Control primitives for robot systems

D. Curtis Deno Richard M. Murray

Kristofer S. J. Pister S. Shankar Sastry

Electronics Research Laboratory
Department of Electrical Engineering and Computer Science

University of California

Abstract

This paper develops a methodology for deseription of hierarchical con-
trol of robot systems in a manner which is faithful to the underlying
mechanics, structured enough to be used as an interpreted language,
and sufliciently flexible to encompass a wide variety of systems. We
present a consistent set of primitive operations which form the core of
a robot system description and control language. This language, mo-
tivated by the hierarchical organization of neuromuscular systems, is
capable of describing a large class of robot systems under a variety of
single level and distributed control scheines.

1 Introduction

Complex robot actions require coordinated motion of multiple robot
arms or fingers to manipulate objects and respect physical constraints.
As we seek to achieve more of the capability of biological “robots”,
additional descriptive structures and control schemes are necessary. A
major aim of this work is to propose such a specification and control
scheme. The ultimate goal of our project is to build a high level task
programming environment which is relatively robot independent.

Motivation for a consistent specification and control schenie may
be derived {rom mammalian motor systems. Oue reason [or a hierar-
chical design involving the spinal, brainstem, and cortical levels is that
high level feedback loops respond too slowly for all of motor control to
be localized there. Biological control systems operate with contact and
joint kinematic constraints as well as actuator redundancy. Neural con-
trollers al the highest levels deal with a restricted set of goal variables
which are expanded at the lowest levels into signals involving individual
muscles and sensors.

Two directions of emphasis may be used to distinguish robot pro-
gramiming languages: traditional programming languages (perhaps in-
cluding multitasking), and dynamical systems based descriptions of sys-
tems and control structures. More traditional task specification lan-
guages (such as VAL IT and AML) are characterized by C or Lisp like
data structures and syutax, coordinate frame specification and trans-
formation primitives, sensor feedback conditionally controlling program
flow, and motion between specified locations achieved through via points
and interpolation. In contrast, Brockett’s Motion Description Lan-
guage [3] (MDL) is more closely aligned with dynaniical systemns theory.
MDL employs sequences of triples (u,k,7) to convey trajectory infor-
mation, feedback control information, and time interval to an extensible
Forth/PostScript like interpreter. The scheme described in this paper
was luspired partly by descriptions of MDL.

Robotic applications of hierarchical control are exemplified by HIC
[4] which manages multiple low level servo loops with a robot program-
miug language from the “traditional” category above. One emphasis of
such control schemes concerns distributed processing and interprocess
communication.

2 Review of robot dynamics and control

In this section we selectively review the dynamics and control of robot
systetus. The basic result is that even [or relatively complicated robot
systems, the equations of motion for the system can be written in a

CH2876-1/90/0000/1866$01.00 © 1990 IEEE

Berkeley, CA 94720

Figure 1: Planar two-fingered hand. Contacts are assumed to be main-
tained throughout the motion. For this particular system the box po-
sition and orientation, z, form a generalized set of coordinates for the
system.

standard form. This point of view has been used by Khatib in his
operational space formulation {7] and in some recent extensions {8]. The
results presented in this section are direct extensions of those works,
although the approach is different.

The dynamics for a robot manipulator with joint angles 6 € R™ and
actuator torques T € R” can be derived using Lagrange’s equations and
written in the form

M(8)i +C(8,0)0 + N(0.6) = 7 (0

where M (0) is a positive definite inertia matrix and C'(8, 8)8 is the Cori-
olis and centrifugal force vector. The vector N(8,0) € R" contains all
friction and gravity terms and the vector 7 € R" represents generalized
forces in the 8 coordinate frame.

2.1 Constrained manipulators

Constrained robot systems can also be represented by dynamics in the
same formn as equation (1). As our wain example, consider the control of
a multi-fingered hand grasping a box (Figure 1) where @ is a vector of all
the joiut angles and x is a vector describing the position and orientation
of the box. The grasping constraint may be written as

Ha)b = G (q)i (2)

where g = (0,) € R™ x R", J is the Jacobian of the finger kinematic
function and G is the “grasp map” for the system. We will assume
that J is bijective in some neighborhood and that G is surjective. This
form of constraint can also be used to describe a wide variely of other
systems, including grasping with rolling contacts, surface following and
coordinated lilting. For the primitives presented in the next section, we
also assume that there exists a forward kinematic function between 0
and z; that is, the constraint is holonomic.

To include velocity constraints we again appeal to Lagrange’s equa-
tions. Following the approach in Rosenberg [11], the equations of motion
for our constrained system can be written as

N (n)i + Cla.)i + N(g.4) = F. 3)
where
M = M+GI TMJ 6T
¢ = c+GJ7T (C’aJ“GT + Mg% (.1-‘(:7‘))

1866

N = GJIN

F, = GITr

M, M,
C,Cy = Coriolis and centrifugal terms

inertia matrix for the box and fingers, respectively

Thus we have an equation with a similar form to our “simple” robot.
In the box frame of reference, M is the mass of the eflective mass of
the box, and C is the effective Coriolis and centrifugal matrix. These
matrices include the dynamics of the fingers, which are being used to
actually control the motion of the box. However the details of the finger
kinematics and dynamics are effectively hidden in the definition of M
and C.

2.2 Internal forces

Although the grasp map (' was assumed surjective, it need not be
square. From the equations of motion (3), we note that if finger-tip
force J=T7 is in the null space of G then the net force in the object
frame of reference is zero and causes no net motion of the object. These
forces act against the constraint and are generally termed internal or
constraini forces. We can use these internal forces to salisly other con-
ditions, such as keeping the contact forces inside the friction cone (to
avoid slipping) or varying the load distribution of a set of manipulators
rigidly grasping an object.

To include the internal forces in our formulation, we extend the
grasp map by defining an orthonormal matrix H(#) whose rows form
a Dasis for the null space of G(8). As before we assume that (;(#) has
constant rank and we break all forces up into an external and an internal
piece, F, and F;. Given these desired forces, the torques that should be
applied by the actuators is

e (5) (B () o

2.3 Redundant manipulators

Some manipulators contain more degrees of freedom than are necessary
to specify the position of the end effector. Mathematically, these robots
can be represented by a chauge of coordinates f : R™ — R" where
m > n. In this case J = % is not square and hence J~! is not well
defined so the derivation of equation (3) does not hold.

It is still possible to write the dynamics of redundant manipulators
in a form consistent with equation (3). To do so. we first define a matrix
K (0) whose rows span the null space of J(8). As before we assume that
J(0) is full row rank and hence K(6) has constaut rank m —n. The
rows of K(0) are basis elements for the space of velocities which cause
no motion of the end eflfector; we can thus define an internal motion,
#; € R™~" using the equation

de T\ 5 .
(4)=(1)i=ii o

By counstruction, J is full rank (and square) so we can use the
previons derivation to conclude that

A‘:(q)< ’J) + C(q, 4) (’l) +N(g.)= F (6)

where A7 and €' are obtained from equation (3) replacing J with J and
having angmented G with a block diagonal identity matrix to preserve
the #;s. If we choose I\ such that its rows are orthonormal then Jl=
(Jt KTy where J* = JT(JJT)~! is the least-squares inverse of J.
This approach is related to the exfended jacobian technique for resolving
kineinatic redundancy [1].

2.4 Control

To illustrate the control of these systems we consider the computed
torque control law, an exactly linearizing control law that has heen
used extensively in robotics research. It has heen used for joint level
control {2], Carlesian control [10], and most recently, control of multi-
fingered hands [9, 5]. Given a desired trajectory xyq we use the control

Fo= M(q) (Fa+ Noé + Kpe) + Clg.a)e + Nlg, q) (7

1867

where error € = x4 — 2 and K, and K, are constant gain matrices.
The resulting dynamics equations ate linear with exponential rate of
convergence determined by I{, and K. Since the system is linear, we
can use linear control theory to choose the gains (A, and Ii,) such that
they satisfy some set of design criteria.

3 Primitives

In this section we describe a set of primitives that gives us the mathe-
matical structure necessary to build a system and control specification
for dynamical robot systems. We do not require any particular program-
ming environment or language, borrowing instead freely from languages
such as C, Lisp and C++. As much as possible, we have tried to de-
fine the primitives so that they can be implemented in any of these
languages.

As our basic data structure, we will assume the existence of an
object with an associated list of attributes. These attributes can be
thought of as a list of name-value pairs which can be assigned and
retrieved by name. A typical attribute which we will use is the inertia
of a robot. The existence of such au attribute implies the existence of
a function which is able to evaluate and return the inertia matrix of a
robot given its configuration.

Attributes will be assigned values using the notation attribute :=
value. Thus we might define our inertia attribute as

' o myl} + myl3 malyly cos(8) — 67)
M(0) = [malyly cos(8) — 02) myl3

®)

In order lo evaluate the inertia attribute, we would call A with a vector
0 € R2. This returns a 2 x 2 matrix which as defined above. The Cori-
olis/centrifugal attribute, C, and friction/gravity /nonlinear attribute,
N, are defined similarly.

To encourage intuition, we will first describe the actions of the
primitives for the case of non-redundant robots. Additionally, we ignore
the internal forces that are present in constrained systems. Extensions
to these cases are presented in section 5.

3.1 The robot object

The fundamental object used by all primitives is a robof. Associated
with a robot are a set of attributes which are used to define its behavior:

M inertia of the robot

' Coriolis/ceutrifugal vector

N friction and gravity vector

rd return position and force information about the robot
wr send position and information to the robot

The rd function returns the current position, velocity, and acceler-
ation of the robot, and the forces measured by the robot. Facli of these
will be a vector quantity of dimension equal to the number of degrees
of freedom of the robot. Typically a robot may only have access to its
Jjoiut positions and velocities, in which case & and F will be nil.

The wr function is used to specily an expected position and force
trajectory that the robot is to follow. In the simplest case, a robot
would ignore everything but F' and try to apply this force/torque at its
actuators. As we shall see later, other robots may use this information
in a more intelligent fashion. We will often refer to the arguments passed
to write by using the subscript e. Thus . is the expected or desired
position passed to the wr function.

The task of describing a primilive is essentially the same as de-
scribing how it generates the atiributes of the new robot. The following
sections describe how each of the primitives generates these attributes.
The new atiributes created by a primitive are distinguished by a tilde
over the name of the attribute.

3.2 DEFINE primitive
Synopsis:
DEFINE(A, C, N, »rd, wr)

The define primitive is used to create a simple robot object. It
defines the minimal sel of attributes necessary for a robot. These at-
tributes are passed as arguments to the define primitive and a new

9
Actuatorg | Robot | ! Sensors]
wr Dynamical rd
T System
b
M,C,N

Figure 2. Example of the define primitive. The robot shown here
corresponds to a robot with torque driven motors and only position and
velocity sensing.

robol object possessiug those attributes is created:

M) = M)

6,6y = C16,6)
N(8,6) = N(8,6)
rd() = vd()
wr(0e, 6., be, e) wr(fe, fe,0., 7.)

Several different types of robots can be defined using this basic
primitive. For example, a DC motor actuated robot would be imple-
mented with a wr function which converts the desired torque to a motor
current and generates this current by communicating with some piece
of hardware (such as a D/A converter). This type of robot system is
shown in Figure 2. On the other hand, a stepper motor actuated robot
might use a wr function which ignores the torque argument and uses
the position argument to move the actuator. Both robots would use
a rd function which returns the current position, velocity, acceleration
and actuator torque. If any of these pieces of information is missing, it
is up to the user to insure that they are not needed at a higher level.
We miay also define a payload as a degenerate robot by setting the wr
argument to the nil function. Thus commanding a. motion and/or force
on a payload produces no elfect.

3.3 ATTACH primitive
Synopsis:

ATTACH(J, G, h, payload, robot-list)

Attach is used to describe constrained motion involving a payload
and one or more robots. Attach must create a new robot object from
the attributes of the payload and of the robots being attached to it. The
specification of the new robot requires a velocity relationship between
coordinate systems (J0 = GT4), an invertible kinematic function relat-
ing robot positions to payload position (¥ = h(6)), a payload object,
and a list ol robot objects involved in the contact.

The only difference between the operation of the attach primitive
aud the equations derived for constrained motion of a robot manipulator
is that we now have a list of robots each of which is constrained to
contact a payload. However, if we define f to be the combined joint
angles of the robots in robot~1ist and similarly define Mg and C'p as
block diagonal matrices composed of the individual inertia and Coriolis
matrices of the robots, we have a system which is identical to that
presented previously. Namely, we have a “robot™ with joint angles 0p
and inertia matrix My connected to an object with a constraint of the
form

Jbp=GTi 9)
where once again J is a block diagonal matrix composed of the Jacobians

of the individual robots. To simplify notation, we will define A :=
J1GT so thal

bp = Ai (10)
The attributes of the new robot can thus be defined as:
M = M,+ATMpA (1
C = Cp+ATCRA+ AT MpA (12)
N = Ny+ ATNg (13)
rd() = (MBr), A*br, Atbp+A*t6p, ATrp) (14)
Wr(2g, ko, e, F) = wrplh~ae), A, Aé.+ Ai, A*TF.) (15)

8. 0

PR I e - A

Te L 0! Rl §
do—+JIGT e

€ Te AL O Ny

Fo—t*1GT+..

8. 0

Fo—{JTG* 4. Ry]
fe

Te M Co, Ny

My, Cp, N, N.CN

Figure 3: Data flow in a two robot attach. In this example we illustrate
the structure generated by a call to attach with 2 robots and a payload
(e.g. a system like Figure 1). The two large interior hoxes represent
the two robots, with their input and output functions and their inertia
properties. The outer box (which has the same structure as the inner
boxes) represents the new robot generated by the call to attach. In this
example the robots do not have acceleration or force sensors, so these
outputs are set Lo nil.

where M,,Cp, N, are attributes of the payload, Mg and (' are as
described above and Np is a stacked vector of friction and gravity forces.
‘This coustruction is illustrated in Figure 3.

The rd attribute for an attached robot is a function which queries
the state of all the robots in robot-1ist. Thus Og in equalion (14) is
constructed by calling the individual rd functions for all of the robots
in the list. The @ values for each of these robots are then combined to
form @ and this is passed to the forward kinematic function. A similar
computation oceurs for Op, Or and_tr. Together, these four pieces of
data form the return value for the »d attribute.

In a dual manner, the w@r attribute is defined as a function which
takes a desired trajectory (position and force), converts it to the proper
coordinate frame and sends each robot the correct portion of the resul-
tant Lrajectory. A special case of the attach primitive is its use with a
nil payload object and G = [. In this case, M, (', and N, are all zero
and the equations above reduce to a simple change of coordinates.

3.4 CONTROL primitive
Synopsis:
CONTROL (robot, controller)

The control primitive is respousible for assigning a controller to
a robot. It is also responsible for creating a new robot with attributes
that properly represents the controlled robot. The altributes of the
created robot. are complelely determined by the individual controller.
However, the #d and wr attributes will often be the same for different
controllers. Typically the rd altribute for a controlled robol will be
the same as the rd attribute for the underlying robot. That is, the
current state of the controlled robot is equivalent to the current state
of the uncontrolled robot. A common wr attribute for a controlled
robol would be a function which saved the desired position, velocity,
acceleration and force in a local buffer accessible to our controller, This
configuration is shown in Figure 4.

The dynamic atiributes M, €' and N are determined by the con-
troller. At one extreme, a controller which compensates for the inertia
of the robot would set the dynamic attributes of the controlled robot to
zero. This does not nuply (hat the robot is no longer a dynamic object,
but rather that controllers at Ligher levels can ignote the dynaic prop-
erties of the rohot, since they are being commpensated for at a lower level.
At the other end of the spectrun, a controller may make no attempt to
compensate for the inertia of a robot, in which case it should pass the
dynamic attributes on to the next higher level. Controllers which fie
in the middle of this range may partially decouple the dynamics of the
manipulator without actually completely compensating for them. To
illustrate these concepls we next cousider one possible controller class,
computed lorque. Ilowever, many control laws originally formulated in
joint space may also be emiployed since the structure of equation (3) has
been preserved.

1868

buffer control robot

¥ |74 I |7 Jer ral_ = | rd
M,C,N
M, C N

Figure 4: Data flow in a typical controlled robot. Information written
to the robot is stored in an internal buffer where it can be accessed
by the controller. The controller uses this information and the current
state of the robot to generate forces which cause it to follow the desired
trajectory.

Computed torque controller

As we mentioned in section 2, the computed torque controller is an
exactly linearizing controller which inverts the nonlinearities of a robot
to coustruct a linear system. This linear system has a transfer func-
tion equal to the identity map and as a result has no uncompensated
dynamics. The proper representation for such a system sets the dynam-
ical attributes M, C, and N to zero and uses the rd and wr attributes
as described above. We introduce z4 to refer to the buffered desired
trajectory.

The control process portion of the controller is responsible for gen-
erating input robot forces which cause the robot to follow the desired
trajectory (available in 4). Additionally, the controller must determine
the “expected” trajectory to be sent to lower level robots. For the com-
puted torque controller we use the resolved acceleration [10] to generate
this path. This allows computed torque controllers running at lower
levels to properly compensate for nonlinearities and results in a linear
error response. The methodology is similar to that used in determining
that the dynamic attributes of the output robot should be zero. The
control algorithm is implemented by the following equations:

(x,&,-,-) = rd()

e = g+ No(#q— &)+ Kp(rq—2)

T = ft e

1. = fn z,

F, = Mg+ Cle.q)e+ Ng.q)+ Fa

wr(e, Lo, Ee, Fe)

where rd and wr are attributes of the robot which is being controlled.

Note the existence of the Fy term in the calcutation of #,. This is
placed here to allow higher level controllers to specify not only a trajec-
tory but also an force term to compensate for higher level payloads. In
essence, a robot which is being controlled in this manner can be viewed
as an ideal force generator which is capable of following an arbitrary
path.

The computed torque controller defines two new attributes, i, and
K,, which determine the gains (and hence the convergence properties)
of the controller. A variation of the computed torque controller is the
feedforward controller, which is obtained by setting Kp = N, = 0.
This controller can be used to distribute nonlinear calculations in a
hierarchical controller, as we shall see in section 4.

4 Examples

To make the use of the primitives more concrete we present an example
of a planar hand grasping a box (Figure 1) using a complicated control

box trajectory

|

CONTROL | Computed
Torque

ATTACH | Grasping
Constraint

CONTROL | Feed- Box
forward

DEFINE

ATTACH | Finger
Kinematics

CONTROL

CONTROL “

DEFINE |Left
Finger)

Figure 5: Multi-level computed torque and stiffness (PD). Controllers
are used at each level to provide a distributed control system with bio-
logical motivation, desirable contro} properties, and computational effi-
ciency.

structure. We shall assume the existence of the following functions

My box inertia matrix in Cartesian coordinales
My, M, inertia matrix for the left and right fingers

Cy, C1, Cr Coriolis/centrifugal vector for box and fingers
f finger kinematics function, f: (8;,0,) — (a1, 1)
g grasp kinematics function, ¢ : (e, 2,) — 23
J finger Jacobian, J = %‘ﬂl
G grasp map, consistent with g

rd_left, rd right
wr left, wr right

read the current joint position and velocity
generate a desired torque on the joints

where 0;,8,,2;, 2,, and &, are defined as in Figure 1.

Consider the control structure illustrated in Figure 5. This con-
trol structure is obtained by analogy with biological systems in which
controllers run at several different levels simultaneously. At the lowest
level we use simple PD control laws attached directly to the individual
fingers. These PD controllers mimic the stiffness provided by muscle
coactivation in a biological system [6]. Additionally, controllers at this
level might be used to represent spinal reflex actions. At a somewhat
higher level, the fingers are attached and considered as a single unit with
relatively complicated dynamic attributes and Cartesian configuration.
At this point we employ a feedforward controller {computed torque with
no error correction) to simplify these dynamic properties, as viewed by
higher levels of the brain. With respect to these higher levels, the two
fingers appear Lo be two Cartesian force generators represented as a
single composite robot.

Up to this point, the representation and control strategies do not
explicitly involve the box, a payload object. These force generators are
next attached to the box, yielding a robot with the dynamic properties
of the box but capable of motion due to the actuation in the fingers.
Finally, we use a computed torgue controller at the very highest level
to allow us to conumand motions of the hox without worrying about the
details of muscle actuation. By this controller we simulate the actions
of the cerebeflum and brainstem to coordinate motion and correct for
errors.

In terms of the primitives that we have defined. we build this struc-
ture from the bottom up

1869

left = DEFINE(A;, (i, O, 0, rd_left, wr_left)
pd_left = CONTROL(left, pd)
right = DEFINE(M,, C,, 0, 0, rd_right, wr_right)
pd_right = CONTROL(right, pd)
fingers = ATTACH(J, I, f, nil, pd_left, pd_right)
ff_fingers = CONTROL(fingers, feed-forward)
box = DEFINE(M,, C}, 0, 0, nil, nil)
hand = ATTACH(I, G, ¢, box, ff_fingers)
ct_hand = CONTROL(hand, computed-torque)

It is helpful to illustrate the flow of information to the highest level
control law. In the evaluation of x; and iy, the followiug sequence
occurs through calls to the rd attribute:

hand: asks for current state, zp and 23
finger: ask for current state, x; and 2
left: read current state, 8 and 6,
right: read current state, 6, and 6,
finger: zy,&; — [(61,8,),J(61,6,)
hand: xy, &y — g(xy), GT iy

When we write a set of hand forces using the wr atiribute, it causes a
similar chain of events to occur.

The structure in Figure 5 also has interesting properties from a
more traditional control viewpoint. The low level PD controllers can be
run at high servo rates (due to their simplicity) and allow us to tune
the response of the system to reject high frequency disturbances. The
Cartesian feedforward controller permits a distribution of the calcula-
tion of nonlinear compensation terms at vatious levels, lending itself
to multiprocessor implementation. Finally, using a compuled torque
controller at the highest level gives the flexibility of performing the con-
troller design in the task space and results in a system with linear error
dynamics.

5 Extensions to the basic primitives

Having presented the primitives for non-redundant robot systems in
which we ignore internal forces, we now describe the modifications nec-
essary to include both internal motion and internal forces in the prim-
itives. As before, these extensions are based on the dynamic equations
given in Section 2 and rely on the fact that the equations of motion of
this class of systems can be expressed in a unified way.

Internal motion and force can be thought of manifestations of re-
dundancies in the maunipulator, and both can be used to improve per-
formance. A classical use of redundant motion in robotics is to specify
a cost function and use the redundancy of the manipulator to attempt
to minimize this cost function. If we extend our definition of the wr
function so that it takes not only an “external™ trajectory, but also an
internal trajectory (which might be represented as a cost function or
directly as a desired velocity in the internal motion directions) then this
internal motion can be propagated down the graph structure. A similar
situation occurs with internal or coustraint forces.

The matrices J(¢) and (+(q) in equation (2} embody the fundamen-
tal properties ol the constrained system. We begin by asswming that
J(¢) and G(q) are both full row rank. The null space of J(q) corre-
spods Lo notions which do not aflect the configuration of the object,
i.e., internal motions. Likewise, the null space of (/(q) describes inter-
nal forces—the set of forces which cause no motion of the object. A
complete trajectory for a robot must specily not only external motion
and force for a robot but also the internal motion and force which lie in
these subspaces.

5.1 Internal forces

To allow internal forces to be specified and controlled, we must first
add them to the rd and wr attributes. This is done by simply adding
an extra value to the list of values returned by rd and adding an extra
argument to wr. Thus the wr attribute is called as

wr(ve, &, X, Fo, Fy) (16}

where Fj is the desired internal force.

Internal forces are “created” by the attach primitive. The internal
force directions for a constraint are represented by an orthonormal ma-
trix H(0) whose rows form a basis for the null space of G(#). Since any
of the daughter robots may itself have an internal force component, the
internal force vector for a robot created by attach consists of two pieces:
the internal forces created by this constraint and the combined internal
forces for the daughter robots. We shall refer to these two components
as Fj; and Fj o, respectively. The force transformations which describe
this relationship are

e () - (Ze oy (2) o
A=\ Trri) T 0 0T \F

where Tr,. is the vector of external forces for the daughter robots and
7n,i is the vector of internal forces. This equation is analogous to equa-
tion (4) in Section 2.2. Note that rg; is identical to F; 2, thus internal
force specifications required by the daughter robots are appended to the
internal force specification required due to the constraint. Expanding
equation (17) we see the appropriate definition for the new wr attribute
generated by attach is

Wr(Le, &e, Xe, Fe, Fi) = wrg(- -, JTGYF, + -]THTFi,l JFia) (18)

The inclusion of internal forces in the rd attribute is similar. The
sensed forces from the robots, T, are simply split into external and
internal components and converted to the appropriate internal and ex-
ternal forces for the new robot. This is equivalent to inverting equation

(17):

Fe 71T 10 .
F=| F, |={ HI"T]o (—T’“_) (19)
Fi2 0 I Ri
It follows that
- -T
rd() = (oo, GI Ty, (f e)) (20)

Internal [orces are resolved by the control primitive. In principle,
a controller can specify any number of the internal forces for a robot.
Internal forces whicl are not resolved by a controller are left as internal
forces for the newly defined robot. In practice, controllers will often be
placed immediately above the attached robots since internal forces are
best interpreted at this level. Unlike external motions and forces, inter-
nal forces are not subject to coordinate change and so leaving such forces
unresolved [orces higher level controllers to use low level coordinates.

5.2 Internal motions

Internal motions are also created by the attach primitive, this time due
to a non-square Jacobian matrix. As before, we must add arguments
to the »d and wr attributes of robots to handle the extra information
necessary for motion specification. We only assume that the redundant
velocities and accelerations are defined, so we add only those quantities
to »d and wr. Since the notation becomes quite cumbersome, we won’t
actually define the »d and wr primitives, but just specily the internal
and external motion components.

Given a constraint which contains internal motions, the attach
primitive must again properly split the motion among the robots at-
tached to the object. Define N(8) to be a matrix whose rows span the
null space of J(#). Then we can rewrite our constraint as

Jlo e GT olo Fe
N{0 " =| 0 I}0 Iiy (21)
0|7 Or.i 0 01 Ein

Defining J and (i as the extended Jacobian and grasp matrices,

- J r_(GT o o
J:(l\') GT-< 0 1) (22)

we see that J is full rank and so we can use it to define A = J=!GT
in equations (11-15). This then defines the dynamics attributes created
by attach. Note that the dimension of the constrained subspace (where
internal forces act) is unchanged by this extension.

The input and output attributes are described in a manner similar
to those used for internal forces. For wr the external component of the
motion is given by

Ope = A(by) (23)
= J*GTi. + KT (24)

éR,e is defined similarly. 0p. is only defined il an inverse kinematic
function, h=!, is given. Otherwise that information is not passed to
the daughter robots. As before, if the robots themselves have internal
motions then these should be split off and passed unchanged to the lower
level robots.

The rd attribute is defined by projecting robot motions into an
object motion component and an internal motion component. That is

r, = Il(ﬂny,) (25)
e Gt bR, (26)
. Kég. -
B = < \ORR,) (27)

i. and ¥; are obtained by differentiating the expression for &, and ;.

Controllers must also be extended to understand redundant motion.
This is fundamentally no different than control of an ordinary manip-
ulator except that position information is not available in redundant
directions. Thus the computed torque law would become

e

Ze g+ Nuée + Kpee
Ziq+ Noé;

)+ can ()4 v e

Motion specification for such a control law would be in terms of a po-
sition trajectory x.(-) and a velocity trajectory #;(-). If a controller
actually resolves the internal motion (by specilying &; 4(-) based on a
pseudo inverse calculation for example), then the internal motion will
be masked fromn higher level controllers; otherwise it is passed on.

Control laws commonly use the position of the object as part of
the feedback term. This may not always be available for systems with
non-integrable constraints (such as grasping with rolling contacts). If
the object position cannot be calculated {from @ then we must retrieve
it from some other source. One possibility is to use an external sensor
which senses ¢ directly, such as a camera or tactile array. The function
to “read the sensor” could be assigned to the payload rd function and
attach could use this information to return the payload position when
queried. Another possible approach is to integrate the object velocity
(which is well defined) to bookkeep the payload position.

Some care must also be taken with the evaluation of dynamic at-
tributes for robots which do not have well defined inverse kinematic
functions. There are some robot control laws which use [eedforward
terms that depend on the desired output trajectory, e.g., M(xq)&4. The
advantage of writing such control laws is that this expression can be
evaluated oflline, increasing controller bandwidth. This calculation only
makes sense if the desired configuration, ¢q, cau he written as a fuune-
tion of x4 and more generally if ¢ can be written as a function of z.
One solution to this problem is to only evaluate dynamic attributes of a
robot at the current configuration. Assuming each robot in the system
can deterimine its own position, these attributes are then well defined.
For all the control laws presented in this paper, M, (" and N are always
evaluated at ¢, the current configuration.

6 Discussion

Working ltom a plysiological motivation we have developed a set of
robot description and control primitives consistent with Lagrangian dy-
namics. Starting from a description of the inertia, sensor, and actuator
properties of individual robots, these primitives allow for the construc-
tion ol a composite constrained motion system with control distributed
al all Jevels. Robots, as dynamical systems, are recursively defined in
terms of daughter robots. The resulling hierarchical system can he rep-
resented as a tree structure in a graph theoretic formalisi, with sensory
data lusion occurring as information flows from the leaves of the tree
(individnal robots and sensors) toward the root, and data expansion as
relatively simple motion commauds at the root of the tree flow down

1871

through contact constraints and kinematics to the individual robot ac-
tuators.

One of the major future goals of this research is to implement the
primitives presented lere on a real system. This requires that efforts
be made toward implementing primitives in as efficient fashion as pos-
sible. The first implementation choice is deciding when computation
should occur. It is possible that tlie entire set of primitives could be
implemented off-line. In this case, a controller-generator would read the
primitives and construct suitable code to control the system. A more
realistic approach is to split the computation burden more judiciously
between on-line and off-line resources. Symbolically calculating the at-
tributes of the low level robots and storing these as precompiled func-
tions might enable a large number of systems to be constructed using a
library of daughter robot systems. Although (he expressions employed
are continuous time, in practice digital computers will be relied upon for
discrete time implementations. This raises the issue of whether lower
computation rates may be practical for higher level robots/controllers.

In addition to implementation issues, there are still several theo-
retical issues which we hope to address. We would like to have stability
proofs for classes of control hierarclies, e.g. any hierarchy with a com-
puted torque controller at the highest level and only feedforward con-
trollers below it can be shown to be exponentially stable. There is also
no provision in the primitives for dynamics which can not be written in
the form of equation (1). Adaptive identification and control techniques
nmay be useful in cases where unmodeled dynamics substantially affect.
system performance.

Acknowledgements

D.C. Deno was supported by NEI EY05913, the Smith-Kettlewell
Eye Research Foundation, and the Rachael C. Atkinson Fellowship
Award. K.S.J. Pister, R.M. Murray, and S.S. Sastry were supported
in part by the NSF under grant numbers DMC 84-51129, ECS 87-19298
and the Air Force Office of Scientific Research (AFSC) under grant num-
ber I'49620-87-C0041. R.M. Murray was also supported in part by an
IBM Manufacturing Fellowship.

References

(1] J. Baillieul. Kinematic programming alternatives for redundant
manipulators. In IEEE ICRA, pages 722-728, 1985.

[2] A. K. Bejczy. Robot arm dynamics and control. Technical Report
33-699, Jet Propulsion Laboratory, 1974.

[3] Roger W. Brockett. On the computer control of movement. Tech-

nical Report CICS-P-31, Center for Intelligent Clontrol Systems,

Harvard Univ., November 1987.

Dayton Clark. IHC: An operating system for hierarchies of servo

loops. In IEEE ICRA, pages 1004-1009, 1989.

A. Cole, J. Hauser, and S. Sastry. Kinematics and control of multi-

fingered hands with rolling contact. In JEEE ICRA, pages 228-233,

1988.

Neville Hogan, Emilio Bizzi, F. A. Mussa-lvaldi, and Tamar Flash.

Controlling multijoinl behavior. Exercise and Sport Sciences Re-

views, 15:153-190, 1987.

O. Khalib. A unified approach for motion and force coutrol of robot

manipulators: The opertional space formulation. IEEE J. Robotics

and Aulomation, RA-3(1):43-53, February 1987.

O. Khatib. Augmented object and reduced effective inertia in robot

systems. Amer. Conltrol Conf., pages 2140-2147, 1988.

Z. Li. P. Hsu, aud S. Sastry. On kinematics and control of multi-

fingered hands. In JEEE ICRA, pages 384-389, 1988.

J.Y.S. Lul, M. W. Walker, and R. P. Paul. Resolved acceleration

control of mechanical manipulators. IEEE Trans. Aulom. Conirol,

AC-25, 1980.

R. M. Rosenberg. Analytical Dynamics of Discrele Systems.

Plenum Press, New York, 1977.

[4

[8
(ol
(o]

(11

