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L INTRODUCTION

In this paper we consider the problem of controller order
reduction for control design for robust performance. In practi-
cal control design it may be important to have low order con-
trollers. For example, one may want to gain schedule a series
of LTI (linear, time invariant) controllers, or give simple physi-
cal interpretations 1o the control dynamics. Whea solving prac-
tical design problems using, say, H,, software it is common to
produce congrollers of high order - equal to the sum of the
order of the plant plus each of the weighting functions. How-
ever, there may be lower order controllers which stabilize the
plant and provide satisfactory H, closed loop performance.
The objectives of a method for controller order reduction
within the H,, framework, then, should be to find low order
controllers which stabilize a given plant and provides satisfac-
tory H., performance. Ideally, the method should apply to a
large class of problems, be easy to implement and be
guaranteed 10 work.

The problem of coafroller order reduction has been
addressed by several authors. We refer the reader to the refer-
ence list given in [1] for altemative approaches to controller
order reduction. Some approaches focus on preserving closed
loop performance with no guarantees on closed loop stability,
Other methods preserve closed loop stability but not perfor-
mance.

We address the problem of maintaining closed loop sta-
bility and performance simultaneously. Our method is based on
weighted L., model reduction of the nominal controller. Since
o technique exists for this optimal model reduction problem,
we use Hankel nomn model reduction techniques [3).{4]
obtain suboptimal controllers.

2, PROBLEM SETUP

We consider the general H,, LTI multiple input multiple
output control problem. In this setup we have 2 generalized
plant which includes the lincar model for the physical system
1o be controlied, along with weighting functions representing
the frequency characteristics of exogenous signals, plant uncer-
tainty, and desired closed loop performance {2].

The generalized plant P can be considered to be com-
posed of four transfer functions Py ij = 1,2 as shown in figure
1: Py; is the transfer function from exogenous inputs to con-
trolled outputs, Py from control inputs to measured outputs,
P;, from control inputs to controlled outputs, and Py, from
exogmxsmputstomcasmedompms We make the standand
assumption that P;, is left-invertible and Py; is right-invertible
at all frequencies.

For a controller K, the closed loop transfer function is
given by the linear fractional map

FI(P’K) = Pn_ + PuK(I "PzzK)-IPZI

P, P
associated with the matrix P = {PHPIZJ‘ Such amap is a
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disk to disk transformation from RL,, to RL,,.
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Suppose K, is a given high order controller such that
R PK M. < 1. We derive weighting functions W; and W,
sudnhanf(xo—ﬁ);sstablemddnwuglmdl..-mmem
between K, and R is smaller than a specified bound B, K
will stabilize P and provide a closed loop L, performance level
of at most B. In other words, we find W) and W; such that if
WK, - RIWs . S B! then F(PK) is stable and
EPRL. < B.

3. APPROACH

In this section we pose the controller order reduction
problem as a 2-block perturbation problem similar in spirit to
that of the y framework [2). The standard g methods provide
exact answers 0 questions of worst-case performance for a
given set of systems described in terms of linear fractional
transformations on structured norm bounded perturbations. We
assume that a possibly high order LTI feedback controller
K, € RL,, has been designed for the generalized plant P. The
nominal controller K, stabilizes P and JF(P XL, < 1. Here
we want to describe all K such thay K sabilizes P and
IF@XM. <. It mms out that our technique does not pro-
duce the entire set of desirable controllers, but docs produce
low order controllers with § < ¥2. Thus, the cost of controlier
redgicuonmﬂnssctunenspafonnmdemdaﬂmbyafaaor
of

If R is another controller which also stabilizes P then we
can always write K = (K, + A) for some real rational A The
block diagram representation of the closed loop system. with
cmmollerxanbeexpmsedmmnnsoftheclmdbopsys-
tem with the nominal controller K, and an additive emror A as
shown in figure 1.

This system can then be written as a feedback connection
(generalized plant) P connected with A as indicated in figure 1.

Here By = Py + Pk 0-PpKo) Py
?xz = P(I ~ PpKy)™
Py = Py~ PpKy"!
Py = A-PuK)'Py

Since K, intemally stabilizes P, P;; is stable for ij = 1,2,

LetD= {[ox] keR"} Define, for M a constant com-

plex matrix, pM)= %U(Dhm") . For a given B, l&

I, = {A:|)All. < 1 and (I - PpA)~! is bounded]. The 2-block
R test [5}[2] then shows that: IFy(P.A)il. < 1 for all A € &, if
and only if sup pPGo) < 1.

Assummg that Sjlip w(P(Gw)) S 1, the 2-block | test
ensures that if K - Kl < 1, then F,®,K) = F(P.A) will have
satisfactory L., performance. If in addition we have that
fPxll. < 1, then F(®.A) is stable for all stable A « X, How-
ever, the entire set of perwurbations A for which the closed loop
system will have satisfactory L., performance and be stable can
be difficult to determine. It may be that & = (K, — K) is not in
%, but K still provides acceptable performance and closed loop



stability. In short, a desirable reduced order controller may not
correspond to a "worst-case” A, or even a stable A. Hence,
this order reduction technique is, in general, conservative.
However, in a special case it is not conservative.

For a rational matrix M in L, M(jo,) is called a A-
isometry [S] if_ there is a positive scalar A such that

My M|
AM;, My (j®,) is an isometry.

Theorem 1: P(ja,) is a A-isometry for each , if and only
i_f {IIF(P.A)l. <1 if and only if JJAll, <1). Further, if
P(m,) is a A-isometry for each o,, Fi(PA) is stable for all
stable A € Z,.

In general, P(jo,) will not be a A-isometry, and so we
will not have an if and only if relationship between closed loop
performance and the norm of A.

Suppose that W(P(w) = B(jw). Then B(jw) "Pjw) < 1
for all joo. So our 2-block i test holds for B~'P. Consider

F(B'P.4) = 7By, + Pry@B'AXI - PP AN B, (2
From (2) we have that §E(PBANL < sup BGw) :=P for all
A€ Iy, Therefore, we can guarantee 2 level B of closed

loop system performance for all controllers R such that
IB(K, = Kl < 1.

We can use weighting functions as shown in figure 1 to
alter the shape of P. We can not in general tum P(joo,) into a
A-isometry wish weighting functions located as in figure 1, but
we can make P(jw,) closer to an isometry in some sense.

My Myp|
Le : i i
mma 3 [le M,, is an isometry if and only if

M M
M, = [M;:] and M, = [MZ] are isometries  (4)

ad MjMj; + MjMp, = 0. 5
For an arbitrary P, the weights
W; = outer [(I - Pl'an)V‘P{l‘] ©

W, = outer [(PI'ZPIZ + P W W 1P22)_“]
make T (jo,) and T (w,) isometries for each @, where

T= [TuTu]_ [1 O]i’ [1 o}
T Ty Tni ow, OWZ'
However, T; and T, will in general not satisfy (5) and hence
B(T(joy)) 2 1. One can verify that the largest 5(T(jo,)) can
be is V2, and in fact u(T(j,)) can be as large as ¥2. This can
happen only when T,;(j®,) is a scalar multiple of T 5(jo,) for
some .

For the general system shown in figure 1, we have
R =K, + W,AW, and so WI(R - K)W;! = A. This defines
a weighted model reduction problem: If sup w(T(ja)) = P and
IWFR - KoWillle < B , then [R@RI.SP<VZ. We
have constructed T so that Ty for ij =12 are stable and
Tyl < 1. Therefore, if A is a contraction at every frequency
and is stable, then FP,K) is stable.

Implementation of this method of controller order reduc-
tion requires computing reduced order controllers within a
weighted L, ball centered at K, with left radius Wi and right

1698

radius W;'. We can ensure that the error between the reduced
and original controller is a stable proper L., function by per-
forming weighted Hankel norm model reduction of K, [4].
The amount of Hankel-norm error we incur is always less than
or equal to the L ,-nomn error. Therefore, we must check
WK, - BWsll, < B to guarantee closed loop stability
and that [RPX)ll. <B.

This method is in general conservative. There may be a
desirable low order controller whose weighted L-nom error
from K,, the nominal controller, is greater than B~'. We may
not find such a K even if we allow our weighted error to be as
large as we like. For example, if the number of unstable poles
of K is different than the number of unstable poles of K, we
will not get R by our proposed weighted model reduction pro-
cedure. A way to generalize our method is t0 model reduce a
coprime factorization of K, instead of K, directly. We can for-
mulate an order reduction scheme for a coprime factorization
of K, from a 2-block p problem analogous to the one con-
sidered in section 3. This allows the number of unstable poles
of a reduced order controller K to vary. Also, one could choose
weighting functions other than W; and W, given in (6), which
would lead to different sets of attainable reduced order con-
trollers. Because we use a weighted Hankel-norm approxima-
tion to K, we may not get the best weighted L_.-norm approxi-
mations to K.

We have also considered approaches which directly use
the parametrization of all controllers which stabilize a given
plant and provide a specific level of H,, performance in terms
of a linear fractional transformation of the set of all contrac-

tions in RH”. However, so far this has not proven useful for
controller order reduction.
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Figure 1. General System with Perturbed Controlier



