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Abstract

This paper investigates the convergence rates of several con-
trollers for low dimensional nonholonomic systems in power
form. The method of multiple scales is found to be effective in
determining the asymptotic form of the solutions. The general
form of the perturbation solutions indicates how parameters in
the control laws may be chosen to achieve a desired convergence
rate. A detailed analysis of controllers exhibiting exponential
convergence is included.

1 Introduction

This paper focuses on the problem of determining the rates of
convergence of control systems of the form

i =3 g(a)u(a.)

i=1

z € R, (1)

where each g; is a smooth vector field on R® and the controls,
u;(z,1), are continuous functions of z. Systems of this form
arise in the study of mechanical systems with velocity con-
straints and have received renewed attention as an example
of strongly nonlinear systems. See [9] for an introduction and
more detailed motivation. For such systems, control methods
based on linearization cannot be applied and nonlinear tech-
niques must be utilized. Convergence rates of solutions are of
practical importance and we attempt to shed some light on the
connection between convergence rates and the smoothness of
the feedback u;(z,1t).

A control law u = k(z,t) globally stabilizes a point
zo € R* if z(t) > z, as t = oo for all initial conditions of
the system. For a nonholonomic control system, the depen-
dence of a stabilizing control law on time is essential since the
system (1) does not satisfy Brockett’s necessary condition for
smooth or even continuous stabilization [1). Hence there does
not exist a smooth static state feedback law which stabilizes the
system to a point. Recent work by Coron has shown that it is
possible to stabilize a nonholonomic system using time-varying
feedback [2]. Constructive approaches have been presented by
Samson [11], Pomet [10}, and Coron and Pomet [3]. In this
paper we analyze some specific nonholonomic systems in so
called power form [13]. The structure of the stabilizing con-
trol laws are taken from [13]. These control laws are based on
earlier work using sinusojds for open-loop planning and have
connections with the recent work of Sussmann and Liu [12] and
Gurvits [4].

Nonholonomic systems in power form are represented by
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the following set of equations

T = W

T2 = W

I3 = Ziig

i, = iziw (2)
ta = iyl v

The control Lie algebra for this system is spanned by the input
vector fields and Lie products of the form aad:1 gz. It is worth-
while to note that this form satisfies some of the simplifying
assumptions used by Pomet to generate controllers for more
general nonholonomic control systems {10].

Systems in power form characterize the fundamental dif-
ficulties of nonholonomic systems in a very simple and useful
form. By understanding the geometry of controllers applied to
power form, we hope to understand the geometry of controllers
applied to more general nonholonomic systems. This point of
view has been used very successfully by Sussmann, who has
shown how results applied to a “symbolic” representation of
the control system can be used to understand systems with a
compatible control Lie algebra [8]:

The control laws studied here are based on those presented
by Teel et al. in which sinusoids at integrally related frequen-
cies locally stabilize power form systems to a point [13]. Nec-
essary and sufficient conditions for conversion to power form
are given in this reference. Teel’s controllers have the form

n-2
-z — E ], o(sint — cost)

aa )
—Zq — Z €T ;49 COS 5,

i=t
with ¢; > 0. The proof of the stability relies on the interaction
between sinusoids at integrally related frequencies to produce
motion in the appropriate directions. We use essentially the
same structure as (3) except that the z;’s are replaced by gen-
eral functions of these variables. The reader is referred to [13]
for more details.

We explore the convergence properties of these controls
laws using multi-time scale analysis techniques and concen-
trating on low-dimensional cases. We are optimistic that the
stabilizing controllers presented here can be extended to the
more general case and that by understanding their action on
a canonical system, we can understand their extension to sys-
tems with a similar Lie algebraic structure.

w0

Uy =

2 3-Dimensional Power System

The three dimensional nonholonomic system in power form is
represented by the following system of equations:

=
T =u (4)
3.3 = TaU;.



We will study the behavior of the closed loop system under the
following feedback:

u = ~-I + Fl(xa) cost
= —z; + Fy(z3)sint,

(5)

where Fi(-) and F;(-) are smooth functions but otherwise un-
specified. Center manifold theory may be used to choose the
F}’s such that the origin is locally asymptotically stable in the
closed loop system [13]. In order to study the rates of con-
vergence of the solutions, it is useful to employ a two-timing
perturbation procedure [7]. The method of two-timing will be
used to develop the structure of some approximate solutions
of system (4) with the feedback (5). Two-timing relies upon a
small system parameter which causes the flow of the system to
evolve with two different time scales. Assume for the moment
that the z3 equation is replaced with

t3 = ezauy = e23(—2y + Fi(zs)cr),

where 0 < € € 1 and ¢; = cos it and s; = sin#f. This notation
will be used in the sequel. A two-timing perturbation expan-
sion may be constructed by assuming that the solutions of the
closed loop system may be written in the following form,

zi(t) = Z,(t, 7) + it T) + ... (6)

where T = et is interpreted as slow time and ¢ as fast time. The
overbar denotes the leading order terms in the expansion and
the tilde denotes higher order terms. T is treated as another
independent variable in this expansion.

The difficult step in the two-timing procedure is obtaining
the form of the expansion. Once the structure of the expan-
sion is known (or assumed, as we have) it is relatively simple,
although tedious, to obtain the equations for the individual
terms. Substituting the expansion into the closed loop equa-
tions and equating coefficients of powers of ¢ yields the follow-
ing leading order terms for z,, z; and z3,

Z, = —%, + Fi(Z3)es, 4]
Iy = —Z; + Fy(33)s1, (8)
Z3=0, (9)
B + &3 = —%,(Z, + Fi(Z3)cy). (10)

Here #; denotes differentiation with respect o ¢ and z} denotes
differentiation with respect to . Equation (9) implies that Z,
is a function of 7 only,

fa(t,-‘r) = AS(T).
In terms of A5(7) equations (7) and (8) may be rewritten as,
= —fl + Fl(Ag(T))Cl
£y, = —Z3 + Fa(4As(7))s1.

These equations represent first-order linear systems driven by
sinusoids. Since asymptotic solutions are desired, the transient
behavior of the solutions is not of interest. The steady state
solutions of these equations are,

Z4(t,T) = %Fl(Ag(T))(cl +3,) )
21(t,7) = FRa(Aalr))(—c + ).
Aj(7) is determined from equation (10),
As(TY + &5 = Z2(—Z, + Fi(4a)er).
Substituting the expressions in (11) into equation (10) yields,
Ay + 5 = - TR(A)EALN)E - )

= _% Fu(As(r) Fa(As())(1 - 2618,)

The slow and fast time scales are considered unrelated as far
as these equations are concerned. Hence 4} is equated to

1
A’S = —ZFI(A3)F2(A3). (12)
%5 is equal to the remaining term
B 1
T3 = EFl(Aa)Fz(A;g)C]Sl.

The presence of the F;(r)’s in this equation present no prob-
lems since these functions remain constant compared to the
fast time, ¢. The initial conditions have been ignored so these
approximate solutions will be valid after the transient behavior
has died away. The magnitudes of Z, and Z,, after the solution
has settled down to its steady state, only depends on Z;. It
is evident from equation (12) that the rate of convergence of
the z3 variable is controlled by the product of F; and F,. The
following example will illustrate these ideas.

Example 1. Suppose F; and F; are chosen such that,
Fi(z3) =23  Fy(z3) =123, (13)

then the origin is locally asymptotically stable {13]. We intro-
duce the parameter ¢ by scaling the dependent variables

(21,22,23) = (e¥2y, €25, €3 23).
The closed loop equations transform to,

£ =~z + 230
Za=—-z2+ zgsl
2’3 = 621(—21 + chl).
The equation (12} with (13) implies
23(0)

Equations (11) yield the following asymptotic sohution for z4(t)
and z,(t),

T ~ l__& c
l(t) zﬁm( 1+31)

) (0) ( —C1 + 81).

Zalt) ~ 2 Tz(0)et + 1

[ ]
These approximate methods usually yield estimates which
are valid only on finite time intervals. Hence, no conclusion can
be made concerning the rate of convergence of the solutions
without some extra analysis. However, a simple calculation
shows that the leading order multiscale procedure gives results
equivalent to the center manifold approach when F, and F;
are smooth. The perturbation solution is merely the averaged
center manifold equation. Thus, the perturbation results are
asymptotic in this case. Figure 1 compares the numerical soln-
tion of system to the asymptotic results developed above. The
initial conditions where chosen to minimize the transients.

3 Control Laws for Exponential Conver-
gence

The form of the asymptotic solutions is very suggestive. It
was noted earlier that the product of F; and F, controlled the
convergence rate of the three state system cf. equation (12).

Example 1, continued. We now explore choices of F, and F,
which give exponential reates of stabilization. The preceding
analysis requires the differentiability of F; and F;. Forget for



Figure 1: Comparison of numerical and perturbation solutions

the moment these restrictions and consider the 3-D closed loop
system when the F;’s are chosen as,

Fi(z3) = 5511(33)\” z3 | Fy(z3) = Y, |3, 7(14)

where sgn(-) is the signum function. Once again the dependent
variables may be scaled so that the closed loop equations are
in the proper form,

) =-z; + 3@(33)\/' z3 ey

33 = -2+ /| Z3 |81 (15)

&3 = ezz(—21 + sgn(z;)\” z3)ey).

Note that the equations are Holder continuous but not Lips-
chitz at 23 = 0. Continuity of the vector field ensures exis-
tence but not uniqueness of solutions. We will proceed on the
assumption that the solutions are unique. Away from the set
z3 = 0 the vector field is Lipschitz and the perturbation analy-
sis indicates that for propesly chosen initial conditions (where
the transients are minimal) z; only approaches the “bad” set
in the limit as t = oo.

Equation (12) implies that Z;, and hence Z; and %,, con-
verge exponentially. One could argue that the asymptotic solu-
tion is still valid with this C°® control law since the only region
in phase space where the control is not smooth is the plane
z3 = 0 and numerical simulations indicate that after an initial
period of transient behavior the z; variable maintains constant
sign, never passing through z; = 0. The perturbation solution
is given by

25(t) = 23(0) exp (- Et)

and Z,(t) and Z,(t) are given by the expressions (11). Figure 2
compares the perturbation solution with numerical integration
for this nonsmooth system. Figure 3 is a semilog plot of the
Euclidean norm of the states from Figure 2 and the exponential
convergence rate bounds provided from the analysis. The fact
the trajectories are always bounded above by a line of negative
slope indicates exponential convergence. The perturbation so-
lution places the exponential convergence rate bound for z; at
—% while the z, and z, variables are half this rate. The plots
show that these bounds are tight. °

The availability of more rigorous theory to study non-
Lipschitz vector fields is required even though these hueristic
arguments and simmlations ate convincing. This is discussed
in the following paragraphs.

The number of tools for analyzing the properties of dif-
ferential equations dwindles as we pass from differentiable to
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Figure 3: Exponential Rates of Convergence for 3-D System
continuous vector fields. However, Kawski has developed some
useful theory for a special class of vector fields [6]. In the in-
terest of conserving space only those details necessary for the
study of this example will be introduced. ‘

Example 1, continued. Recall the original unscaled vector

field,
= -3, + SSn(za)Vl z3 ey

29 =~z ++f| 22 |8 (16)

&3 = Z2(—21 + sgn(za)y/| 25 |e1).

The system of equations is invariant under the following scal-
ing,

(31, T3, 23) - (AS], A:I:g, A’.‘Cg) A>0 (17)

This scaling, called a dilation, is symbolically represented as
the operator, § 3z = (Azy, A2z, A%z3). Differential equations
which are invariant under the dilation are termed homogeneous
of order zero with respect to §,. 1t is useful to define a homo-
geneous norm, p, that satisfies the property p(81z) = Ap(z),
A > 0. In this context, a different notion of exponential stabil-
ity may be introduced [6].

Definition 1 A vector field which is homogeneous of order
zero with respect to the dilation 4, is exponentially stable if
there exist constants M > 0 and a > 0 such that,

p(=(t)) < Me™*p(2(0)),
where p(-) is a corresponding homogeneous norm.



The homogeneous norm is not equivalent to the standard p-
norms when the variables are scaled by different factors. In
this case it is impossible to substitute the usual definition of
exponential stability for the one given above. Hence, based on
our simulations, it is likely that the system is exponentially
stable with respect to the appropriate homogeneous norm. A
particular choice which satisfies the scaling property in the ex-
ample is
p(z) = (s} + 2 + 2t

This norm is useful in applications since it is smooth except at
the origin. Another result by Kawski [6] states that exponential
stability with respect to the homogeneous norm is equivalent
to uniform asymptotic stability in the norm (just like the lin-
ear case). Since our example is time-periodic we need only
show-asymptotic stability. Proving asymptotic stability for a
non-Lipcshitz continuous vector field is still a daunting task.
However, the dilation specifies a transformation group on the
phase space which facilitates the study of the equation by con-
sidering a vector field on the quotient manifold specified by
the group. The quotient manifold is given by p(z) = 1 which
is just a warped sphere, S?, naturally embedded in R3. The
projection map 7 : R*\{0} — S? onto the sphere is

x(z) = (_=1_ 21 ;_)
p(z)’ p(z)’ Pi(2)/
Pushing forward the vector field with this map defines a unique
vector field on the sphere by virtue of the transformation group
invariance. Once the flow on the sphere is known the flow
of the original vector field is determined by lifting the sphere
flow with an addition scalar equation. The scalar equation
is merely the differential equation for p written in the sphere
coordinates. Determining the asymptotic behavior of the full

set of equations amounts to computing the nonwandering set, .

Q, on the sphere and observing the behavior of p on . Full
details for the time invariant case are found in [6]. However,
we may simulate the equations on the sphere and characterize
the attractive invariant sets for the time-periodic system in the
extended phase space §2 x S!. This is carried out below.

The equations on the sphere p(z) = 1 are,

h=-u+ sgn(ya)\/lya_lcl -0Q(y.t)

| vs 81 - 1:Q(3,1)
B=nl-n+ s@n(vs)\/rvricl) - 21Q(v, 1),

where Q(y,t) is given by,

Q1) =43~ + sga(w)Vl 18 ler) + B3 (=1 + ] 13 I31)
+';’!lzya(‘y1 + ssn(ys)\/l_ys—|61)-
The scalar “radial” equation is,
#=Q(v, t)p.

Simulations of the sphere equations (18) imply the existence of
two stable sets on the sphere (Figure 4). The stability of the
p equation is determined by what Q(y,t) does on these sets.
Figure 5 shows that on the sets identified in Figure 4 that
Q(y,t) is periodic with a nonzero negative average. Hence p is
exponentially stable with the average rate of convergence equal
to the average of Q(y,t). This analysis is not complete nntil
all components of 0 have been identified. Other limit sets on
the sphere that aren’t observable in the simulations, because
they are unstable, are the points (£1,0,0) and (0,+1,0). It is
obvious from the original equations that trajectories starting
here converge exponentially. Hence for the six sets identified

% =-¥2 4+ (18)
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on the sphere, exponential stability of the p equation has been
demonstrated. .

This analysis reveals the relationship between regularity
of the control law and the corresponding achievable conver-
gence rate. We have not exhausted all of the possibilities for
choosing the functional dependence of the F;’s for exponential
stability. As long as their product is z; we would expect expo-
nential convergence. However, our choice is the most regular
in terms of the Holder continuity of the control law. Similarly,
suppose a Lipschitz feedback is desired for the 3-D system. The
perturbation result indicates that the fastest convergence rate
possible corresponds to,

. €
53 = - ngll(fs)fg,

with Fy = z; and F; =| %3 |. A faster rate would require a
continuous but not Lipschitz control. ]

4 Higher Dimensional Power Systems

Is the two-timing procedure generalizable to any system in
power form? Obtaining the rates of convergence for power
systems requires solving a simplified form the the closed loop
equations. Since each power form system with its correspond-
ing control law is a distinct dypamical system, one could not
expect to exhibit a general algorithm for computing asymp-
totic solutions valid for all time, Averaging guarantees that
solutions of the approximate system and original system re-
main close for finite time and hence does not reveal the long
term behavior, even for asymptotically stable systems. Hence



the analysis mmst be carried out on a case-by-case basis. We
now look at the 4-dimensional power system.

Refer to the 4-dimensional nonholonomic power form sys-
tem defined by the general expression of Equation 2. The struc-
ture of the control law is,

1y = —21 4+ Fi(z3)e1 + Gi(z4)cz

Uy = —23 + Fa(23)s1 + Ga(z4)s1.
The F;’s and G;’s are stnooth functions of their arguments. To
justify a mmltiscale perturbation expansion we artificially intro-
duce a parameter ¢ again. Suppose the closed loop equations
are in the form,

(19)

3.1 =1u 553 = €23%;
. . 1 (20)
Ty =1 Zy = 353;1&1,

with 4, and u, defined above. Applying the method of multiple
scales once again requires defining the form of the expansion
for each variable. It is necessary to use three time scales ¢,
T =¢t and 0 = €,

zi(t) = Z,(¢,7,0) + €Zi(t, T, 0) + ... .

The Z;’s are the leading order terms in the expansion and the
£,’s represent higher order terms. The computations are car-
ried out in an analogous manner to the three state system. The
leading order terms of z; and z, are merely the steady state
solutions of the Z, and Z, equations when treating z; and z,
as constants. These computations are suppressed to conserve
space. It can be shown that Z; is not a function of ¢ and Z, is
not a fanction of t and 7, hence we define,

Z,(t,7,0) = Ay(0).

Z5 will depend on o but we aren’t concerned with solving the
higher order equations which exhibit the proper dependence
since we are interested in the leading order terms only. The
differential equations governing A; and A, are obtained by sub-
stituting the leading order expression for z, and z; into the Z;
and %, equations. This yields

53(t7 T, 0') = A3(T)

s - lA(4) + GADRAs) e ~ )
~ Z(By(As) + Ga(ANGA(A)(es ~ ) (8s — 20)
2 L(B(4) + Ga(A) (e - 8R4 (@D

+ 5 Fals) + Ga(A)VGr(Ae) 4 = 282)

The quantities which are trigonometric functions of ¢ vary
rapidly compared to those which depend on 7 or o so it is
tempting to average equations (21). However, the solutions of
the averaged equations do not uniformly approximate those of
the original system. For example, the expression containing
G1(Z4)(e1— 81)(4¢a — 23;) in the equation for Ay would average
to zero but this term is important for the long term behavior
of Aj. It is impossible to solve equations (21) for general F’s
and G,’s so we consider a specific example again.

Example 2. Suppose we make the following choices [13],

Fl(fa) =T3
Fy(Z3) = 23

Gy(24) = —2,4
02(54) = 23.

The dependent variables may be rescaled to place the
closed loop equations into the form of equation (20},

(11132733714) hd (€§$1,612,6%33,6*14). (22)
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Figure 6: Smooth 4-D System, states z; and z,
The differential equations for A; and A, are,

JA. 1
3;3 =-4la- 1)’ (A3 + A})4s
1
- E(Ag + A:)&(Cl - 81)(—463 + 2&3)
oa, "1 (23)
25 = E(Ag + 4D (er - &)°

+ %(A; + A Aler — 1) (4 co(2t) +283)

One could attempt an asymptotic solution of system (23). For
example the averaged equations would yield information on the
initial behavior of the solutions. The long term behavior and
hence the actunal rate of decay of the solutions is provided by
another asymptotic solution if the analyst has enough fortitude
to complete the computations. Instead it is more instructive
to solve equations (23) numerically to verify that the leading
order multiscale perturbation sclution does in fact provide so-
lutions that uniformly approximate the true solutions. Once
this subsystem of equations has been approximated or sclved
the expressions for A3 and A, may be substituted back into
the leading order expression of Z, and Z,. Figure 6 compares
the complete numerical integration of the system with the in-
tegration of the partial system of equations (23) obtained from
the multiscale analysis. Only z; and z, are shown in Figure 6
since the perturbation solutions for z; and z, are just algebraic
functions of z; and z,.

Exponential stability of the 4-dimensional system is now
considered. Analysis of the smooth 3-D example illustrated
how the convergence rates of z, and z, where determined by
the convergence rate of 3. Similarly, analysis of the smooth 4-
D equations showed the explicit dependence of z; on z, for long
time and that z; and z, essentially control the convergence of
z; and z;. Hence, our concern is with the subsystem formed
by equations (21). Exponentially stability of the closed loop
equations implies exponential stability of the averaged equa-
tions. Thus, it is reasonable to consider the averaged version
of equations (21) and try to determine the F;’s and G;’s which
make the averaged system exponentially stable. The averaged
subsystem is,

dA; 1
F = —Z(Fg(Aa) + Gz(&))Fl(A:’)

dA, 1 2
2 = 1 Fal4s) + Ga(4))'Gi(40).

‘We have abused notation by using A; and A, to represent the
dependent variables in the averaged equations. To guarantee
exponential stability we need to chose the highest order terms

(24)
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Figure 7: Exponential Rates of Convergence of 4-D System
in (24) to be linear. This implies,
F(As)F1(A3) = 4, Ga(A4)Gi(4y) = A4
One possible choice is,

Fi(4s) = sgn(4:)y/| 4] Gi(Ay) = —(4n)}
Fy(43) = /] 4] Ga(4d) = (4t

The 4-D equations cannot be rescaled to the form (20). How-
ever, the analysis may still be valid as far as the stability type
is concerned even though the relative rates of exponential con-
vergence may not be correct. The simulations support this
supposition (see Figure 7).

It is interesting to note that the 4-D equations with (4)
are invariant under the following scaling,

(21,72, 23, T4) = (€21, €23, €23, €2,).

This transformation is a dilation like the one described for the
three dirnensional example. Hence, the numerical analysis sug-
gests that this system is exponentially stable with respect to
the corresponding homogeneous norm defined by,

p(z) = (zi2 + 232 + 25 + 2) 5.

Computing the vector field on the sphere is carried out in an
analogous manner to the 3-D case. These results are not pre-
sented. Figure 7 is a numerical simulation of the 4-dimensional
nonsmooth system with the logarithm of the norm of the states
plotted with respect to time. The slowest exponential conver-
gence rate predicted by the perturbation analysis is the rate
corresponding to the z, variable and is given by —% of. equa-
tions (24) and (4). This bound is plotted and provides a very
tight estimate. .

5 Conclusions

The analysis presented in this paper is far from complete. The
3- and 4-D systems provide some very illuminating examples
to guide our thinking for higher dimensional power form and
general nonholonomic control systems. Gurvitz and Li have
made some progress in establishing a connection between the
desired rate of convergence of closed loop solutions and the
maximal smoothness of the feedback [5]. In the context of
exponential stabilization, their result states that the inverse
of the degree of nonholonomy (the smallest order of brackets
required for controllability) is an upper bound for the Hélder
continuity of the control law. It is interesting to note that our
control laws achieve these bounds. The 3-dimensional system
has degree of nonholonomy 2 and our control laws are Halder

(25) .
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continuous with constant 1. Analogous results hold for the 4-
dimensional system and our proposed exponentially stabilizing
control laws.

The multi-time scale analysis is effective in providing the
proper structure of the solutions. These perturbation solu-
tions guided our choices in specifying the control parameters
that determined certain convergence rates for the approximate
systems.

Acknowledgements, The authors are indebted to Prof. D.
Cohen for useful discussions concerning the perturbation anal-
ysis.

Referencgs

[1] R. W. Brockett. Asymptotic stability and feedback sta-
bilization. In R. W. Brockett, R. S. Millman, and H. J.
Sussman, editors, Differential Geometric Control Theory,
pages 181-191. Birkhauser, 1983.

{2] I-M. Coron. Global asymptotic stabilization for control-
lable systems without drift. Mathematics of Control, Sig-
nals, and Systems, 5:205-312, 1991. ‘

{3] M. Coron and J-B. Pomet. A remark on the design
of time-varying stabilizing feedback laws for controllable
systems without drift. In IFAC Symposium on Nonlin-
ear Control Systems Design (NOLCOS), pages 413417,
Bordeaux, France, June 1992.

[4] L. Gurvits. Averaging approach to nonholonomic motion
planning. In IEEE International Conference on Robotics
and Automation, pages 25412546, 1992.

[5] L. Gurvits and Z.X. Li. Smooth time-periodic feedback
solutions for nonholonomic motion planning. Technical
memo, Robotics Research Laboratory, Courant Institute
of Mathematical Sciences, 1992,

[6] M. Kawski. Homogeneous stabilizing feedback laws.
Control-Theory and Advanced Technology, 6(4):497-516,
1999.

[7] J. Kevorkian and J.D. Cole. Perturbation Methods in Ap-
plied Mathematics. Springer-Verlag, 1981.

[8] G. Lafferriere and H. J. Sussmann. Motion planning
for controllable systems without drit. In IEEE Inter-
national Conference on Robotics and Automation, pages
1148-1153, 1991.

[9] R. M. Murray and S. S. Sastry. Nonholonomic motion
planning: Steering using sinmsoids. IEEE Transactions
on Automatic Control, May 1993. (in press).

[10} J-B. Pomet. Explicit design of time-varying stabilizing
control laws for a class of controllable systems without
drift. Systems and Control Letters, 18(2):147-158, 1992.

[11] C. Samson and K. Kit-Abderrahim. Feedback stabiliza-
tion of a nonholonomic wheeled mobile robot. In In-
ternational Conference on Intelligent Robots and Systems
(IROS), 1991. _

[12] H. J. Sussmann and W. Liu. Limits of highly oscillatory
controls and the approximation of general paths by admis-
sible trajectories. Technical Report SYCON-91-02, Rut-
gers Center for Systems and Control, 1991.

[13] A. Teel, R. M. Murray, and G. Walsh. From steering to
stabilization with sinusoids. In IEEE Control and Deci-
ston Conference, pages 1603-1609, 1992.



