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Abstract 
Genetic algorithms (GAS) and simulated annealing (SA) have 
been promoted as useful, general tools for nonlinear optimiza- 
tion. This paper explores their use in robustness analysis 
with real parameter variations, a known NP hard problem 
which would appear to be ideally suited to demonstrate the 
power of GAS and SA. Numerical experiment results show 
convincingly that they turn out to be poorer than existing 
branch and bound (B&B) approaches. While this may ap- 
pear to shed doubt on some of the hype surrounding these 
stochastic optimization techniques, we find that they do have 
attractive features, which are also demonstrated in this study. 
For example, both GAS and SA are almost trivial to under- 
stand and program, so they require essentially no expertise, 
in sharp contrast to the B&B methods. They may be suit- 
able for problems where programming effort is much more 
important than running time or the quality of the answer. 
Robustness analysis for engineering problems is not the best 
candidate in this respect, but it does provide an interesting 
test case for the evaluation of GAS and SA. A simple hill 
climbing (HC) algorithm is also studied for comparison. 

1. A Simple Robustness Analysis Problem 
Robustness analysis can be naturally formulated as a struc- 
tured singular value, or p, problem. Consider a discrete-time 
LTI system with real parametric uncertainty 

z(k  + 1) = A(6)z (k) ,  (1) 

where 6 is a vector of parameters entering rationally such 
that A(6) = F l ( M , A ) ,  where F l ( M , A )  is an LFT on 
A := {diag{611k,,..-,6,Ik,} : 6,  E R, k ,  E Z+}  with 

A4 = [ 1. Let BA := {A E A : IlAll 5 l}. Then 

the above LFT is well-posed for all A E BA iff pa(M22) < 1. 

Define A, = { $ I , z  E C}, and d = diag{A, ,A},  then the 
robust stability is guaranteed iff I - d M  is nonsingular for 
all d E BA iff p b ( M )  < 1. The computation of this mixed 
p problem is known to be NP hard, which is generally taken 
to  mean that it cannot be computed in polynomial time for 
the worst case. By the main loop theorem one necessary 
condition for p 6 ( M )  < 1 is p ~ ( M 2 2 )  < 1. The computation 
of pn(Mz2)  is called "p  on a box" problem([4]), which can 
also be regarded as a special case of the mixed p problem. 
Let XV(AM)' denote the maximum real eigenvalue of AM. 
Then 

P A  ( M )  = ,725 XT ( A M ) .  ( 2 )  

unless there is no real eigenvalue when x,(AM) = 0.. In 
addition to A being real, we also assume M is real and 6 
is non-repeated(k, = 1,Vi). Then it can be shown that the 
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maximum must be achieved on the vertices of the parameter 
space BA, which is not true when any of the three assump- 
tions is violated. As we will see later, taking advantage of this 
fact greatly simplifies the implementation of the algorithms. 
This is perhaps the simplest N P  hard problem that arises 
in robustness analysis, and would be the first step in more 
sophisticated analysis of robust stLbility or performance of 
linear systems, or bifurcation analysis of parametrically de- 
pendent nonlinear systems. 
The most straightforward way to get the maximum is to eval- 
uate the function on all the vertices, but the computation 
time required goes up exponentially with the dimension. For 
n = 4, 16 and 64, the time needed to check all the 2" ver- 
tices on a typical workstation is approximately 0.01 seconds, 
5 minutes, and 9 x years respectively. Obviously the 
computation cost for large problems is devastating and the 
known NP hardness supports this observation. Fortunately, 
there are upper and lower bounds with polynomial time al- 
gorithms. Descriptions of these algorithms are presented in 
[4] and [5]. Unfortunately, these cannot be guaranteed to 
be tight bounds because even the npproxzmation problem for 
p a ( M )  is NP hard. That is, computing p a ( M )  to within a 
constant factor of the optimal is NP hard. So it is a "hard" 
NP hard problem from the point of view of computational 
complexity. Nevertheless, we can cheaply bound p a ( M )  and 
also refine the bounds by branch and bound. 

2. Branch And Bound 

Branch and bound (B&B) is a general technique for those 
optimization problems whose bounds depend on the domain 
of the problem. It has been proven to be quite useful in 
refining the bounds for problems such as the one considered 
here [4]. Our experience has shown that the average quality 
of the bounds themselves is critical. The intuition behind this 
is that there are occasionally bad problems where the bounds 
are poor, but that branching creates new problems where the 
bounds are good. For this to be successful, the bounds must 
be good on average so that the branching process moves bad 
problems into easy problems. Interestingly, it has seemed 
less critical that the branching scheme be particularly clever. 
These points can be readily illustrated on the problem we 
are considering. We used a naive branching scheme which 
consisted of a simple heuristic to  choose a branch variable, 
followed by splitting that variable into 2 equal parts, creat- 
ing 2 new independent problems on which the bounds are 
computed. (A more sophisticated algorithm would optimize 
both the variable chosen and the location of the cut.) The 
global lower bound is the maximum over all the local lower 
bounds and the global upper bound is the maximum over all 
the local upper bounds. A branch can be pruned when its 
local upper bound is lower than the global lower bound. It is 
essential that branches be pruned effectively to  avoid expo- 
nential growth. Just cutting each variable once produces 2" 
subproblems unless some of them are pruned in the process. 
As our first numerical experiment, we computed upper and 
lower bounds for matrices of size 4, 8, 16, 3 2 ,  and 64, with 
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50 matrices of each size. The elements of the matrices were 
zero mean normally distributed psuedorandomly generated 
floating point numbers. The quality of the bounds is good 
on average. Even for 64 x 64 matrices, the normalized errors 
are within .2. However, there are occasionally quite poor 
bounds for any size problem. So the B&B algorithm was 
used to refine the bounds. Interested readers are referred to 
[7] for more details about the algorithms and the results of 
this test. Figure 1 focuses on the worst problems for each 
problem size and plots the number of branches required to 
achieve a given error in the bound, for 15%’ lo%, 5%, 2% 
and 1%. Since this is a log-log scale, straight lines indicate 
polynomial growth, and flat lines indicate no growth. 
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Figure 1: No. of branches versus problem size for various toler- 
ances, for the worst problem out of 50 random matri- 
ces in each size. The vertical axis is on a log,, scale, 
while the horizontal axis is on a log, scale. 

It is not clear what the growth rates are for small percent- 
ages, as the 2% and 1% cases where only done up to size 
16. Beyond that, the computation time was too great (sev- 
eral hours per problem) to be practical on individual work- 
stations. Note that the worst problem required exactly 3 
branches for each problem size to reach 15010, and that 10% 
was easily achieved for all problem sizes. This observation 
supports the notion that branch and bound can easily take 
the worst-case problems and get them to roughly the level 
that the bounds achieve on average, but not much better. 
Due to NP hardness, there must exist truly bad examples 
where even very clever branch and bound fails, but these 
seem so rare that they are very unlikely to be encountered in 
practice. However, the claimed success of some stochastic ap- 
proaches like genetic algorithms and simulated annealing on 
many optimization problems makes us hope that they might 
be better ways to compute the lower bound of this problem. 

3. Stochastic Optimization Techniques 
Genetic algorithms (GA) and simulated annealing (SA) are 
two types of stochastic search techniques which are modeled 
on processes found in nature ( natural evolution and ther- 
modynamics respectively). Both have been studied exten- 
sively and applied to  numerous domains, e.g. VLSI layout 
designing, machine learning, etc. The most direct applica- 
tion has been function optimization. Optimal solutions of 
combinatorial optimization problems such as the traveling 
salesman problem can, in principle, be searched evolutionar- 
ily and rapidly. Ackley’s paper in [l] provides a comprehen- 
sive assessment of the relative performance of these stochastic 
approaches on a variety of the optimization problems. 

3.1. Genetic Algorithm (GA) 
Genetic Algorithms, originated by John H. Holland in the 
1 9 6 0 ~ ~  are based on the principles of natural selection and 

adaptation and are claimed to be able to explore good solu- 
tions quickly on large and complicated search spaces. The 
power of the algorithms comes from the mechanism of evolu- 
tion, which allows searching through a huge number of pos- 
sibilities for solutions. The simplicity of the representations 
and operations in the GAS is another feature to make them 
so popular. Bit strings are used in Holland’s work to en- 
code candidate solutions to the problems, which are com- 
putational analogs to “chromosomes” of a species in nature, 
while each bit in the string is an analogue to the “gene”. A 
fitness function is evaluated on these chromosomes, then ge- 
netic operators transform the parent chromosomes to their 
offspring according to their fitness rating. Commonly used 
genetic operators are composed of selection, crossover and 
mutation. 
A lot of research effort has been focueed on finding the in- 
terior mechanisms that make GAS work. Theoretical expla- 
nations include Holland and Godenberg’s Schema Theorem 
and Building-Block Hypothesis. The theorem points out that 
a GA works because of its capability to evaluate the fitness 
of schemas by evaluating the fitness of the bit strings in the 
population. As the population evolves, the search is biased to 
focus more and more intensively on instances of fit schemas, 
and crossover makes it possible to explore fit higher-order 
schemas by combining fit lower-order schemas. Mutation 
creates new schemas to prevent a permanent loss of infor- 
mation in the population. Related work includes Bethke’s 
Walsh Analysis to characterize the difficulty of functions for 
GAS to optimize. 
The implementation of a CA involves some preparatory 
stages. First, an objective function h+s to be determined. 
In our problem we can define f ( A )  = & ( A M )  and the ob- 
jective is to find maxaEBA f (A) .  Second, we need a nice rep- 
resentation for A. Exploiting the fact that all the candidate 
solutions are vertices of the BA greatly simplifies this step 
since we can use the bit strings representation. For problems 
of size n, an n-bit string encodes a vertex with 0’s corre- 
sponding to -1’s. For more general p problems, this is not 
the case, and the GA would have to search the whole space. 
Continuous versions of GA have been proposed for dealing 
with this kind of situation but we want tc  see first how the 
CA performs on the simpler case. (The above function and 
representation apply to the SA and HC as well.) 
The algorithm we use here is a simple version based on [3] 
which consists of the following steps: 

Generate an initial population of N random n-bit 
strings (chromosomes). Uniform probability is as- 
sumed. 

x,(AM) is evaluated on each chromosome A in the 
current population and the fitness function F ( A )  is 
computed. 

Reproduce a new generation. A pair of parent strings 
are chosen from the current population. The prob- 
ability of the particular instance AI being selected is 

which gives the fit strings a better chance to 

reproduce. With a crossover rate of p c ,  these two cho- 
sen parents exchange part of their strings at a random 
position to form two offspring. Then each bit of the 
new strings is mutated with a probability p,. Repeat 
this procedure until N new offspring are generated. 

Replace the current population with their offspring, 
and go back to step 2. 

F(*l) E, F ( A )  , 
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The fitness scaling technique suggested in [a] is employed 
to compute the fitness function F(A)  in order to prevent 
premature convergence a t  the beginning of a run and to speed 
up convergence late in a run. There are three parameters to 
choose: population size N,  pc  and p,.  We pick N to be 
equal to  the problem size n. It makes the computation cost 
of evolving one generation in GA approximately the same as 
that of branching once in B&B. The choice of p ,  and p ,  has 
a fairly big effect on the performance of the algorithm. Our 
simulation shows that a single value of p m  would not work 
for all problem sizes. Higher p ,  (0.025) works better for 
n = 8 while lower pm (0.005) works better for n = 64. This 
suggests that we choose pm as a decreasing function of the 
problem size. On the other hand, a single value of p ,  = 0.5 
seems to work fine for all sizes. Since our focus here is not 
on finding the best parameters for GAS, we will use the best 
setting we can find for each size when we make comparisons. 

3.2. Simulated Annealing (SA) 
Simulated Annealing was first proposed by Kirkpatrick et 
a1 in 1983 who established a strong relation between sta- 
tistical mechanics and combinatorial optimization problems. 
All candidate solutions to the problem are modeled as possi- 
ble configurations of a thermal system. Thus the parameter 
space S becomes the space of all configurations. The en- 
ergy E of the system, analogue of the objective function, 
depends on the current configuration. The minimum energy 
configuration corresponds to  the optimal solution.2 By the 
Boltzmann distribution, if a system is in thermal equilibrium 
at a given temperature T, then, 

where ~ T ( u )  is the probability of the system being in a certain 
configuration U ,  and IC is the Boltzmann’s constant([l]). 
This principle shows that at high temperatures all configu- 
rations are almost equally likely to be the current configu- 
ration while at low temperatures low energy configurations 
are predominant. However, to obtain the configurations with 
near-lowest energy, simply decreasing the temperature is not 
sufficient. This is why an annealing process is applied in 
thermodynamics, in which the temperature is first elevated, 
and then gradually reduced, spending enough time at each 
temperature to  let the system reach the thermal equilibrium. 
In the optimization problem this procedure is simulated. An 
algorithm called Metropolis loop is run at each fixed tempera- 
ture T for a certain amount of time to approximate the equi- 
librium state([6]). The essence of this algorithm is it accepts 
a “bad” point occasionally to  escape from a local minimum. 
And the probability of such an acceptance drops when the 
temperature goes down. 
It is easy to  apply SA to our problem. The algorithm we use 
is as follows: 

1. Initialization: T = T,,,. Generate a vertex A, at ran- 
dom, evaluate the function fc = f(A,). 

2. Metropolis loop (Repeat L times): Randomly pick one 
bit in A, and mutate it, get a new vertex A,, eval- 
uate the function fn = f(A,). Let A, t A, with 
probability e w. 

’This is t rue for minimization problems only. A slight variation is 
needed for maximization. 

3. Decrease T :  T = yT. If T 2 T,,, . go to step 2; other- 
wise, stop. 

The control parameters we need to determine are: initial 
temperature Tmaz,  minimum temperature T,,, , decay rate 
y, and length of the Metropolis loop L.  To make the compar- 
ison easy, we choose L to be the problem size n. Then each 
execution of the Metropolis loop takes n function evaluations 
so that it can be considered as one step which is computation- 
ally comparable to one generation in GAS. Different combi- 
nations of the other 3 parameters have been tested and the 
final values used for testing SA on general random problems 
are: T,,, = 100, Tmin = 0.001, y = 0.8. 

4. Empirical  Compar isons  
In this section, the GA and SA described above are tested on 
the elementary case of the p computation defined in section 
1. A simple hill climbing (HC) algorithm is also applied 
for comparison. We consider the number of generations in 
GAS and the number of steps in SA as equal measures of 
computation cost as the number of branching in B&B. 

4.1. Rank-one Problems 
Our first numerical test focused on a special class of matrices: 
rank-one matrices. Without loss of generality, consider &f = 
.aT with a = [ul a2 . . .  anIT E R” and !lo,l! = 1. Then 

n 

(4) 
2 = 1  

So p*(M) = 1 with the maximum achieved at the vertex 
where all 6, = 1. In this case the problem can be solved an- 
alytically in linear time, and the B&B is guaranteed to solve 
it in linear time without any branching. It’s also trivial for 
HC since the objective function is linear in 6,’s. Under this 
benign circumstance, how well will the GA and SA perform? 
For both algorithms, because we know that the maximum 
value is 1, we can stop it when the best solution gets close to 
1 within a given tolerance. 
0 GA Since probability plays an important role in the GA, it 
might end up with quite a different solution if it starts with 
different initial seeds. To get an idea of the average perfor- 
mance of GA, we take a number of runs starting with dif- 
ferent initial populations on a single rank-one matrix where 
ay = $, i = 1 , 2 , .  . . ,n. The control tolerance is set at 0.01 
and 20 runs are taken for each size. The results confirm that 
the variance in the initial population does cause a significant 
difference in the number of generations needed to get a good 
solution. However, even for the worst cases encountered in 
our tests, the growth in the computation cost approximates 
a straight line on the log-log scale against the problem size. 
The given tolerance was achieved within 100 generations for 
the problem of size 128. 
We then run the GA on 20 ranclcm rank-one matrices for 
each size. The program is tested for tolerance lo%, 5%, and 
1% and the results are shown in Figure 2.  
Since a straight line on a log-log plot indicates a polynomial 
growth, we can say that for small and medium-sized problems 

3This is approximately true in principle, but the B&B code we used 
takes longer. All programs are written in Matlab, and as an interpre- 
tive language, a more complicated algorithm is artificially slower. With 
suitable effort the B&B code could he written and compiled so tha t  one 
branch cost approximately the same as one generation of the GA. This 
is an example of how the GAS simplicity favors it when programming 
effort is to  be minimized. 
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Figure  2: No. of generations versus problem size for various 
tolerances, for the worst problem out of 20 random 
rank-one matrices in each size. The vertical axis is 
on a log,,, scale, while the horizontal axis is on a log, 
scale. 

(n  5 128) the average computation cost of GA for rank-one 
problems grows polynomially with the problem size. While 
this is much greater computation than B&B, this result en- 
courages us to  continue. The GA takes no special advantage 
of the rank-one nature of the problem, so we could optimisti- 
cally hope that it might work similarly on the general case. 
0 SA For rank-one matrices, the smaller the initial temper- 
ature T,,,, the less the steps the SA takes to get to  the 
given tolerance. This is easy to understand since the objec- 
tive function is linear now, the best thing to do is simply 
going up the hill at each step, which can be done by setting 
Tmar small enough. For problems of size 128 and tolerance of 
1% the average number of steps needed is less than 6, much 
better than the GA as expected. 

4.2. General Random Matr ices  
Now we move our tests onto the random matrices we tested 
with the branch and bound technique so that comparisons 
between B&B and each of these three methods can be carried 
out. 10 random matrices are tested for each size of 8, 16, 32 
and 64. Only the plots of size 32 are shown due to the limited 
space. But they are representative of other sizes. Let lbbnb 
denote the lower bound we got from B&B while lb,,, lb,, 
and lbh, being the best function value found by GA, SA and 
HC respectively. 
0 B&B The lower bounds usually start very close to their 
final values, e.g. mostly within 10% for size 32, which forms 
a big contrast to both GA and SA. And they normally can 
reach the final values after a few times of branching. The 
quick convergence of the lower bound is a feature of the B&B 
algorithm we use, though we can’t be certain that it is indeed 
the global maximum. Most effort of the B&B is usually spent 
on bringing the upper bound down to make sure that the 
lower bound is near the global maximum. For n = 32, the 
normalized error between the upper bound and the lower 
bound gets down to within 5% after branching 74 times for 
the worst problem out of 50 we have tested. On average it 
takes about 16 times of branching to achieve this goal. 

GA For each matrix, the GA is run for up to 300 gen- 
erations. Its performance degenerates significantly from the 
rank-one case. The best solution from the GA is usually lower 
than the lower bound from the B&B in the worst case, and it 
converges much more slowly. On average lb,, approximates 
lbbnb from below, and the number of generations needed in- 
creases with the problem size. Occasionally, the GA can find 
a solution slightly better than the B&B, but recall that the 

B&B was only run until it had reached a tolerance relative to 
the upper bound(l% for n = 4,8,16, 5% for n = 32, 10% for 
n = 64). There is no upper bound for GA, so it was simply 
run for a large number of generations. 
Figure 3 illustrates the effect of the parameters pc and pm.  
It is the worst problem out of 10 matrices of size 32, with 
“worst” meaning the final ratio of Zb,, to lbbnb is lowest even 
with the best parameter values found. Although some pa- 
rameters perform better than the others in specific cases, no 
parameter choices stood out as the best across all matrices 
and problem sizes. 

i 

Figure 3: versus no. of generations (= no. of branches) 
for the worst of 10 matrices of size 32. Different lines 
correspond to different sets of p m  and p c  and same 
initial population. 

To see how the initial population affects the above perfor- 
mance we pick the above problem and repeat running the al- 
gorithm 10 times with the same parameters but starting with 
different seeds for random numbers. The result is shown in 
Figure 4. A good initial population does improve the per- 
formance of the algorithm in some cases, but the best lower 
bounds we get are still no greater than the lower bounds from 
branch and bound. 

generatlo” 11 -branch x 

Figure 4: Ib,, versus no. of generations (= no. of branches) for 
l b b n b  
the same problem as in Figure 3 but with 10 different 
initial populations. 

0 SA The simulation results of the SA present some similar 
features of the GA: the variance of the performance caused 
by the parameters and the random start, and the converging 
process. In the early steps, the SA seems to be more chaotic 
than the GA because of the relatively high temperature. For 
most of the problems the SA found the best solution that the 
B&B had found with the best initial guess out of 4. And for 
a few problems it found a slightly better solution than B&B 
did. But as we have explained the B&B was stopped when it 
reached a given tolerance relative to  the upper bound while 
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the SA was run until it converged. The problem shown in 
Figure 5 is the same as that in Figure 4. The SA simulation 
was carried out with 10 different initial guesses. 

Figure 5: 2 Ibbbnb versus no. of steps (= no. of branches) for 
the same problems as that in Figure 4 and with 10 
different initial starting points. 

e HC The hill climbing algorithm we are using is called steep- 
est ascent, which starts at a random vertex and moves to 
the best of the n nearest neighboring vertices until a local 
maximum has been found. Since each step takes n function 
evaluations, it is equivalent to one generation in GA or one 
step in SA in terms of computation cost. 
Figure 6 shows the results of HC applied to the same problem 
as shown above. Here 10 different random starting points 
were used for the HC. As expected, it gets stuck very quickly 
at local maxima. Although HC converges a lot faster, the 
average performance of GA and SA are much better in terms 
of finding the best solution. 

Oast  0 8  i 

Figure 0: & versus no. of steps (= no. of branches) for 
the same problems as that in Figure 4 and with 10 
different initial starting points. 

5. Conclusion 
We have explored the use of genetic algorithms and simulated 
annealing for a special case of robustness analysis. The main 
deficiency of both algorithms relative to branch and bound is 
their lack of an upper bound to  give an indication of the qual- 
ity of the lower bounds. Just considering the lower bounds, 
while both the GA and SA are not competitive with existing 
B&B methods, this study does support some of the claims 
for them. Specifically, they are easy to use and can give rea- 
sonably good answers for this particular NP hard problem. 
It does not support some of the hype about the quality of 
the solutions nor the efficiencies of the algorithms. This is 
illustrated in Figure 7, which is just a cartoon but is sup- 
ported by the results in this paper. (The situation for SA 

is similar.) While B&B significantly outperforms these two 
stochastic approaches, it requires much greater programmer 
sophistication. Basically, GAS or SA could have been writ- 
ten, in principle, by a smart high school student, although 
they would likely have had no idea what the result meant. In 
contrast, understanding the problem an2 the B&B algorithm 
relies on theory usually taught a t  the graduate level. 

I 

log(complexity) 

GA 

\ 

Figure 7: Cartoon of GA vs. B&B. Suppose we think of error 
as the deviation from the optimal. If we only take 
computation cost into account, the hard computing 
solution (B&B) beats the soft computing approach 
(GA). However, if we take programmers expertise into 
account, the picture changes and GA looks more fa- 
vorable at the low end. 

It would clearly be valuable to have more of a continuum 
between hard and soft computing, in that hard problems that 
are important are best treated using hard methods, while soft 
methods will be much more accessible to the vast majority 
of users. This complementarity should bo exploited. One 
obstacle to doing this is that many advocates of soft methods 
deny the reality represented in the cartoon. They claim that 
as problems get more complex, only soft methods will work. 
Unfortunately, only those few who really understand both 
soft and hard methods realize how misleading this is, and 
they will have a very hard time explaining it to anyone who 
doesn’t already know. 
One positive result we hope to come out of further study 
along the directions of this paper is how some of the ideas 
from genetic algorithms and simulated annealing could be 
used to improve the B&B algorithms. In particular, the B&B 
algorithm in this paper is purely deterministic, and could po- 
tentially benefit from introducing some randomizing behavior 
of the stochastic approaches after optimizing to some extent 
the performance of the deterministic algorithm. While this 
probably won’t make much difference on most problems, it 
would potentially make a large difference on occasional prob- 
lems where the B&B algorithms performed poorly. 
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