
Proceedings of the American Control Conference
Albuquerque, New Mexico June 1997
0-7803-3832-4/97/$10.00 0 1997 AACC

Genetic Algorithms and Simulated Annealing for Robustness Analysis
Xiaoyun Zhu' Yun Huang2 John Doyle3

California Institute of Technology 116-81
Pasadena, CA 91125

Abstract
Genetic algorithms (GAS) and simulated annealing (SA) have
been promoted as useful, general tools for nonlinear optimiza-
tion. This paper explores their use in robustness analysis
with real parameter variations, a known NP hard problem
which would appear to be ideally suited to demonstrate the
power of GAS and SA. Numerical experiment results show
convincingly that they turn out to be poorer than existing
branch and bound (B&B) approaches. While this may ap-
pear to shed doubt on some of the hype surrounding these
stochastic optimization techniques, we find that they do have
attractive features, which are also demonstrated in this study.
For example, both GAS and SA are almost trivial to under-
stand and program, so they require essentially no expertise,
in sharp contrast to the B&B methods. They may be suit-
able for problems where programming effort is much more
important than running time or the quality of the answer.
Robustness analysis for engineering problems is not the best
candidate in this respect, but it does provide an interesting
test case for the evaluation of GAS and SA. A simple hill
climbing (HC) algorithm is also studied for comparison.

1. A Simple Robustness Analysis Problem
Robustness analysis can be naturally formulated as a struc-
tured singular value, or p, problem. Consider a discrete-time
LTI system with real parametric uncertainty

z(k + 1) = A(6)z (k) , (1)

where 6 is a vector of parameters entering rationally such
that A(6) = F l (M , A) , where F l (M , A) is an LFT on
A := {diag{611k,,..-,6,Ik,} : 6, E R, k , E Z+} with

A4 = [1. Let BA := {A E A : IlAll 5 l}. Then

the above LFT is well-posed for all A E BA iff pa(M22) < 1.

Define A, = { $ I , z E C}, and d = diag{A, ,A}, then the
robust stability is guaranteed iff I - d M is nonsingular for
all d E BA iff p b (M) < 1. The computation of this mixed
p problem is known to be NP hard, which is generally taken
to mean that it cannot be computed in polynomial time for
the worst case. By the main loop theorem one necessary
condition for p 6 (M) < 1 is p ~ (M 2 2) < 1. The computation
of pn(Mz2) is called "p on a box" problem([4]), which can
also be regarded as a special case of the mixed p problem.
Let XV(AM)' denote the maximum real eigenvalue of AM.
Then

P A (M) = ,725 XT (A M) . (2)

unless there is no real eigenvalue when x,(AM) = 0.. In
addition to A being real, we also assume M is real and 6
is non-repeated(k, = 1,Vi). Then it can be shown that the

Ixyzhu@cds.cakech.edu, http://cds.caltech.edu/.vxyzhu

3doyle@cds.caltech.edu, http://cds.caltech.edu/Ndoyle
'We will use M instead of M22 later on to simplify the notation.

yunhuang@cds.caltech.edu

maximum must be achieved on the vertices of the parameter
space BA, which is not true when any of the three assump-
tions is violated. As we will see later, taking advantage of this
fact greatly simplifies the implementation of the algorithms.
This is perhaps the simplest N P hard problem that arises
in robustness analysis, and would be the first step in more
sophisticated analysis of robust stLbility or performance of
linear systems, or bifurcation analysis of parametrically de-
pendent nonlinear systems.
The most straightforward way to get the maximum is to eval-
uate the function on all the vertices, but the computation
time required goes up exponentially with the dimension. For
n = 4, 16 and 64, the time needed to check all the 2" ver-
tices on a typical workstation is approximately 0.01 seconds,
5 minutes, and 9 x years respectively. Obviously the
computation cost for large problems is devastating and the
known NP hardness supports this observation. Fortunately,
there are upper and lower bounds with polynomial time al-
gorithms. Descriptions of these algorithms are presented in
[4] and [5]. Unfortunately, these cannot be guaranteed to
be tight bounds because even the npproxzmation problem for
p a (M) is NP hard. That is, computing p a (M) to within a
constant factor of the optimal is NP hard. So it is a "hard"
NP hard problem from the point of view of computational
complexity. Nevertheless, we can cheaply bound p a (M) and
also refine the bounds by branch and bound.

2. Branch And Bound

Branch and bound (B&B) is a general technique for those
optimization problems whose bounds depend on the domain
of the problem. It has been proven to be quite useful in
refining the bounds for problems such as the one considered
here [4]. Our experience has shown that the average quality
of the bounds themselves is critical. The intuition behind this
is that there are occasionally bad problems where the bounds
are poor, but that branching creates new problems where the
bounds are good. For this to be successful, the bounds must
be good on average so that the branching process moves bad
problems into easy problems. Interestingly, it has seemed
less critical that the branching scheme be particularly clever.
These points can be readily illustrated on the problem we
are considering. We used a naive branching scheme which
consisted of a simple heuristic to choose a branch variable,
followed by splitting that variable into 2 equal parts, creat-
ing 2 new independent problems on which the bounds are
computed. (A more sophisticated algorithm would optimize
both the variable chosen and the location of the cut.) The
global lower bound is the maximum over all the local lower
bounds and the global upper bound is the maximum over all
the local upper bounds. A branch can be pruned when its
local upper bound is lower than the global lower bound. It is
essential that branches be pruned effectively to avoid expo-
nential growth. Just cutting each variable once produces 2"
subproblems unless some of them are pruned in the process.
As our first numerical experiment, we computed upper and
lower bounds for matrices of size 4, 8, 16, 3 2 , and 64, with

3756

mailto:Ixyzhu@cds.cakech.edu
http://cds.caltech.edu/.vxyzhu
http://cds.caltech.edu/Ndoyle
mailto:yunhuang@cds.caltech.edu

50 matrices of each size. The elements of the matrices were
zero mean normally distributed psuedorandomly generated
floating point numbers. The quality of the bounds is good
on average. Even for 64 x 64 matrices, the normalized errors
are within .2. However, there are occasionally quite poor
bounds for any size problem. So the B&B algorithm was
used to refine the bounds. Interested readers are referred to
[7] for more details about the algorithms and the results of
this test. Figure 1 focuses on the worst problems for each
problem size and plots the number of branches required to
achieve a given error in the bound, for 15%’ lo%, 5%, 2%
and 1%. Since this is a log-log scale, straight lines indicate
polynomial growth, and flat lines indicate no growth.

3

-2

[
P
E,

L I
15%

0
4 8 16 32 e4

No of psremelers

Figure 1: No. of branches versus problem size for various toler-
ances, for the worst problem out of 50 random matri-
ces in each size. The vertical axis is on a log,, scale,
while the horizontal axis is on a log, scale.

It is not clear what the growth rates are for small percent-
ages, as the 2% and 1% cases where only done up to size
16. Beyond that, the computation time was too great (sev-
eral hours per problem) to be practical on individual work-
stations. Note that the worst problem required exactly 3
branches for each problem size to reach 15010, and that 10%
was easily achieved for all problem sizes. This observation
supports the notion that branch and bound can easily take
the worst-case problems and get them to roughly the level
that the bounds achieve on average, but not much better.
Due to NP hardness, there must exist truly bad examples
where even very clever branch and bound fails, but these
seem so rare that they are very unlikely to be encountered in
practice. However, the claimed success of some stochastic ap-
proaches like genetic algorithms and simulated annealing on
many optimization problems makes us hope that they might
be better ways to compute the lower bound of this problem.

3. Stochastic Optimization Techniques
Genetic algorithms (GA) and simulated annealing (SA) are
two types of stochastic search techniques which are modeled
on processes found in nature (natural evolution and ther-
modynamics respectively). Both have been studied exten-
sively and applied to numerous domains, e.g. VLSI layout
designing, machine learning, etc. The most direct applica-
tion has been function optimization. Optimal solutions of
combinatorial optimization problems such as the traveling
salesman problem can, in principle, be searched evolutionar-
ily and rapidly. Ackley’s paper in [l] provides a comprehen-
sive assessment of the relative performance of these stochastic
approaches on a variety of the optimization problems.

3.1. Genetic Algorithm (GA)
Genetic Algorithms, originated by John H. Holland in the
1 9 6 0 ~ ~ are based on the principles of natural selection and

adaptation and are claimed to be able to explore good solu-
tions quickly on large and complicated search spaces. The
power of the algorithms comes from the mechanism of evolu-
tion, which allows searching through a huge number of pos-
sibilities for solutions. The simplicity of the representations
and operations in the GAS is another feature to make them
so popular. Bit strings are used in Holland’s work to en-
code candidate solutions to the problems, which are com-
putational analogs to “chromosomes” of a species in nature,
while each bit in the string is an analogue to the “gene”. A
fitness function is evaluated on these chromosomes, then ge-
netic operators transform the parent chromosomes to their
offspring according to their fitness rating. Commonly used
genetic operators are composed of selection, crossover and
mutation.
A lot of research effort has been focueed on finding the in-
terior mechanisms that make GAS work. Theoretical expla-
nations include Holland and Godenberg’s Schema Theorem
and Building-Block Hypothesis. The theorem points out that
a GA works because of its capability to evaluate the fitness
of schemas by evaluating the fitness of the bit strings in the
population. As the population evolves, the search is biased to
focus more and more intensively on instances of fit schemas,
and crossover makes it possible to explore fit higher-order
schemas by combining fit lower-order schemas. Mutation
creates new schemas to prevent a permanent loss of infor-
mation in the population. Related work includes Bethke’s
Walsh Analysis to characterize the difficulty of functions for
GAS to optimize.
The implementation of a CA involves some preparatory
stages. First, an objective function h+s to be determined.
In our problem we can define f (A) = & (A M) and the ob-
jective is to find maxaEBA f (A) . Second, we need a nice rep-
resentation for A. Exploiting the fact that all the candidate
solutions are vertices of the BA greatly simplifies this step
since we can use the bit strings representation. For problems
of size n, an n-bit string encodes a vertex with 0’s corre-
sponding to -1’s. For more general p problems, this is not
the case, and the GA would have to search the whole space.
Continuous versions of GA have been proposed for dealing
with this kind of situation but we want tc see first how the
CA performs on the simpler case. (The above function and
representation apply to the SA and HC as well.)
The algorithm we use here is a simple version based on [3]
which consists of the following steps:

Generate an initial population of N random n-bit
strings (chromosomes). Uniform probability is as-
sumed.

x,(AM) is evaluated on each chromosome A in the
current population and the fitness function F (A) is
computed.

Reproduce a new generation. A pair of parent strings
are chosen from the current population. The prob-
ability of the particular instance AI being selected is

which gives the fit strings a better chance to

reproduce. With a crossover rate of p c , these two cho-
sen parents exchange part of their strings at a random
position to form two offspring. Then each bit of the
new strings is mutated with a probability p,. Repeat
this procedure until N new offspring are generated.

Replace the current population with their offspring,
and go back to step 2.

F(*l) E, F (A) ,

3757

The fitness scaling technique suggested in [a] is employed
to compute the fitness function F(A) in order to prevent
premature convergence a t the beginning of a run and to speed
up convergence late in a run. There are three parameters to
choose: population size N, pc and p,. We pick N to be
equal to the problem size n. It makes the computation cost
of evolving one generation in GA approximately the same as
that of branching once in B&B. The choice of p , and p , has
a fairly big effect on the performance of the algorithm. Our
simulation shows that a single value of p m would not work
for all problem sizes. Higher p , (0.025) works better for
n = 8 while lower pm (0.005) works better for n = 64. This
suggests that we choose pm as a decreasing function of the
problem size. On the other hand, a single value of p , = 0.5
seems to work fine for all sizes. Since our focus here is not
on finding the best parameters for GAS, we will use the best
setting we can find for each size when we make comparisons.

3.2. Simulated Annealing (SA)
Simulated Annealing was first proposed by Kirkpatrick et
a1 in 1983 who established a strong relation between sta-
tistical mechanics and combinatorial optimization problems.
All candidate solutions to the problem are modeled as possi-
ble configurations of a thermal system. Thus the parameter
space S becomes the space of all configurations. The en-
ergy E of the system, analogue of the objective function,
depends on the current configuration. The minimum energy
configuration corresponds to the optimal solution.2 By the
Boltzmann distribution, if a system is in thermal equilibrium
at a given temperature T, then,

where ~ T (u) is the probability of the system being in a certain
configuration U , and IC is the Boltzmann’s constant([l]).
This principle shows that at high temperatures all configu-
rations are almost equally likely to be the current configu-
ration while at low temperatures low energy configurations
are predominant. However, to obtain the configurations with
near-lowest energy, simply decreasing the temperature is not
sufficient. This is why an annealing process is applied in
thermodynamics, in which the temperature is first elevated,
and then gradually reduced, spending enough time at each
temperature to let the system reach the thermal equilibrium.
In the optimization problem this procedure is simulated. An
algorithm called Metropolis loop is run at each fixed tempera-
ture T for a certain amount of time to approximate the equi-
librium state([6]). The essence of this algorithm is it accepts
a “bad” point occasionally to escape from a local minimum.
And the probability of such an acceptance drops when the
temperature goes down.
It is easy to apply SA to our problem. The algorithm we use
is as follows:

1. Initialization: T = T,,,. Generate a vertex A, at ran-
dom, evaluate the function fc = f(A,).

2. Metropolis loop (Repeat L times): Randomly pick one
bit in A, and mutate it, get a new vertex A,, eval-
uate the function fn = f(A,). Let A, t A, with
probability e w.

’This is t rue for minimization problems only. A slight variation is
needed for maximization.

3. Decrease T : T = yT. If T 2 T,,, . go to step 2; other-
wise, stop.

The control parameters we need to determine are: initial
temperature Tmaz, minimum temperature T,,, , decay rate
y, and length of the Metropolis loop L. To make the compar-
ison easy, we choose L to be the problem size n. Then each
execution of the Metropolis loop takes n function evaluations
so that it can be considered as one step which is computation-
ally comparable to one generation in GAS. Different combi-
nations of the other 3 parameters have been tested and the
final values used for testing SA on general random problems
are: T,,, = 100, Tmin = 0.001, y = 0.8.

4. Empirical Compar isons
In this section, the GA and SA described above are tested on
the elementary case of the p computation defined in section
1. A simple hill climbing (HC) algorithm is also applied
for comparison. We consider the number of generations in
GAS and the number of steps in SA as equal measures of
computation cost as the number of branching in B&B.

4.1. Rank-one Problems
Our first numerical test focused on a special class of matrices:
rank-one matrices. Without loss of generality, consider &f =
.aT with a = [ul a2 . . . anIT E R” and !lo,l! = 1. Then

n

(4)
2 = 1

So p*(M) = 1 with the maximum achieved at the vertex
where all 6, = 1. In this case the problem can be solved an-
alytically in linear time, and the B&B is guaranteed to solve
it in linear time without any branching. It’s also trivial for
HC since the objective function is linear in 6,’s. Under this
benign circumstance, how well will the GA and SA perform?
For both algorithms, because we know that the maximum
value is 1, we can stop it when the best solution gets close to
1 within a given tolerance.
0 GA Since probability plays an important role in the GA, it
might end up with quite a different solution if it starts with
different initial seeds. To get an idea of the average perfor-
mance of GA, we take a number of runs starting with dif-
ferent initial populations on a single rank-one matrix where
ay = $, i = 1 , 2 , . . . ,n. The control tolerance is set at 0.01
and 20 runs are taken for each size. The results confirm that
the variance in the initial population does cause a significant
difference in the number of generations needed to get a good
solution. However, even for the worst cases encountered in
our tests, the growth in the computation cost approximates
a straight line on the log-log scale against the problem size.
The given tolerance was achieved within 100 generations for
the problem of size 128.
We then run the GA on 20 ranclcm rank-one matrices for
each size. The program is tested for tolerance lo%, 5%, and
1% and the results are shown in Figure 2.
Since a straight line on a log-log plot indicates a polynomial
growth, we can say that for small and medium-sized problems

3This is approximately true in principle, but the B&B code we used
takes longer. All programs are written in Matlab, and as an interpre-
tive language, a more complicated algorithm is artificially slower. With
suitable effort the B&B code could he written and compiled so tha t one
branch cost approximately the same as one generation of the GA. This
is an example of how the GAS simplicity favors it when programming
effort is to be minimized.

3758

Figure 2: No. of generations versus problem size for various
tolerances, for the worst problem out of 20 random
rank-one matrices in each size. The vertical axis is
on a log,,, scale, while the horizontal axis is on a log,
scale.

(n 5 128) the average computation cost of GA for rank-one
problems grows polynomially with the problem size. While
this is much greater computation than B&B, this result en-
courages us to continue. The GA takes no special advantage
of the rank-one nature of the problem, so we could optimisti-
cally hope that it might work similarly on the general case.
0 SA For rank-one matrices, the smaller the initial temper-
ature T,,,, the less the steps the SA takes to get to the
given tolerance. This is easy to understand since the objec-
tive function is linear now, the best thing to do is simply
going up the hill at each step, which can be done by setting
Tmar small enough. For problems of size 128 and tolerance of
1% the average number of steps needed is less than 6, much
better than the GA as expected.

4.2. General Random Matr ices
Now we move our tests onto the random matrices we tested
with the branch and bound technique so that comparisons
between B&B and each of these three methods can be carried
out. 10 random matrices are tested for each size of 8, 16, 32
and 64. Only the plots of size 32 are shown due to the limited
space. But they are representative of other sizes. Let lbbnb
denote the lower bound we got from B&B while lb,,, lb,,
and lbh, being the best function value found by GA, SA and
HC respectively.
0 B&B The lower bounds usually start very close to their
final values, e.g. mostly within 10% for size 32, which forms
a big contrast to both GA and SA. And they normally can
reach the final values after a few times of branching. The
quick convergence of the lower bound is a feature of the B&B
algorithm we use, though we can’t be certain that it is indeed
the global maximum. Most effort of the B&B is usually spent
on bringing the upper bound down to make sure that the
lower bound is near the global maximum. For n = 32, the
normalized error between the upper bound and the lower
bound gets down to within 5% after branching 74 times for
the worst problem out of 50 we have tested. On average it
takes about 16 times of branching to achieve this goal.

GA For each matrix, the GA is run for up to 300 gen-
erations. Its performance degenerates significantly from the
rank-one case. The best solution from the GA is usually lower
than the lower bound from the B&B in the worst case, and it
converges much more slowly. On average lb,, approximates
lbbnb from below, and the number of generations needed in-
creases with the problem size. Occasionally, the GA can find
a solution slightly better than the B&B, but recall that the

B&B was only run until it had reached a tolerance relative to
the upper bound(l% for n = 4,8,16, 5% for n = 32, 10% for
n = 64). There is no upper bound for GA, so it was simply
run for a large number of generations.
Figure 3 illustrates the effect of the parameters pc and pm.
It is the worst problem out of 10 matrices of size 32, with
“worst” meaning the final ratio of Zb,, to lbbnb is lowest even
with the best parameter values found. Although some pa-
rameters perform better than the others in specific cases, no
parameter choices stood out as the best across all matrices
and problem sizes.

i

Figure 3: versus no. of generations (= no. of branches)
for the worst of 10 matrices of size 32. Different lines
correspond to different sets of p m and p c and same
initial population.

To see how the initial population affects the above perfor-
mance we pick the above problem and repeat running the al-
gorithm 10 times with the same parameters but starting with
different seeds for random numbers. The result is shown in
Figure 4. A good initial population does improve the per-
formance of the algorithm in some cases, but the best lower
bounds we get are still no greater than the lower bounds from
branch and bound.

generatlo” 11 -branch x

Figure 4: Ib,, versus no. of generations (= no. of branches) for
l b b n b
the same problem as in Figure 3 but with 10 different
initial populations.

0 SA The simulation results of the SA present some similar
features of the GA: the variance of the performance caused
by the parameters and the random start, and the converging
process. In the early steps, the SA seems to be more chaotic
than the GA because of the relatively high temperature. For
most of the problems the SA found the best solution that the
B&B had found with the best initial guess out of 4. And for
a few problems it found a slightly better solution than B&B
did. But as we have explained the B&B was stopped when it
reached a given tolerance relative to the upper bound while

3759

the SA was run until it converged. The problem shown in
Figure 5 is the same as that in Figure 4. The SA simulation
was carried out with 10 different initial guesses.

Figure 5: 2 Ibbbnb versus no. of steps (= no. of branches) for
the same problems as that in Figure 4 and with 10
different initial starting points.

e HC The hill climbing algorithm we are using is called steep-
est ascent, which starts at a random vertex and moves to
the best of the n nearest neighboring vertices until a local
maximum has been found. Since each step takes n function
evaluations, it is equivalent to one generation in GA or one
step in SA in terms of computation cost.
Figure 6 shows the results of HC applied to the same problem
as shown above. Here 10 different random starting points
were used for the HC. As expected, it gets stuck very quickly
at local maxima. Although HC converges a lot faster, the
average performance of GA and SA are much better in terms
of finding the best solution.

Oast 0 8 i

Figure 0: & versus no. of steps (= no. of branches) for
the same problems as that in Figure 4 and with 10
different initial starting points.

5. Conclusion
We have explored the use of genetic algorithms and simulated
annealing for a special case of robustness analysis. The main
deficiency of both algorithms relative to branch and bound is
their lack of an upper bound to give an indication of the qual-
ity of the lower bounds. Just considering the lower bounds,
while both the GA and SA are not competitive with existing
B&B methods, this study does support some of the claims
for them. Specifically, they are easy to use and can give rea-
sonably good answers for this particular NP hard problem.
It does not support some of the hype about the quality of
the solutions nor the efficiencies of the algorithms. This is
illustrated in Figure 7, which is just a cartoon but is sup-
ported by the results in this paper. (The situation for SA

is similar.) While B&B significantly outperforms these two
stochastic approaches, it requires much greater programmer
sophistication. Basically, GAS or SA could have been writ-
ten, in principle, by a smart high school student, although
they would likely have had no idea what the result meant. In
contrast, understanding the problem an2 the B&B algorithm
relies on theory usually taught a t the graduate level.

I

log(complexity)

GA

\

Figure 7: Cartoon of GA vs. B&B. Suppose we think of error
as the deviation from the optimal. If we only take
computation cost into account, the hard computing
solution (B&B) beats the soft computing approach
(GA). However, if we take programmers expertise into
account, the picture changes and GA looks more fa-
vorable at the low end.

It would clearly be valuable to have more of a continuum
between hard and soft computing, in that hard problems that
are important are best treated using hard methods, while soft
methods will be much more accessible to the vast majority
of users. This complementarity should bo exploited. One
obstacle to doing this is that many advocates of soft methods
deny the reality represented in the cartoon. They claim that
as problems get more complex, only soft methods will work.
Unfortunately, only those few who really understand both
soft and hard methods realize how misleading this is, and
they will have a very hard time explaining it to anyone who
doesn’t already know.
One positive result we hope to come out of further study
along the directions of this paper is how some of the ideas
from genetic algorithms and simulated annealing could be
used to improve the B&B algorithms. In particular, the B&B
algorithm in this paper is purely deterministic, and could po-
tentially benefit from introducing some randomizing behavior
of the stochastic approaches after optimizing to some extent
the performance of the deterministic algorithm. While this
probably won’t make much difference on most problems, it
would potentially make a large difference on occasional prob-
lems where the B&B algorithms performed poorly.

References
[I] Davis, Lawrence, (Ed.), 1987, Gene t i c Algorzthms and Simulated
Annealing, Pitman, London.
[Z] Glodberg, David E., 1989, Gene t i c Algor i thms in Search, Optz-
mira t ion , and Machine Learning, Addison Wesley, Reading, MA.

[3] Mitchell, , 1995, “Genetic Algorithms: An Overview”, Complex-
zty, Vol. 1, No. 1, pp. 31-39.

[4] Newlin, Matthew P. and Young, Peter M., 1992, “Mixed p Prob-
lems and Branch and Bound Techniques”, PTOC. s i s t IEEE Confer-
ence o n Decision and Control, pp. 3175-318C.

[SI Newlin, Matthew P. and Glavaski, Smja, 1995, “Advances in the
Computation of the p Lower Bound”, PTOC. Amer ican Contro l Con-
ference , pp. 442-446.
[6] Otten, R.H.J.M. and van Ginnekn, L.P.P.P., 1989, T h e Annealing
Algor i thm, Kluwer, Boston.

[7] Zhu, Xiaoyun, Huang, Yun, and Doyle, John, 1996, “Soft vs. Hard
Bounds in Probabilistic Robustness Analysis”, PTOC. 34th IEEE Con-
ference o n Deciszon and Control, pp. 3412-3417.

3760

