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L INTRODUCTION 

In this paper we consider tbe problem of controller order 
reduction for control design for robust pelformance. In practi­
cal cootro1 design it may be important to have low order con­
trollers. For eumple, ooe may want to gain scbedu1e a series 
of L TI (linear, time invariant) ccntrollcrs, or give simple physi­
cal interpretations to the control dynamics. When solving prac­
tical design problems using, say, H.. software it is common to 
produce cootrollem of bigb order - equal to tbe sum of the 
order of the plant Jius each of the weighting functions. How­
ever, there may be lower order cootrollers which stabili7.e. the 
plant and provide satisfactory H.. closed loop performance. 
The objectives of a method . !or controller order reductian 
within the H.. framewort, then, should be to find low order 
controllers which stabiliz.e a given plam and provides satisfac­
tory H.. performance. Ideally, the method should apply to a 
large ~ of probJems. be ea,,y to implement and be 
guaranteed to woit. 

1be problem of comroner order reduction has been 
addressed by several authors. We refer tbe reader to tbe iefer­
ence list given in [lJ for aitemadve approaches to c:oouoDe:r 
order. reduction. Some approaches fOCUS on preserving closed 
loop perfonnance with no guaramees on closed loop saability. 
Other methods preserve closed loop stability but not perfor­
mance. 

We ~ the problem of maimaining closed loop sta­
bility and performance simultaneously. Our medxld is based on 
weighted L. model reduCtioo of the nominal controller. Since 
ro tedmi<l'JC exists for this opeimal made! reduction problem, 
we use Hante1 nonn model n::ducdon techniques (3J,(4J to 
obtain suboptimal ccntrollers. 

2. PROBLEM SETUP 

We cormder tbe general H.. LTI mulliple input mulliPe 
output control problem. In this setup we have a generalized 
plant which includes the linear model for the physical system 
to be conttolled. along with weighting functions representing 
the frequency characteristics of exogenous signals, plant uncer­
tainty, and desired dosed loop performance {2}. 

The generali7.ed plant P can be considered to be com­
posed of four transfer functions Pii ij = 1,2 as shown in figme 
1: P11 is the transfer function from exogenous inputs to con­
trolled outputS, P22 from control inputs to measured outputs, 
P12 from control inputs to controlled outputs, and P21 from 
exogmous inputs to measured outputs. We make lhc standard 
assumption that P12 is Jeft-invenibJe and P21 is right-invertible 
at all frequencies. 

For a controller K. lhc closed loop transfer function is 
given by the linear ftactiooal map 

Fz(P,K) = Pu+ P12KO -P22Kr1P21 

associated with the matrix P = [:~: :~] . Such a map is a 

disk to disk transformation from RL.. to RL_. 
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Suppose K., is a given high order cootrollcr such tblt 
llFi(P,K.,)11.. < 1. We derive 'WCigbDng functions W1 llld W2 
such that if (Ko - K.) is stable and the weighled I...-norm enor 
between K., and t is smaller dwl a specified bound IJ'-1, t. 
will 5tabili1.e P and provide a closed loop I... petfonu1ce Jevd 
of at most JI. In other WOids, we find W1 and W2 such tblt if 
uw11cx.. - tJW2111.. s JJ-1 then Fi<P.t> is stable and 
llFi(P .t>U.. s lJ· 

3. APPROACH 

In this section we pose the coonoDer order reduction 
problem u a 2-block peJ!UJbadon problem similar in spirit ID 
that of lbe µ framewort [2J. The sbmdard µ methods povide 
exact amwers to quesliolJS of worst-case perl'ormance for a 
given set of S)'SlaDS deScnl:led in terms of linear fracdooal 
tranSfonnations on struaured nonn bounded pemut>atioos. We 
assume that a possibly high order Ln feedback cxurolla' 
K,, E RL.. has been designed for the generalized plant P. The 
nominal controller x:.. stabilizes p and IFi<P .x:...>L < 1. Here 
we want to describe Ill K such dm K 5lllbilizes P and 
UFi(P ,K)ll.. s JJ. It nuns out that our technique does not pro­
duce the. entire set of desirable cootroDers, but does produce 
low order controllers with ~ S .ff. Thus, the cost of CODtrolltl 
reduction in this scheme is performance degradation by a factor 
of .Ji 

If t is another conuoller which also stabiD7a P tren we 
can always write t = ~ + !) for some real rational A. The 
bioct dia1!3D1 1ep1esentation of the closed loop system with 
conuoller JC. can be expressed in terms of the closed loop sys­
tem with the nominal controDer X:.. and an addith-e error A as 
shown in figure J. 

This system can then be written as a feedback comecdoo 
(generalized plant) I' connected with A as indicated in figme 1. 

Here Pu = Pu+ P12K,,(l-Pz:zK.,)-1P21 
f>u = P12(1- P22K.,)-1 

P21 = P21(1- P22K.,r1 

f>22 = (1 - P22K.,)-1 P22 

Since K,, intemally stabilir.es P, Pii is stable for ij = J ,2. 

Let i5 = { (J ~]:M:R+}. Define, for Ma constant com-

plex matrix, µ(M):= inf<J(DMD-1) • For a given P, let 
o.D 

J1, = (A : 11.11/.. < I and (I - Pn.ir1 is bounded]. 1be 2-bloclt 
µ test [5],[2J then~ shows that: /IF1(i>.A)fl.. S I for all 4 e ~ if 
and only if slip µ.(P(j6>)) s 1. 

jlO 

Assuming that sµp µ(i>(jm)) s 1, the 2-bloct µ test 
A J'O A ~· 

ensures that if UK - Kofi..< l, then F1(P,K) = Fi(PA) will have 
satisfactory L.. pelformance. If in addition we have that 
uP2:211.. < 1, then F1(P A) is stable for all stable fl e 21.- How­
ever, the entire set of penurbations Ii for which the closed loop 
system will have satisfactory L.. perfonnance and be stable can 
be difficult to determine. It may be that a = OCo - lt) is not in 
~ but K still provides acceptable performance and closed loop 



stability. In shon, a desirable reduced order controller may not 
correspond to a "worst-case" .:1, or even a stable li Hence, 
this order reduction teclmique is, in general, conservative. 
However, in a special case it is not conservative. 

For a rational matrix M in L... M(joo..) is called a A.­
inetry [5] if there is a positive scalar A. such that 

Mu A_-IM12] . . . 
A.M21 M22 (joo..) is an lSOmetry. 

Theorem 1: t>{joo,.) is a A.-isometry for each 000 if and only 
if {JJF,(i>A)(J.. S 1 if and onJy ii f~I- s 1}. Further, if 
P(jcn.) is a 1-isometry for each oo., F i(lt A) is stable for all 
stable .i e l:p. 

In general, P(jco..> will not be a A.-isometry, and so we 
will not have an if and only if relationship between closed loop 
performance and the norm of li 

Suppose that µ(P(j0>)) = 13(jco). Then µ(p(jro)-1i>(jco)) s I 
for all jco. So our 2-block µ test holds for p-1i>. Consider 

F1<P-1PA) = p-1<P11 + PdP-1.i)(l- P22@-1a)r1f>21). (2) 

From (2) we have that ffFi<i>,p-1a)ft., s sup 13(jro) := lJ for all 
;.. 

a e :r,-'P. Therefore, we can guarantee a level lJ of closed 
loop system performance for all controllers It such that 
llP<Ko - K)ll.. s l. 

We can use weighting functions as shown in figure 1 to 
alter the shape of i>. We can not in general tum P(jro,,) into a 
A.-isometry wi!h weighting functions located as in figure I, but 
we can make P(joo.,) closer to an isometry in some sense. 

Le 3 f Mu M12] • , . 
mma : lM21 Mn IS an ISOmetry if and only if 

[
Mu] fM12] M.1 := M21 and M.2 := lMn are isometrles 

For an arbitrary i>, the weights 

W1 := outer [(I - P:1P11)~Pi1] 

W2 := outer [<P:2P12 + P~W:W1P~-~] 
make T.1 (joo..) and T 2(jro.,) isometrics for each co.,. where 

T := [~~~ ~:] = [d~1] p [c:~2l 

(4) 

(5) 

(6) 

However, T.1 and T .2 will in general not satisfy (5) and hence 
tr(T(joo..)) :i!: 1. One can verify that tbe largest lf(T(joo.,)) can 
be is "2, and in fact µ(T(joo,.)) can be as large as "2. This can 
happen only when T.1(ioo..) is a scalar multiple of T.2(jro,,) for 
some m.,. 

For the general system shown in figure l, we have 
it= K,, + W1!W2 and so Wj'"1{t- KJW:21 = !. This defines 
a weighted model reduction problem: If sup µ(T(joo)) = lJ and 

1rw11<K - K,,>w2111 .. < JJ-1 
• then 11Fi<P.K)n.. s ff s "2 . we 

have constructed T so that T ij for ij = 1,2 are stable and 
Irr nil.. < 1. Therefore, if ! is a contraction at every frequency 
and is stable, then Fi(P .Jt> is stable. 

Implementation of this method of controller order reduc­
tion requires computing reduced order controllers within a 
weighted 1- ball centered at K,, with left radius Wj"1 and right 
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radius Wz1. We can ensure that the error between the reduced 
and original controller is a stable proper 1- function by per­
forming weighted Hankel norm model reduction of K., [4]. 
The amount of Hankel-norm error we incur is always less than 
or equal to the L..-norm error. Therefore, we must check 
llWj"1(K,, - K)W:2111.. < JJ-1 to guarantee closed loop stability 

and that f!Fi(P .K.>11.. < jl 
This method is in general conservative. There may be a 

desirable low order controller whose weighted 1--norm error 
from K,,, the nominal controller, is greater than fJ-1

• We may 
not find such a K even if we allow our weighted error to be as 
large as we like. For example, if the number of unstable poles 
of K is different than the number of unstable poles of K., we 
will not get K by our proposed weighted model reduction pro­
cedure. A way to generalize our melbod is to model reduce a 
coprirne factorization of K., instead of K,, directly. We can for­
mulate an order reduction scheme for a coprirne factorization 
of K,, from a 2-block µ problem analogous to the one con­
sidered in section 3. This allows the number of unstable poles 
of a reduced order controller it to vary. Also, one could choose 
weighting functions other than W1 and W2 given in (6), which 
would lead to different sets of attainable reduced order con­
trollers. Because we use a weighted Hankel-norm approxima­
tion to K,, we may not get the best weighted 1--norm approxi­
matiom to K,,. 

We have also considered approaches which directly use 
the parametrization of all controllers which stabilize a given 
plant and provide a specific level of H.. performance in terms 
of a linear fractional transformation of the set of all contrac­
tions in RH°°. However. so far this has not proven useful for 
controller order reduction. 
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Figure 1. General System with Perturbed Controller 


