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Abstract 
This paper introduces a general and powerful framework for 

modeling and analysis of uncertain systems. One immediate con- 
crete result of this work is a practical method for computing robust 
performance in the presence of norm-bounded perturbations and 
both norm-bounded and white-noise disturbances. 

1 Introduction 
This paper builds on, extends, and unifies several related 

methodologies, including behavioral descriptions of systems [17], 
Integral Quadratic Constraint (IQC) [SI, linear fractional transfor- 
mation (LFT), and p [ll] frameworks for uncertainty descriptions, 
set characterizations of white noise [12], and linear matrix inequal- 
ity (LMI) computation. 

The LFT and p frameworks have allowed for descriptions of un- 
certainty including norm-bounded perturbations and uncertainties 
not captured by IQCs, such as real parameter variations. The IQC 
formulation, on the other hand, allows for a more general class of 
quadratic constraints, such as those appearing in set characteriza- 
tions of white noise. It is shown here how the behavioral extension 
to the LFT setup provides a complete mapping for these general 
IQCs, therefore allowing a general analysis framework with all the 
desirable features. Finally, reducing our solution to LMIs yields 
an attractive computational scheme that corresponds to what is 
available for standard robust performance problems. 

In particular, this framework provides robust performance tests 
in the presence of norm bounded perturbations and white noise 
disturbances, which has been referred to as the Robust 1-12 perfor- 
mance problem. Most activity in the area of robust control with 
1-12 performance specifications has fallen in the category of the so- 
called mixed 1-12/1-1.m problem (see [2] [18], [6],and [IS]) which is 
equivalent to ensuring nominal  1-12 performance with robust sta- 
bility under norm bounded perturbations. Some recent work ([15], 
[5]) has addressed the robust performance issue, by considering the 
worst-case response of the uncertain system to an impulse. The 
main contribution of our framework is that by incorporating ap- 
proximate set characterizations of white noise which fit the LFT 
framework, the worst-case response under white noise is directly 
assessed, and is shown to be no harder than standard p techniques 
for assessing robust 'Hbo performance; moreover, the machinery is 

2 Background 
2.1 Uncertainty and LFTs 

The major theme of robust control has been to explicitly consider 
descriptions of uncertaintyin the analysis and design of control sys- 
tems. There are various sources of uncertainty, such as parametric 
uncertainty, unmodeled dynamics, unmodeled nonlinearities and 
disturbances. A convenient approach to unify the descriptions of 
uncertainty together with other elements of control theory in a sim- 
ple common mathematical language is the linear fractional trans- 
formation paradigm. LFTs are a class of general feedback loops, 
and are depicted in Figure 1. In principle, G and A are arbitrary 
maps, and the closed loop map from U to y is given by 

general enough to deal with Axed perfo-ance specificatipns. 

A * G 4 G22 + GzlA(I  - G I ~ A ) - ~ G ~ ~  (1) 

m GII Gi2 

Figure 1: Linear Fractional Transformation 
whenever the inverse is well defined. 

When describing uncertainty in this framework, A will be de- 
noted by A, and will represent a structured uncertainty operator 

A u  = diag [61Iq 7 . .  ., ~ L I v , ,  AL+1, &+,I (2) 
The blocks in A, can be used to describe real parameters, linear 

time invariant dynamical blocks, and more generally linear time 
varying or nonlinear perturbations. In each case, there is a re- 
stricted class Au of allowed perturbations. For a tutorial descrip- 
tion of this, the reader is referred to [3]. 

In this paper we will be working in discrete time, and restrict our- 
selves to linear uncertainty blocks. The results could be extended 
to include nonlinear operators in the full blocks. We will denote 
by IT the space of vector (Bmor F-valued) square summable se- 
quences, 12 = l i ,  and by L(1Y) the set of linear, bounded operators 
in l?. So the most general class of perturbations we will consider 
is 6, € & ( 1 2 ) , A ~ + ~  E L ( l 2 ) , 1  5 is L,1 5 j  5 F. 

The G matrix is typically a finite dimensional LTI system G(X), 
where X is the delay operator. We can also exploit the fact that a 
state space realization of G is in fact an LFT on the delay operator, 
and obtain an LFT representation of the uncertain system of the 

form A s  * M, where M = [ ] is a constant matrix. The aug- 

mented structure A s  = diag[XI A,] is still of the form described 
by (2), where now 61 is taken to be A. We shall consider both 
types of descriptions in what follows, and use the generic notation 
A whenever the distinction is irrelevant. 
2.2 The Behavioral Approach 

The behavioral setting for dynamical systems can be character- 
ized by the fact that all variables are considered a priori on an 
equal footing, without a distinction between inputs and outputs, 
and the behavior is defined as a subset of the possible time tra- 
jectories. Behavioral descriptions arise naturally when modeling 
physical systems from first principles, where physical laws such as 
mass and energy balances are more naturally thought of as relations 
between variables than as input/output maps. Interconnections of 
subsystems are reduced to intersecting constraints. We will find 
this point of view of implicit constraints very suitable to pose gen- 
eral robustness analysis questions. 

Of the many characterizations of behavioral systems, in Figure 
2 we single out the output nulling (ON) representation: 

4 C  D @  

Figure 2: ON representation 

Here the vector w contains all the manifest variables. In the case 
of regular representations ( D  is full row rank), a valid input/output 
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partition is characterized as follows: if after permutation of the 
order of variables we can partition D = [DlD2],  with D1 square 
and invertible, the first group of variables is a valid output choice. 

The reader is referred to [17] and [3] for detailed expositions of 
the ideas outlined above. 

2.3 Uncertain Behavioral Descriptions 
In [4], the robust control and behavioral paradigms are unified 

by incorporating structured uncertainty into the description of be- 
havioral systems. The idea is to extend the ON representation and 
define uncertain behaviors as kernels of operators obtained by an 
LFT between a matrix and an uncertainty structure. Once again 
we can consider two versions, the kernel of A * G where G is a 
dynamical system, or the kernel of A s  * M, where M is a constant 
matrix. The second case directly is shown in Figure 4, and is called 
a Generalized Output Nulling (GON) representation of the uncer- 
tain behavior. The issues of regularity and valid 1/0 partitions can 
be extended directly, and are discussed in [4]. 

3 The Framework for Robustness Analysis 
In the following discussion we shall make use of the following 

facts; the proof is omitted (refer to 1131). 
Lemma 1 Let 2, w E 1;. The following are equivalent: 

(4 1 1 ~ 1 1 ;  - 1141; 1 0  
(ii) 3A E C(l,d), IlAll 5 1,Aw = z 

(3) 

(4) 

Lemma 2 Let z , u  E 1:. The following are equivalent: 
M 

(i) 2 v( t )v ( t ) *  - z ( t ) z ( t ) *  2 0 (5) 
t=--M 

(ii) vo E Cd,  11~*412 z 11o*412 

(iii) 36 E C(l2),llSll 5 1 , 6 1 d V  = z 
(6) 
(7) 

3.1 
We begin by reviewing the issue of robust stability of a standard 

LFT interconnection as shown in Figure 3(a), when A, is allowed 

Robust stability and robust performance 

to vary in a normalized ball of structured uncertainty, 

(a )  ( b )  
Figure 3: 

Assuming the nominal system G(X) is stable, robust stability 
means informally that for any A, E BA, the loop cannot sus- 
tain signals with arbitrarily small amounts of injected noise nu. A 
(slightly stronger) definition follows. 

Definition 1 The feedback interconnection of Figure &'(a) has 
uniform robust stability if G(X) is stable, and there exists 
E > 0 such that i j  zu E 12,11zUll = l , A ,  E BA,, then 

When dealing with state space LFTs as in Figure 3(b) the previous 
definition can be adapted to encompass both the nominal stability 
and the robustness, by substituting G by M, zu by z, and BA, by 
BA, = CdiagW AJ*lJd 5 191bull I 11 

In fact, it can be shown (see Theorem 3) that this definition 
then implies the nominal (internal) stability condition p ( A )  < 1 
and the uniform robust stability of the corresponding (G(X), A,) 
interconnection. 

The LFT framework is well suited to handle robust performance 
questions when the performance specification is s m a l l  gain in some 
induced norm. For instance, the 'Hoo-type robust performance ob- 
jective specifying that the worst-case 12-induced norm from inputs 

ll(Z - AuWZu)ll 1 e .  

u to outputs y is bounded by 1,  is equivalent to a robust stabil- 
ity question, by adding an additional block Apy = U .  The proof 
involves a simple use of Lemma 1. 

An extension of the previous concepts to the behavioral case is 
now presented. In the behavioral setting, the concept of stabil- 
ity is only meaningful if the number of equations is at least equal 
to the number of variables. I n  the standard case, such a system 
is autonomous (see [17]) and stability means that time trajecto- 
ries decay to zero with time. For the uncertain case we give the 
following definition. 

Definition 2 The GON representation of Figure 4 is well posed 
if the matrix D is of full c o h h n  rank. A well posed GON repre- 
sentation has uniform robust stability if there exists E > 0,  such 
that given any AS E BAS (and 12 signals z,  w , n  satisfying the 
equations with llzll = 1, then 2 E .  

0 

Figure 4: Robust stability analysis in the GON representation 
The well posedness condition ensures that there are enough effec- 

tive constraints so that z = 0 implies 'U) = 0. The robust stability 
definition directly extends Definition 1. 

A performance constraint in terms of a Ap block can also be 
incorporated. Furthermore, starting with a regular GON represen- 
tation, and adding a perfomance constraint of the type Apy = t~ 
between any valid input/output partition automatically gives a 
square, invertible D matrix and therefore a well posed robust sta- 
bility question. In this particular case, the robustness analysis 
question could be resolved by turning the behavioral equations to 
input/output form. In the next section, however, it will be shown 
how the behavioral setting allows for additional signal constraints 
and therefore a richer class of robustness analysis problems. These 
additional constraints will not, however, affect the full column rank 
of the D matrix (well posedness condition). 

3.2 
We will now show a feature of the uncertain behavioral paradigm 

that does not have a counteirpart in the input output setting: it 
allows for the inclusion of signal constraints which give approximate 
descriptions of white noise and therefore permit the analysis of 1-12 
performance in the worst cat3e setting. We begin by considering 
scalar signals. In [12], sets of signals with a parameterized degree 
of "whiteness" are defined in terms of constraints of the type 

Set descriptions fair white noise 

I T , ( T ) ~  5 y'r ,(O), T = 1 . .  .T ( 8 )  
where T , ( T )  = (U, X'u) is the time autocorrelationof a signal u(t). 
This can be used to give tighter descriptions of empirical distur- 
bances than the usual norm bounded classes. In [12] this is treated 
in terms of finite records of signals, and conditions on the param- 
eters are given which ensure these sets capture typical behavior 
of stochastic white noise. Here infinite horizon 12 signals will be 
considered, with autocorrelations performed over all time. Given a 
linear time invariant stable system ?%(A) = E:, htXt and inputs 
u(t ) ,  llull 5 1 verifying (8 ) ,  then the norm of the output y verifies 

T M 

r=1 7=T+1 
where T h ( 7 )  are the autocorrelations of the filter. so for small y 
(ideally we could use -y = 0) and large T, the worst case induced 
norm of the system under the autocorrelation constraints approxi- 
mates the 1-12 norm. 

These constraints will now be fit into the robust performance 
problem. The key step is to express signal constraints such as (8) 
in a fashion compatible with ithe LFT representationof uncertainty. 
By virtue of Lemma 1, it seems natural to recast the constraints 
as norm inequalities. For each T ,  (8) leads to the following pair of 
constraints f vu ( T )  5 ' V u  (0) (10) 
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Simplemanipdationsshow f ru(r )  = 1 1 ~ 1 1 ~ -  i l l u ~ X ~ u 1 1 ~ ,  therefore 
the constraints of (10) can be written as 

for each T .  Focusing for instance on the plus sign in (ll), let cy = 
d m  , z = cyu, ( = u + Xru; by Lemma 1, the constraint is 
equivalent to the existence of an operator 6n+, 116,+ 11 5 1 such that 
6,+< == z .  To express this by means of an LFT, the variable U must 
influence both the input and the output of the 6,+ operator. The 
only way to enforce these relations is by writing them in implicit 
form, as an uncertain behavioral equation as shown in Figure 5. 

2(1 - Y)lbl12 5 Ib f X7u1I2 (11) 

1 - 1  

Figure 5: Kernel representation for autocorrelation constraint 

A state space representation of the LTI matrix above leads to a 
GON representation for the constraint. Interconnecting GON rep- 
resentations of an uncertain system, small-gain performance con- 
straints, and the autocorrelation constraints, we obtain a unified 
GON representation for the constrained robust performance ques- 
tion, which has more equations than manifest variables ("tall" D 
matrix). This has no counterpart in the standard input/output 
formulation. In view of the previous discussion of this constrained 
performance measure, by increasing the number of constraints we 
approach a robust 312 performance test. This terminology involves 
a certain abuse of notation, (the uncertain system is not in general 
LTI), but will be adopted here since it reflects the relevant object 
from the point of view of applications, i.e. the worst-case gain un- 
der white signals. Also mixed 1-12/'Hc0 performance can be dealt 
with by constraining only some variables. 

The previous construction can be extended to the multivariable 
case, by considering the autocorrelationmatrix of a (column) vector 
valued signal u E l F ,  R,(T) = E,"=-, u ( t  + ~ ) u ( t ) '  . For U to be 
white, R,(T) must be 0 for T # 0, and R,(O) must be a multiple 
of the identity matrix. These matrix constraints can be reduced to 
a number of scalar constraints, and treated as before. 

For the case T # 0, a simpler method can be obtained by using 
Lemma 2. The key observation is that 

R,(T) = 0 v vg E c , ( g * u ,  g * A r U )  = 0. 

21117*u112 5 1117*(u f X'u)1I2 vg E c? 
A similar procedure as in the scalar case leads to the equivalent 
constraints 

By Lemma 2, each constraint (12) is equivalent to the existence of 
anoperator&I, 116,11/ 5 1, suchthat 6,It = z,  where< = u f X r u ,  
z = f i u .  This is entirely analogous to the scalar case and can be 
readily expressed as an uncertain behavior involving the 6, I blocks. 

3.3 Integral quadratic constraints 
Both the small-gain performance constraints and the autocorre- 

lation constraints described above are special cases of the integral 
quadratic constraints (IQC6) of Megretski ([SI and [SI). The general 
form of these constraints, in the frequency domain, is 

(12) 

G*(e3')G(e'')G(eJ') dB 5 0 (13) J_: 
where 2i, is the Fourier transform of a vector signal w, and G = G' 
is a weighting function. 

We will now show that these general IQCs can be written (for 
finite dimensional weighting functions) in a GON representation. 
By decomposing the hermitian matrix G into positive and negative 
parts as G = P*P - Q'Q, condition (13) is equivalent to 

IIP(e")wCe'')[1~ 5 (IQ(e3')w(e3')Il~ (14) 
Defining z = Pw, ( = Qw, by Lemma. 1 the constraint (14) is 
equivalent to the existence of AIQC, ((AIQC 11 5 1 such that z = 
AIQC(. The result is depicted in Figure 6. 

%-J=g 
Figure 6: IQC as an uncertain behavioral equation 

Assuming that the weight functions P, CJ can be realized by finite 
dimensional filters, writing state space realizations for P, Q a GON 
representation with constant matrix M can be obtained. 

To summarize, the uncertain behavioral paradigm seems to be 
the natural setting where various descriptions of uncertainty can co- 
exist. It allows for parametric and dynamic uncertainty, as well as 
signal constraints designed to characterize disturbances or to spec- 
ify performance requirements. The robustness analysis for these 
situations can then be reduced to a robust stability question. 

4 Convex Tests for Robustness 
In this section, conditions for robustness analysis in uncertain 

behavioral setup will be provided. The starting point is the GON 
representation of Figure 4,  which will be assumed to be well posed, 
(i.e D is a full column rank p x q matrix). Two behavior preserving 
transformations reduce the GON representation to a simpler form. 

The first is to pre-multiply the equations by an invertible matrix 

P chosen so that PD = [ ',P 1 .  Let PC = [ 2 1 .  The second 

step is to perform an output injection using the first 4, equationSAto 
set B = 0. The result is depicted in Figure 7, where A = A - BCI . 

Figure 7: Final version of GON representation 

In this new representation, returning to Definition 4, it is clear 
that the variable w has been decoupled from the problem: if signals 
z,  n and a perturkation A s  can be found to satisfy the equations 
(I-A,A)z = n, (72.2 = 0, thenw is automatically determinedfrom 
z. We summarize the previous steps in the following statement: 

Proposition 1 Given a well posed GON representation (AS, M ) J  
where M = [ ] ifP is such that P D  = 

. .  

and A = A - d lB ,  then the GON s y s t e m  as un:formly robustly 
stable zf and only i f  there exists e > 0 such that i f  C2z = 0,llzll = 1, 
A s  E B A ~ ,  then II(I - AsA)zll 2 E .  

The resulting condition makes the problem look like a usual ( p -  
type) structured uncertainty analysis question on the matrix A ,  
except for the additional constraint 6 2 2  = 0. In what follows, we 
will show how appropriate extensions of the p-analysis machinery 
can be given to provide robustness conditions in this case. In par- 
ticular, we will focus on extending the @ upper-bound condition in 
terms of an LMI. The condition will always be suflicient for uniform 
robust stability, we will later return to the question of necessity. 

For a general delta structrure A of the form described in (2) we 
will consider positive scaling matrices X that commute with the 
elements in A, of the form 

X = diag[X1,. . . , X L ,  z ~ + l I ~ , ,  . .. , z L + F I ~ ~ ] ,  X = X' > 0, 

X will denote the set of such matrices (X, or Xu when spe- 
cializing on A s  or A,). For convenience, from now on we will 
assume the system is already in the simplified form of Figure 7, 
and write A,  C instead of A,  6;. Without loss of generality we can 
also assume that C is of full row rank. 

The following is the sufficiency result, which holds for an arbi- 
trary A structure. 
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Theorem 1 Let A , C  be given, define CJ. as a matrix with TOWS 

spanning the orthogonal complement of the TOWS of C .  If there 
exists X E X such that 

then there exists E > 0 such that If 11~11 = 1, c z  = 0,A E BA, then 

Proof: Fix X > 0 which solves (15). By continuity, we can find 
CY < 1 such that CA(A*XA - C Y X ) C ~  < 0. Choose z ,  n such that 

C*(A*XA - X ) C i  < 0 (15) 

ll(I - AA)zll L E *  

( I -  AA)z = n llzll = 1 (16) 
cz = 0 (17) 

By (17), z = Cfu; defining f = X h z ,  A = X i n ,  then (16) gives 
( r  - ~ x 3 ~ x - f ) ~  = ii. NOW 

I ~ A X ? A X - + Z ~ I ~  1 l x t ~ c ; u l l ~  = 
00 2 u ( t ) * C L A * X A C i u ( t )  u ( t ) * C , X C ; u ( t )  = a Ilrllz 

Therefore I l i i \ l  2 llP\l - llAX*AX-*L(( 2 (1 - mllZ11. Since 

ll4 1 4 x 3 )  11~11, 1 1 ~ 1 1  = 1, ancl llfill I @ ( x i )  Ilnll, then 

tr-02 t3-05 

11n11 1 (1 - . / ; ; ) r r ( X * ) / W * )  (18) 
The uniform robust stability is therefore satisfied by choosing c as 
the right hand side of (18), which is independent of A. 

The previous result gives us a tractable way of assessing robust- 
ness of an uncertain behavioral system in terms of a convex problem 
(i.e. solution of a linear matrix inequality). To consider the po- 
tential conservatism of this condition, we now turn to the question 
of necessity. Recent results by Shamma [14] and Megretski ([8], 
[Q])  have shown that in the case of full blocks in the uncertainty 
structure, sufficient conditions in terms of X-scalings on the uncer- 
tainty are in fact necessary for robust stability when the blocks are 
allowed to be arbitrary linear operators in 12 space. We can state 
a similar result for the uncertain behavioral setup. 
Theorem 2 In the conditions of Theorem 1 ,  with A varying in 
the set of arbitrary structured linear operators in ';, if the GON 
representation has uniform robust stability, then 

3 X  E X such that C,(A*XA - X)C; < 0 
In view of the duality between IQCs and uncertain behavioral de- 
scriptions that was shown in section 3, the proof of this result is 
essentially a reformulation of the S-procedure losslessness results 
of Megretski and Treil [lo]. The main extension that is needed is 
to capture the 6 1  blocks, which are not described by scalar valued 
IQCs. In this constant matrix case, the result is closely related to 
earlier work in [l]. The full proof is deferred to a future paper [13]. 

It is interesting to note a connection between condition (15) and 
previous work on stabilization of input-output LFT systems in [7], 
where it is shown that there exists a solution to (15) if and only if 
there exists an output injectionmatrix L that makes the matrix A+ 
LC Q-stable. This property is referred to as Q-detectability. From 
this point of view, our robust stability condition, which implies 

Ker [ In CAA 1 = 0, can be interpreted as an extension of the 

PBH test for Q-detectability. 
The previous necessity result is not entirely satisfactory because 

it requires every block in the A structure to be allowed to vary in 
the class of arbitrary linear operators. This includes the first 6 1  
block, which in a GON representationis usually specified to be X I .  
To analyze this issue, assume that A s  = diag[XI A,], where A, 
varies in the class of structured, otherwise arbitrary linear oper- 
ators. The matrices A,C and the signal z can be partitioned in 
accordance with As. 

(19) A = [ A",:, 2; ] , C = [C, CUI 
We will now make the assumption that Cn = 0, and show that 

(15) is still necessary under the restricted class of perturbations. 
This assumption is not overly restrictive: in the next section it is 
shown this is satisfied when considering a robust U2 performance 
problem. The general case is, however, still of interest and will be 
analyzed in further detail in [13]. We have the following result: 

A 
Theorem 3 Let A,C be as in (19),  Cn = 0, G(X) = A ,  f 
AunX(Z - XAn)-lAn,. Then the following are equivalent: 

(i) 3 E > 0 such that if A s  E Bas, 1 1 ~ 1 1  = 1, Cz = 0, then 

Il(I - AsA)zll 2 
(ii) p(An) < 1, and 3 E >> 0 such that i f  A, E BA,, 

llzull = l ,Cuzy = 0, then ll(I - AuG(A))zUII 2 E 

3 Xu E Xu, such that CU~(GeXuG - X,)C:L < 0 (20) 
3 X s  E Xs, such that C l ( A * X s A  - Xs)C; < 0 

(iii) 
(iv) 

Proof: (i) 3 (ii). First, if p(An) 2 1, let ao,zo be the eigenvalue, 
unit eigenvector achieving the spectral radius, and choose A s  = 
~liag[a,~AI,O], zu = O,z,(t) = & t o , O  5 t < to ,  0 otherwise. 
This gives 1 1 ~ 1 1  = 1, and II(I -- A,A)# = which can be made 
arbitrarily small ,  contradicting (i). So p(A) < 1. Given zu,l l tu((  = 
l ,Cuzu = 0, and Au 6 BA., feeding zu to G(X) gives by the 
stabilityof A,, an 12 state signal zn. Choosing A s  = diag[XI,A,], 
z = [zL, 41 '  we find Cz = 0 therefore 

ll(I - AuG(X))zull = Il(I - ASAbll 1 6 
( i i )  j. ( i i i )  The constraint (20) is of the form 6 < 0 where 6 is 

an operator on 12, this meaning that the quadratic form (@U, U) is 
negative definite on / 2 ,  The proof of this result is essentially the 
same as Theorem 2, and is deferred to [13]. "."] ezz + ( i v  1 By pre and post multiplication of (20) by an in- 
vertib e matrix we can asstune without loss of enerality that 
C,*X,C:, = I. Then (20) can be rewritten asflF(X)ll, < 1, 

with F(X) = X," G(X)C:, , which has state space realization 
A 

1 [ A F  B F ]  = [ f n  
Aruc:~ 

cF DF X,Z Aun X,Z AuC:, 
It is well known that the test IIF(X)ll, < 1 is equivalent to the 

existence of a solution X1 > 0 to the LMI 

. .  

Substitutins the expressions for AF, BF, C F ,  DF , and using the 
fact C u ~ X , C t ,  = I, (21) leads to 

[ '  0 CUI ] * - ( A * [ :  : , ] A - [ " '  0 x u  ']I>[' 0 c:* ] < O  

We observe that since C = [0 C,], CI = [ , SO setting 
0 I CUI " I  

XS = diag[X1 Xu] proves (io). 

5 
In this section, the machinery developed so far will be focused 

specifically on the question of obtaining robust performance guar- 
antees in the presence of white noise disturbances. As discussed 
earlier, this problem can be approximated by a finite number of 
autocorrelation constraints, which can be recast in our framework. 
The problem, depicted in Figure 8 ,  is to test whether the worst- 
case 12 gain from d to e in the presence of uncertainty Au is less 
than p, when the input signal d is forced to satisfy "whiteness" 
constraints of the form discussed in section 3.2. These constraints 
are represented on the left in the picture; referring back to 3.2, the 
matrix can P can be chosen to be constant. 

(iv) s (i): This is a special case of Theorem 1. 

Application to Robust R)tz Analysis 

Figure 8: Robust 'HZ Analysis 

Writing state-space realizations 
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the whole system can be reduced to a GON representation 
of the form of Figure 4. Choosing w = d ,  and A s  = 
& $ [ X I ,  X I ,  Au, AV,  A,] gives after some algebra the matrices 

0 BG1 0 BG2 
AQ 0 0 01  BQ 1 

t e- 
,- = - _ - - _ -  - - -_ - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
‘ -0 P 

L o  o o o r ]  P J 
Here D is a full column rank matrix, and by the form of C it 

is clear !hat after the transformations described in section 4, the 
matrix C2 is of the form [0 CUI, as in the assumption of theorem 
3. This implies that, provided the uncertainty A, is allowed to 
vary in the class of arbitrary linear operators (AF, A,, already 
have this property), LMT (15) provides a non-conservative, convex 
test for robust performance under the autocorrelation constraints. 
Varying the parameter 0 and testing for feasibility in the LMI, we 
can approximate the infimum PoFt of the values for which (15) is 
satisfied; this is a measure of the worst-case gain under uncertainty 
Au and autocorrelationconstraints. Asymptotically, as the number 
of constraints increases, the process converges down to a robust H 2  
performance measure, so that a finite number of constraints always 
gives an upper bound. 

We will present two very simple examples to demonstrate the 
machinery, applied to problems involving the ‘H2 norm. 

The first example, with no uncertainty, consists of calculating the 
7.12 norm of the transfer function H(X) = using this approach. 
There are of course exact ways to compute the ‘H2 norm, which give 
a result of 0.577; this example is included for verificationpurposes. 

The process described above was performed with a number T of 
autocorrelation constraints (for y = 0). The feasibility of LMI (15) 
was checked using the software package LMI-lab. Figure 9 depicts 
Popt as a function of T. Starting at T = 0 with the unconstrained 
(H,) norm which is 1, Popt asymptotically converges to the H2 
norm, as expected, at a rate consistent with the bound (9). 

h 1 

I 

Figure 9: Approximation to 8 2  norm 

The next example incorporates uncertainty into the system de- 
scription. Let H(X) = -& + A,, where A, is assumed to be an 
LTI perturbation whose ‘H, norm is bounded by 1. The worst 
case H2 norm of H ( X )  can be obtained in the freqvency domain: 

The procedure described above can be performed to calculate 
worst case induced norm under =orreledon constraints. Figure ( IO)  
shows the corresponding plot of Popt as a function of T. 

LTI perturbation, while the LMI approach is exact only for the 
larger class of arbitrary linear time-varying operators. 

6 Conclusions 
The uncertain behavioral representation has been shown to be 

an attractive general setup for robust control, where various forms 
of system uncertainty, performance requirements and signal con- 
straints can be expressed. Specifically, general robust performance 
problems under parametric and dynamic uncertainty in the plant 
and integral quadratic constraints are recast as robust stability 
problems of a GON representation. This includes the particular 
case of autocorrelation constraints for H2 performance. 

Convex tests (15) for robust stability of the GON representations 
in terms of LMIs were obtained, which are exact for the case where 
the A perturbations are arbitrary operators. In this respect, these 
results are equivalent to those obtained dealing directly with IQCs 
( [8 ] ,  [Q]), with an extension to account for 61 blocks. 

The LFT framework is advantageous, however, to express more 
highly structured uncertainty not captured by IQCs, such as real 
parametric uncertainty. In these cases condition (15) is conserva- 
tive, as is well known for the standard ,U- analysis case, and exact 
conditions will have an increased computational complexity. 

The ultimate impact of this framework, however, should be much 
broader and allow for a more unified approach to modeling, analy- 
sis, model validation, system identification, and perhaps even con- 
troller synthesis and system design. 
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