-i(r-i)*A*T* - I< 0 
~ APA* -P< 0 
~ A*QA-Q <0 

(13) 

From (13) and scaling of P and Q one can immediately deduce 
the following lemma. 

Lemma 4 The MD system F,,(M, !:!.) is Q-stable if and only if there 
exist P > 0 and Q > 0 such that the following inequalities hold. 

AP A* - P +BB* < 0 

A*QA-Q+C*C<O 

(14) 

(15) 

Remark 1 We can also mimic the one-dimensional case by using non
strict inequalities. Then it is easy to see that if F,,(M, !:!..) is Q-stable, 
there exist P 2:: 0 and Q 2:: 0 such that the following inequalities hold. 

AP A* - P +BB* ::; 0 

A*QA - Q + c·c ::; o 

(16) 

(17) 

Although these inequalities can be used to derive the model reduction 
error bound, the condition for the reduced model stability is messy. 
Thus for simplicity of exposition, we will consider only the case of 
strict inequality, as in Lemma 4. 

As in the 1-D case, a similarity transformation for a MD system 
is an invertible matrix, T, which transforms the system states. In the 
following lemma, a general formula for a similarity transformation on 
a LFT system is presented. The proof follows from a straightforward 
application of the definition of F,,(M, A). 

Lemma 5 For any nonsingular complex matrix T 

[ 
TAT-i TB] -i 

F,,(M,!:!.) = F,,( cT-i D ,T!:!.T ) 

In particular, if the non-singular matrix T has the structure T 
diag[Ti. ···,Tr] so that T and!:!. commute, then 

[ 
TAT-i TB] 

F,,(M,!:!.) = F,,( CT-i D ,!:!.). 

Note that the structured similarity transformation T 
diag[Ti, ···,Tr] produces the same effect on the P and Q which are 
the solutions of the inequalities (14) and (15), as in the 1-D case. Ifwe 
refer to the different M produced by such similarity transformations 
as different realizations, just as in the lD case, then there exists MD 
balanced realizations, just as in the lD case. 

Definition 2 If a MD system satisfies inequalities (14) and (15) and 

P = Q = E = diag[Ei.···,Er] (18) 

where E; = diag[u;il8 ; 1 , • • ·, U;t,ls,, ] > 0; u;i 2:: • • • 2:: O"it; and the 

dimension of block E; is q; = L:~~i s;j, then the system is said to 
be balanced. The matrix E is called a structured gramian of the MD 
system and every E;, i = 1, · · ·, r is called a block gramian. 

Thus Lemma 5 guarantees the existence of balanced realizations, 
which we state as a corollary. Note that neither the balanced P and 
Q nor the resulting realization is unique. 

Corollary 2 If F,,(M,!:!.) is Q-stable, then there exists a realization 
of F,,(M, !:!.) such that P = Q = E = diag[Ei. ···,Er] > 0, where P 
and Q are the solution of the inequalities (14) and (15) respectively. 

3.2 Error Bound for MD Model Reduction 

For a balanced MD system, let every block gramian be partitioned as 

E; = diag[i:i;, E2;] 

for i = 1,···,r, where 

and 
E2; = diag[ui(k,+l)I•,<•,+i)' · · ·, O"it,ls,.,]. 

Truncate both E2; and the corresponding parameter matrices 

[ 

A11 · · · Air Bi j 
M-[AB]-: · .. :: 

- C D - Ari . . . Arr Br 

Ci ··· Cr D 

A11 A11,, Air Airi2 Bi 
A1121 A1122 Air,, Air22 Bi2 

Ari Ari12 Arr Arr12 Br 
Ari,, Ari22 Arr21 Arr22 Br, 

G'i Ci2 6r Cr, D 

such that the reduced system after being truncated is 

A11 Air n M= [~ ~] Ari A •• 
6, 6, 
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with frequency structure Li = diag[.51I9,, · · ·, .5rI9r] where q; = 
L:j;,,1 s;;. This model reduction method will be called b<tlanced MD 
model reduction. 

The following lemma is a direct generalization of one direction of 
Lemma 1. 

Lemma 6 Suppose F.,(M, Li) is Q-stable for a given frequency struc
ture .6.. If there exists a realization M such that llMll ~ 1( < 1), then 
JIF,,(M, Li)ll ~ 1( < 1) for all llLill ~ 1. 

Proof. By definition 

Hence if JIMll ~ 1( < 1) and llLill ~ 1, we have 

llu1ll ~ llY1ll 

and 

that is, 

llYll
2 + l!Y1ll

2 ~ llM1!
2 

(llu1!
2 + llu1ll

2
) 

~ llu1!
2 + llu11!

2 
(< llull

2 + llu11!
2
) 

~ llu1!
2 + llY111

2 
( < llu1!

2 + llY111
2
) 

and since this holds for all u, we have that 

llF,,(M,Li)ll ~ 1(< 1) 

D 

It is easily verified that, exactly as in the lD case, the trunca
tion of a balanced Q-stable MD system is still balanced and Q-stable. 
We now state and prove the main result of this paper. The notation 
llFu(M,Ll.)11 00 means maximum over all Li E B.6., and where relevant, 
we assume that the corresponding parts of Li and Li are equal. 

Theorem 4 Suppose F.,(£1, Li) is the reduced balanced model obtained 
from F.,(M,Ll.). Then Fu(Af,Li) is Q-stable and 

r t, 

llFu(M, fl) - Fu(Af, Li)lloo ~ 2 L L Uij (19) 
i=l j=k.+1 

r t, 

In particular, II.Fu( M, Li )I loo ~ llDll + 2 LL Uij · 
i=l j=l 

Proof. We will prove this theorem recursively, just as in the 1-D 
case. By scaling and permutation of the .5;, if necessary, we can assume 
without loss of generality that the system is reduced from 

to M = [ ~ ~ ] , with E = diag[E, I]. The corresponding fre

quency structures are reduced from Li = diag[b1Iq,, · · ·, briq.] to 

Li= diag[.51Iq., · .. ,briq.J, in which tJr = L:~'.;;~ 1 ) Srj <Qr. that is, only 
the states corresponding to the last frequency variable .5r in Li and the 
last singular value Urt. = 1 in Er is reduced. The theorem reduces to 
this case by repeated scaling, rearrangement, and truncation. 

The remainder of the proof is nearly identical to the corresponding 
proof for the 1-D case. As in the example preceeding Theorem 4, 
the reduced system Fu(M, Li) is still balanced and satisfies the strict 
inequalities. So the balanced system is Q-stable. For convenience, we 
set A = Y:. 112 in the following proof. Let 

(20) 

be the error system with 

A. 0 0 0 

\B l 0 0 0 0 0 
Mg= 0 0 A. A12 !iJ (21) 

0 0 A21 A22 
!:2 

-6 0 6 C2 

and Llg = diag[Ll., Li]. One can easily prove that Llg in Fu( Mg, Llg) will 
remain unchanged by the similarity transformation Tin (10). Applying 
this similarity transformation to the system represented by Mg, one 
obtains the following system matrix, denoted by Mg, 

AAA-1 !AA12 0 !AA12 

0 l !A21A-1 !A22 !A21A !A22 !B2 
Mg= 0 !A-1 A12 A-1..4.A !A-1A12 A-IiJ . 

!A21A-1 !A22 !A21A !A22 !B2 
CA-1 

!C2 0 !C2 0 

By Lemma 6, if Afg is contractive, then llFu(M,Ll.)-F,,(M, Li)I! = 
2llF.,(Mg,Llg)lloo ~ 2. But Lemma 2 and 3 can be used exactly as in 
the 1-D case in Theorem 3 to show that Afg is a contraction. By 
applying this procedure recursively, the theorem follows. 

D 

3.3 Interpretations 

It is easy to see that the strict inequality holds in inequality (19). It is 
also easy to check that all results hold if the P and Q inequalities (16) 
and ( 17) are used except that we can not easily conclude that the 
reduced model is Q-stable. 

Note that what is shown in the proof of Theorem 4 is actually 
much stronger than (19). Using the terminology of [6], we have proven 
that the error system in (20) and (21) satisfies the SSUB (has Q robust 
performance), whereas (19) would be implied by the weakerµ robust 
performance. One implication of this is that the error system bounded 
in (19) holds for the 12 induced norm for arbitrary time-varying and/or 
nonlinear 12 induced norm bounded perturbations. This is typical for 
generalizations of results for standard transfer functions to general 
LFTs; it is easiest to use the Q theory. 

In the 1-d case there are lower bounds in addition to the upper 
bound in (19), but these have not yet been generalized to the MD 
case. 
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