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Abstract

This paper investigates the convergence rates of several con-
trollers for low dimenional nonholonomic systems in power
form. The method of multiple scales is found to be effective in
determining the asymptotic form of the solutions. The general
form of the perturbation solutions indicates how parameters in
the control laws may be chosen to achieve a desired convergence
rate. A detailed analysis of controllers exhibiting exponential
convergence is induded.

1 Introduction

This paper focuses on the problem of determining the rates of
convergence of control systems of the form

m

:i= Egi(4)ue(Xt) E R, (1)

where each g, is a smooth vector field on R" and the controls,
1 (x, t), are continuous fiuctions of z. System of this form
arise in the study of mechanical systems with velocity con-
straints and have received renewed attention as an example
of strongly nonlinear systems. See [9] for an introduction and
more detailed motivation. For such systems, control methods
based on linearization cannot be applied and nonlinear tech-
niques must be utilized. Convergence rates of solutions are of
practical importance and we attempt to shed some light on the
connection between convergence rates and the smoothness of
the feedbackiux, t).

A cotrol law u = k(z,t) globally stabilizes a point
xo E Fr if z(t) -+ x0 as t -4 X for all initial conditions of
the system. For a nonholonomic control system, the depen-
dence of a stabilizing control law on time is essential since the
system (1) does not satisfy Brockett's necessary condition for
smooth or even continuous stabilization 11]. Hence there does
not exist a snooth static state feedback law which stabilizes the
system to a point. Recent work by Coron has shown that it is
possible to stabilize a nonholonomic system using time-varying
feedback [2]. Constructive approaches have been presented by
Samson [11], Pomet [10], and Coron and Pomet [3]. In this
paper we analyze some specific nonholonomic systems in so
called power form [13]. The structure of the stabilizing con-
trol laws are taken from [13]. These control laws are based on
earlier work using sinusoids for open-loop planning and have
connections with the recent work of Sussmann and Liu [12] and
Gurvits [4].

Nonholonoomic systems in power form are represented by
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the following set of equations
1 = U1

i2 = U2
3 = iU2

Xi = 12 (2)

-Si:,8 - 1 a.-2

f
n(-2)!1 ~J

The control Lie algebra for this system is spanned by the input
vector fields and Lie products of the form ad4lg2. It is worth-
while to note that this form satisfies some of the simplifying
assumptions used by Pomet to generate controllers for more
general nonholonomic control system [10].

System in power form characterize the fiundametal dif-
ficulties of nonholonomic system in a very simple and useful
form. By understanding the geometry of controIlers applied to
power form, we hope to understand the geometry of controllers
applied to more general nonholonomic systems. This point of
view has been used very successfully by Sussmann, who has
shown how resuts applied to a "symbolic" represetation of
the control system can be used to understand system with a
compatible control Lie algebra [8].

The control laws studied here are based on those presented
by Teel et al. in which sinusoids at integrally related frequen-
cies locally stabilize power form system to a point [13]. Nec-
essary and sufficent conditions for conversion to power form
are given in this reference. Teel's controllers have the form

n-2

Ul = -z -ZEX+2(sint-cst)
j=l
we-2

U2 = -X2-Ecjzj+2cosjt,
j=l

(3)

with cj > 0. The proof of the stability relies on the interaction
between sinusoids at integrally related frequencies to produce
motion in the appropriate directions. We use essentially the
same structure as (3) except that the zx's are replaced by gen-
eral functions of these variables. The reader is referred to [13]
for more details.

We explore the convergence properties of these controls
laws usin multi-time scale analysis techniques and concen-
trating on low-dimensional cases. We are optimistic that the
stabilizing controllers presented here can be extended to the
more general case and that by understanding their action on
a canonical system, we can understand their extension to sys-
tems with a similar Lie algebraic strcture.

2 3-Dimensional Power System
The three dimensional nonholonomic system in power form is
represnted by the following system of equations:

:i = Ul

(4)
4 = z2u1
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We will study the behavior of the closed loop system under the
following feedback:

Ul = -Zl + Fi(z3) cost

U2 = -Z2 + F2(Z3)sint, (5)

The slow and fast time scales are considered unrelated as far
as these equations are concerned. Hence A' is equated to

(12)

where F1(.) and F2(.) are smooth functions but otherwise un-
specified. Center manifold theory may be used to choose the
Fi2's such that the origin is locally asymptotically stable in the
closed loop system [13]. EI order to study the rates of con-
vergence of the solutions, it is useful to employ a two-timing
perturbation procedure [7]. The method of two-timing will be
used to develop the structure of some approximate solutions
of system (4) with the feedback (5). Two-timing relies upon a
small system parameter which causes the fow of the system to
evolve with two different time scales. Assme for the moment
that the z3 equation is replaced with

3= ex2U1 = ez2(-r1 + Fl(Z3)cr),
where 0 c e < 1 and c, cos it and si = sinit. This notation
will be used in the sequeL A two-timing pertubation expan-
sion may be constructed by assuing that the solutions of the
dosed loop system may be written in the following form,

zi(t) = t(t, T) + ei(t, T) + . . . (6)

where r = et is interpreted as slow time and t as fast time. The
overbar denotes the leading order terms in the expansion and
the tilde denotes higher order terms. r,is treated as another
independent variable in this expansion.

The difficult step in the two-timin procedure is obtaining
the form of the expansion. Once the structure of the expan-
Sion is known (or assumed, as we have) it is reltively simple,
although tedious, to obtain the equations for the individual
terms. Substituting the expansion into the closed loop equa-
tions and equating coefficents of powers of e yields the follow-
ing leading order terms for xi, z2 and x3,

xi = -i1 + FI(i3)cl,
i2 = -32 + F2(ta3)si,
I3 = 0,

I 3 IX'S+53 = 2-2(Z1i + Fi(fs3)cx).

(7)
(8)
(9)

(10)

Here *, denotes differentiation with respect to t and z denotes
differentiation with respect to r. Equation (9) implies that 23
is a function of r only,

23(t,r) = As(r).
In terms of A3(r) equations (7) and (8) may be rewritten as,

= -t1 + FI(Aa(r))cl
*2 = 52 + F2(A3(r))si.

These equations represent first-order linear systems driven by
sinsods. Since asymptotic solutions are dedred, the transient
behavior of the solutions is not of interest. The steady state
solutions of these equations are,

z1(t,r) =-Fi(A3(r))(Cl + s1)

Z2(t,r) = 2F2(A(r))(-Cl + Sj).
A3(r) is deterMined from equation (10),

A3(r)' + 53 = 22(-tl + Fi(4)cI).

(11)

Substituting the expressions in (1I) into equation (10) yie,

A' + s = -jj(A4(,r))F2(A3(,r))(cj - s2)2-3 + = 1

=-!PiF(A4(-r))Fg(As(r))(1 - 2c,sl)4

z3 is equal to the r term

X3= -FI(A3)F2(A3)CISI-

The presece of the Fj(r)'s in this equation presnt no prob-
lems since these functions remain constant compared to the
fast time, t. The initial conditions have been ignored so these
approximate solutions wil be valid after the transient behavior
has died away. The magitudes of 1 and 2, after the solution
has settled down to its steady state, only depends on 2:3. It
is evident from equation (12) that the rate of convergence of
the z3 variable is controled by the product of F1 and F2. The
following example will illustrate these ideas.

Example 1. Suppose P1 and F2 are chosen such that,

Fl(z3) = 53 F2(z3) = Z3 (13)

then the origin is locally asymptotically stable [13]. We intro-
duce the parameter e by scaling the dependent vaiables

(Z1, X2, X3) -* (CiX1,zEX2,e z3).

The closed loop equation transform to,

X = -x1 + r3CI
-2=-X2 + 24S

=3 erz2(-x1 + 23C1).

The equation (12) with (13) implies

3(t)
I 2(0)t

Equations (11) yid the foflwing asymptotic solution for r (t)
and z2(t),

21 r3(0) (ci + s )

z2(t) +- ~ (Ci + si)
2 1X232(0)t 1

X2(t) 2' 1 X32(0) + (-+31).

These approximate methods usuay yield estimates which
are valid only an finite time intervals. Rence, no concluion can
be made cncerning the rate of congece of the solution
without some extra analysis. However, a simple calculation
shows that the leading order multiscale procedure gives reslts
eqvalent to the center manifold approach when F1 and F2
are smooth. The pertbation soution is merely the averaged
center manifold equation. Thus, the perturbation results are
asymptotic in this case. Figure 1 compares the numerical solu-
tion of system to the asymptotic results developed above. The
initial conditions where chosen to mmise the transients.

3 Control Laws for Exponential Conver-
gence

The faom of the asymptotic solutions is very suggestive. It
was noted earlier that the product of F1 and F2 contoled the
convergence rate of the three state system cf. equation (12).
Example 1, continued. We now explore choices of F1 and F2
which give exponentia reates of stla The preceding
analysis requires the differentiability of F1 and F2. Forget for
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Figure 1: Compariso of numerical and perturbation solutions

the moment these restrictions and consider the 3-D closed loop
system when the Fi's are chose as,

Pl(23) = sgn(X3)ViX3 F2(z3) = 1/ X3 1, (14)

where sgn(.) is the signum function. Once again the dependent
variables may be sed so that the closed loop atios are
in the proper form,

= -ri + (X3)F
2 -2 + 31 (15)
3 = ez2(-z1 + Sga(x3)s jeIic).

Note that the equations are H6lder continuous but not Lips-
Chits at :3 = 0. Continuity of the vector field ensures exis-
tenLce but not uniqueness of solutions. We will proceed on the
assumption that the solutions are unique. Any from the set
=30 the vector field is Lipschitz and the perturbation analy-
i indicates that for properly chcm intial conditions (where
the transients are minimal) X3 only approaches the "bad" set
in the limit as t -* oc.

Equation (12) implies that :t3, and hence 2 and 2, con-
vge entialy. One cold argue that the asymptotic solu-
tion is still valid with this Co control law since the only region
in phase space where the control is not smooth is the plane
03= and numerical simulations indicate that after an initial

Peiod Of transieDt behaVior the X, vWiable maintains CcStant
sgn, never passing through r3 = 0. The perturbation solution
is given by

3(t) = X3(0) eXp (jt)

ad i2(t) and t2(t) are given by the expression (11). Figure 2
compar the perturbatimo solution with numerical integration
for this nonsmooth system. Figure 3 is a semilog plot of the
EBdidean norm of the states rom.Figure 2 and the exponential
convergence rate bounds provided from the analysis. The fact
the trajectories are always bonded above by a line -of negative
slope indicats e tial convergence. The perturbation so-
htim places the al c ergence rate bound for r3 at
- while the xi ad r2 vaiables are half this rate. The plots
show that these bounds are tight.

The availability of more ngorous theory to study non-
Lipschitz vector fields is requred even though these hueristic
argunts and smlations are convincing. This is discussed
in the folowing paagraphs.

The number of tools for aadlying the properties of dif-
ferential equations dwindles as we pass from differentiable to

Figure 2: 3-D System with Nonsmooth Feedback

5-( )

Figure 3: E ial tes of Convergence for 3-D System

continuous vector fields. However, Kawski has developed some
usefi theory for aspealclass of vector fields [6]. l thein-
terest of consermng space only those details necessary for the
study of this example will be introduced
Example 1, continued. Recall the original unscaled vector
field,

i1 = -Zi + sgn(zs3)j u3ici

:2 = -2 + x jsi31 (16)

3 = X2(-X1 + sg9n(z3N)y77cl).
The sytem of equatons is invariant under the folowing scal-
m3lg,

(Xr, :2,X3) -+ (AX1,Az2,A22X3) A> 0 (17)
This scaling, called a dlaion, is ymbolically repre ted as
the operator, 4S = (AZ1,AX2,A2z3. Differtial eq s
whiich ae invaiant under the dfilaion are termed homogenus
of order zero with respt to 6A. It is usfu to define a homo-
gena'u normPp, that saisfi the property p(&AZ) = Ap(z),
A > 0. Ix this cantext, a different notion of exponential stabil-
ity may be introduced [6].
Definition 1 A vctor field which is homogeneou of rder
zero wh repwect to the diation 4 i expsztial stable if
te exist consts M > 0 and a >0 suh that,

p(o(t)) < me netop(u(O)) r
we p( ) iua wfpnig& gevwor.
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The homogeneous norm is not equivalent to the standard p-
norms when the variables are scaled by different factors. In
this case it is impossible to substitute the usua definition of
exponential stability for the one given above. Hence, based on
our simulations, it is likely that the system is exponentially
stable with respect to the appropriate homogeneous norm. A
particular choice which satisfies the scaling property in the ex-
ample is

p(x)= (z + zI + )
This norm is usef in applications since it is smooth except at
the origin. Another result by Kawski [6] states that exponential
stability with respect to the homogeneous norm is equivalent
to uniform asymptotic stability in the norm (jut like the lin-
ear case). Since our example is time-periodic we need only
show asymptotic stability. Proving asymptotic stability for a
non-Lipcshitz continuous vector field is still a daunting task.
However, the dilation specifies a transformation group on the
phase space which facilitates the study of the equation by con-
sideing a vector field on the quotient manifold specified by
the group. The quotient manifold is given by p(z) 1 which
is just a warped sphere, S2, naturally embedded in R3. The
projection map r : R2\{0} X_ S2 onto the sphere is

T(t = (p) , p(X) ' PI (z)

Pushing forward the vector field with this map defines a unique
vector field on the sphere by virtue of the transformation group
invariance. Once the flow on the sphere is known the flow
of the original vector field is determined by lifting the sphere
flow with an addition scalar equation. The scalar equation
is merely the differential equation for p written in the sphere
coordinates. Determining the asymptotic behavior of the full
set of equations amounts to computing the nonwandering set,
fl, on the sphere and observing the behavior of p on t. Full
details for the time invariant case are found in [6]. However,
we may simulate the equations on the sphere and characterize
the attractive invariant sets for the time-periodic system in the
eXtended phase space 52 X S'. This iS Caied out below.

The equations on the sphere p(z) = 1 are,

~1= -yi + sgn(Yab/TY37C, - Q( t

Y2 = -Y2 + v'37 ' - Y2Q(yjt) (18)

#3 = Y2(-v' + sgn(Y3)~/y.7c1) - 2VnQ(v,t),

where Q(y, t) is given by,

Q(y,t) =vi(-Yl + sgn(Y3)x,/FLjcI) + 14(-Y2 + v3/ ISi)
1

+jY2l3(-Yl + sgn(V3)fiKl).

The scalar "radial" equation is,

= Q(Y,t)p.
Simulations of the sphere equations (18) imply the existence of
two stable sets on the sphere (Figure 4). The stability of the
p equation is determined by what Q(y, t) does on these sets.
Figure 5 shows that on the sets identified in Figure 4 that
QW( t) is periodic with a nonzero negative average. Hence p is
exponentially stable with the average rate of convergence equal
to the average of Q(y,t). This analysis is not complete until
all components of Li have been identified. Other limit sets on
the sphere that aren't observable in the sinmlations, becaus
they are unstable, are the points (±1, 0, 0) and (0, iI, 0). It is
obvious from the original equations that trajectories stating
here converge exponentialy. Hence for the six sets identified

II
I

Figure 4: Stable sets on the sphere p(x) = 1

Figure 5: p equation coefficient
on the sphere, exponential stability of the p equation has been
demonAtrated.

This analysis reveals the relationship between regularity
of the control law and the corresponding achievable conver-
gence rate. We have not exhausted all of the possibilities for
choosing the functional dependence of the Pi's for exponential
stability. As long as their product is z3 we would expect expo-
nential convergence. 'However, our choice is the most regular
in terms of the H8lder continuity of the control law. Similarly,
suppose a Lipschits feedback is desired for the S3- system. The
perturbation result indicates that the fastest convergence rate
possible corresponds to,

3 = -j423))3

With Fl = 3 and F2 =1 3 |. A faster rate would require a
continuous but not Lipschitz control.

4 Higher Dimensional Power Systems
Is the two-timin procedure generalizable to any system in
power form? Obtaining the rates of convergence for power
system reqes solving a simplified form the the closed loop
equations. Since each power form system with its correspond-
ing control law is a distinct dynamical system, one could not
expect to exhibit a general algorithm for computing asymp-
totic solution vald for all time. Averaging guaantees that
solutions of the approximate system and original system re-
mTain dose for finite time and hence does not reveal the long
term behavior, even for asymptotically stable systems. Hence

2970

A-

9



the analysis must be carried out on a cae-by-case basis. We
now look at the 4-dimensional power system.

Refer to the 4- nonholonomic power form sys-
tem defined by the gen l epresion ofEquation 2. The struc-
ture of the control law is,

U= -XI + Fl(z3)C1 + G1(X4)C2
U2 = -X2 + F2(z3)s1 + G2(4)4s. (19)

The Pi's and G,'s are smooth functions of their arguments. To
justify a mutiscale perturbation we artificially intro-
duce a parameter e again. Suppose the closed loop equations
are in the form,

1 = Uj X3 = EU2U1
12i2 = U i4 = 62iUl,

(20)

with ul and u2 defined above. Applying the method of multiple
scales once agan requires defining the form of the expansion
for each variable. It is necessary to use three time scales t,
r = et and a = e2t,

xirt) =i(t, -, a) + cii(t, T, ) + ....

The zi's are the leading order terms in the expansion and the
i,'s represent higher order terms. The computations are car-
ried out in an analogous manner to the three state system. The
leading order terms of x, and 2 are merely the steady state
solutions of the :i1 and 2 equations when treating 3 and 4
as constants. These computations are suppressed to conserve
space. It can be shown that X3 i not afunction of t and 24 is
not a function of t and r, hence we define,

23(t,r,a) = A3(Q) ±4(t,'r,a) = (a).

3w3ill depend on af but we are't conerned with solving the
higher order equations which exhibit the proper dependence
since we are interested in the leading order terms only. The
differential equations governing A3 and A4 are obtained by sub-
stituting the leading order expression for x1 and z2 into the i3
and z4 equations. This yields

('A3 1r --(F2(A3) + G2(A4))F1(A3)(c1 -
44

- -(F2(A3) + G2(A4))G1(A.s)(c, - si1)(4C2 - 2582).10

(Aa - 1(F2(A3) + G2(A4))2(cl - S1)2F1(A3)
+ j (F2(A3) + G2(4))PG1(4)(4c2 - 2s2).

i
a

mfl&4-D.~ =0.

(L

1.2

0.6,,V

IA - ,

.......;

0. .......... ........... .... .. ....

...

0w .-.

-0 10 20 30 40 so 50 70 so 50 100

Figue 6: Smooth 4-D System, states X3 and z4
The dierential equations for A3 and A4 are,

8a3 = --(c - Sl)2(A2 + A2)A3

- lk(A3 + A2)A,(cCl 31)(-4C2 + 282)10 4

0444 1
+ = j(A2+ A2)2(cCl s1)3

+ 40(A2 + A42)2A4(Cl sl)'(-4cos(2t) + 232)

(23)

One could attempt an asymptotic solution of systen (23). For
example the averaged equations would yield informtiono the
initial behavior of the solutions. The long term behavior and
hence the actual rate of decay of the solutions is provided by
another asymptotic solution if the analyst has enough fortitude
to complete the computations. Instead it is more instructive
to solve equations (23) numerically to verify that the leading
order mutiscale perturbation solution does in fact provide so-
lutions that uniformly approximate the true solutions. Once
this subsysten of equations has been approximated or solved
the expressions for A3 and A4 may be substituted back into
the leading order expression of 21 and 22. Figure 6 compares
the complete numerical integration of the system with the in-
tegration of the partial system of equations (23) obtained from
the multiscale analysis. Only 3 and x4 are shown in Figure 6
since the perturbation solutions for xI and x2 are just algebraic
functions of z3 and z4.

Exponential stability of the 4-dimensional system is now
considered. Analysis of the smooth 3-D example illustrated
how the convergence rates of z, and z2 where determined by
the convergence rate of x3. Similarly, analysis of the smooth 4-
D equations showed the explicit dependence of X3 on 54 for long
time and that X3 and 54 essentialy control the convergence of
x1 and X2. Hence, our conern is with the subsystem formed
by equations (21). Exponentially stability of the dosed loop
equations implies exponential stability of the averaged equa-
tions. Thus, it is reasonable to consider the averaged version
of equations (21) and try to detmine the Ft's and Gt's which
make the averaged system exponentially stable. The averaged
subsystem is,

(21)

The quantities which are trigonometric functions of t vary
rapidly compared to those which depend on r or a so it is
tempting to average equations (21). However, the solutions of
the averaged equations do not uniformly approximate those of
the orginal system. For example, the expression containing
G1(24)(C1 - si)(4C2 - 282) in the equation for A3 would average
to zero but this term is important for the long term behavior
of A3. It is impossible to solve equation (21) for general Fi's
and Gi's so we consider a specific example again.

Example 2. Suppose we make the following choices [13],

Fl(3) = x3 G1(94) = -X4
F2(,3) = X2 G2(24) = :Z.

The dependent variables may be rescaled to place the
dosed loop equations into the form of equation (20},

(X1, X2, X3,x4) -+ (e51, X2, l2X3,<E154). (22)

dA3 = - (F2(A3) + G2(A4))F1(A3)dr 4
dA4 1.= -$F2(A3) + G2(A4flGI(A4).

(24)

We have abused notation by using A3 and 4 to represent the
dependent variables in the averaged equations. To guarantee
exponential stability we need to chose the highest order terms
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Figure 7: Expontial tes of Convergence of 4-D Systen
in (24) to be linear. This implies,

F2(A3)F1(A3) = A3, G2(A4)2Gi(A) = -A4. (25)
One possible choice is,

F1(A3) = gn(A4/ij CI(A) -(A)=
F2(A3) = 0AG2(A) = (A)t.

The 4-D equatiom cannot be rescaled to the form (20). How-
ever, the analysis may still be valid as far as the stability type
is concened even tough the relatve rates of exponential con-
vergence may not be correct. The simlations support this
supposition (see Figure 7).

It is interesting to note that- the 4-D equations with (4)
are invariant under the folowing scaling,

(X1l?,2 z3,X4) -(+ : 1 2 t'2Z3, X4)

This transfoImation i a dilati like the one described for the
three dimensional example. Hence, the nmmerical analysis su-
gests that this syteim is exponentially stable with respect to
the corresponding homogeneou norm defied by,

p(z) (z12 +z422 T6 ++4)*.
Computing the vector field on the sphere is carried out in an
analogous manner to the 3-D case. These results are not pre-
sented. Figure 7 is a numerical simlation of the 4-dimensional
nonsmooth system with the logarithm of the norm of the states
plotted with respect to time. The slowest exponential conver-
gence rate predicted by the pertubation analysis is the rate
corresponding to the 4 variable and is givenby - df. equa-
tions (24) and (4). This boud is plotted and provides a very
tight estimate. e

5 Conclusions
The analysis presented in this paper is far from complete. The
3- and 4-D sy'stem provide some very inating examp
to guide our thiking for higher dimensional power form and
general nonho mic control systems. Gurvitz and Li have
made some progress in establishing a connection between the
desired rate of convergence of dosed loop solutions and the
maximal smoothness of the feedback [5]. lu the context of
expomential stabilization, their result states that the inverse
of the degree of nholonomy (the smallest order of brackets
required for controllability) is an upper bound for the Hblder
continuity of the control law. It is interesting to note that our
control laws achieve these bounds. The 3-dimensional systen
has degree of nholomy 2 and our control laws are Ider

ccmtinuous with constant .12 Analogous results hold for the 4-
dimeinsonal system and our proposed expnentially stabilizing
control laws.

The multi-time scale analysis is effective in providing the
proper structure of the solutions. These pertubation solu-
tions guided ou choices in spfing the control parameters
that determined certain convergence rates for the approximate
systems.

Acknowlments. The authors are indebted to Prof. D.
Cohen for discussions concerning the perturbation anal-
ysis.
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