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Learning Texture Discrimination Rules 
in a Multiresolution System 

H. Greenspan, R. Goodman, R. Chellappa, and C. H. Anderson 

Abstract-we describe a texture analysis system in which informative 
discrimination rules are learned from a multiresolution representation 
of the textured input. The system incorporates unsupervised and su- 
pervised learning via statistical machine learning and rule-based neural 
networks, respectively. The textured input is represented in the frequency- 
orientation space via a log-Gabor pyramidal decomposition. In the un- 
supervised learning stage a statistical clustering scheme is used for the 
quantization of the feature-vector attributes. A supervised stage follows 
in which labeling of the textured map is achieved using a rule-based 
network. Simulation results for the texture classification task are given. 
An application of the system to real-world problems is demonstrated. 

I. INTRODUCTION 
We describe a hybrid texture analysis system that incorporates 

the advantages of leaming paradigms, including statistical machine 
leaming, knowledge-based systems and neural networks, in the 
context of multi-resolution feature extraction techniques. The main 
goal of the system is to leam a minimal representation for a given 
library of textures, based on which one can successfully classify and 
segment new mosaic test images into homogeneous textured regions. 
Of particular interest is to apply the system to noisy images arising 
in real-world computer-vision problems. 

The main features of the system are the following: A multi- 
resolution pyramid is used for a computationally efficient feature- 
extraction scheme. The important characteristics of the input domain 
are then learned from examples, with both unsupervised and super- 
\. ised leaming techniques utilized. An information theoretic technique 
enables the characterization of the most informative correlations 
hetween the input features and the texture class specification. The 
leamed correlations are specified as discrimination rules which pro- 
I’ide probability estimates for the output classes rather than just 
a hard-decision label. These probability estimates can be used for 
higher-level analysis, such as feedback for smoothing and the leaming 
of an unknown class, the so called “pattern discovery” problem [ 11. 
The leamed rules are available to the user and can enhance his or 
her knowledge of the input domain and the classification task at 
hand. Finally, the leamed rules can be mapped onto a rule-based 
neural network and thus the classification scheme is parallelizable 
and suitable for implementation using special purpose neural-network 
hardware. 

The system consists of three major stages, as shown in Fig. 1. 
The first stage performs feature extraction and transforms the image 
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space into an array of 15-dimensional feature vectors, each vector 
corresponding to a local window in the original image. The learning 
mechanism shown next derives a minimal subset of the above filters 
which conveys sufficient information about the visual input for its 
differentiation and labeling. We reduce the feature space both in the 
unsupervised and supervised stages of analysis. In the unsupervised 
stage a machine-leaming clustering algorithm is used to quantize the 
continuous input features. The supervised leaming stage follows in 
which labeling of the input domain is achieved using a rule-based 
network. Ultimately, a minimal representation for a library of pattems 
i s  leamed in a training mode, following which the classification of 
new pattems is achieved. The texture-analysis task is defined next 
followed by the system description and simulation results. 

11. THE TEXTURE ANALYSIS TASK 

Visual texture is one of the most fundamental properties of a visible 
surface. It participates as one of the major modalities which help us in 
the understanding of our visual environment. As such it takes part in 
lower-level to higher-level tasks, from scene segmentation to object 
recognition. Texture-analysis methods can be utilized in a variety of 
application domains, such as remote sensing, automated inspection, 
medical image processing and advanced image-compression schemes. 
The different textures in an image are usually very apparent to a 
human observer (see Fig. 2) .  but no good mathematical definition can 
encapture the very diverse texture family. It is this lack of definition 
that makes automatic description or recognition of these patterns a 
very complex and as yet an unsolved problem. 

Although researchers approach texture differently, most would 
agree that the texture family can be categorized into two main 
categories-structured and unstructured, more stochastic textures. 
Methods that can handle the more structured textures use structural 
models of texture which assume that textures are composed of 
texture primitives. The texture is produced by the placement of these 
primitives according to certain placement rules [2]. One needs to be 
able to define a priori a good set of primitives and placement rules (a 
tree grammar is commonly used) in order to characterize the textured 
input. This approach can handle very regular patterns. Some textures 
which can be handled in this manner are shown in Fig. 2 (top row). 

Stochastic models, such as the Markov Random Field (MRF) 
models, are used as methods to handle unstructured or stochastic 
textures. Here the image is secn as an instance of a random process, 
defined via the model parameters [3] .  The model parameters need to 
be estimated in order to define adequately the perceived qualities of 
the texture. This model-based technique can capture certain textures 
very well (see bottom row of Fig. 2), but they fail with the more 
regular textures as well as inhomogeneous ones. 

The methods discussed above use the pixel-based domain as their 
input space. Other methods exist in the literature (e.g., [4], [ 5 ] )  
including this work, which compute texture features from filtered 
images, and use these filtered characteristics in the classification or 
segmentation tasks. For a review of the texture analysis field, its 
applications and the different methods available in the literature, sce 
[6]. Although texture analysis has been a subject of intense study by 
many researchers, it is as yet an open challenge to achieve a high 
percentage classification rate on all the above textures within one 
framework. Such a challenge is our ultimate goal. 

In this work, we wish to demonstrate the application of a learning 
system to the texture-analysis task. In this approach, the important 
characteristics of the input domain are learned from examples, rather 
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Fig. 2. 
Bottom row (left to right): grass, cork, handmade paper, pigskin, cloth. 

Structured (top row) and Unstructured (bottom row) texture eramples. Top row (left to right): raffia, herringbone weave, canvasl, canvas2, jeans. 

than specified a priori via parametric model-based schemes such as 
the $tructural or stochastic models mentioned above. In the following 
sections the system is described. 

111. FEATURE EXTRACTION STAGE 
In the texture-analysis task there is both biological and com- 

putational evidence supporting the use of a bank of orientation- 
selective bandpass filters for the feature extraction phase [4], [SI, [7]. 
Orientation and frequency responses are extracted from local areas 
of the input image and the statistics of the coefficients characterizing 
the local area form the representative feature vector. In this work, we 
use the log-Gabor pyramid [8], or the Gabor wavelet decomposition, 
to define an initial finite set of filiers. 

A computationally efficient filtering scheme is used based on a 
pyr,+midal approach. In a pyramid representation the original image 
is dzcomposed into sets of low-pass and band-pass components via 
Gaussian and Laplacian pyramids, respectively [9]. The Gaussian 

pyramid consists of low-pass filtered (LPF) versions of the input 
image, with each stage of the pyramid computed by low-pass fil- 
tering of the previous stage and corresponding subsampling of the 
filtered output. The Laplacian pyramid consists of band-pass filtered 
(BPF) versions of the input image, with each stage of the pyramid 
constructed by the subtraction of two corresponding adjacent levels 
of the Gaussian pyramid. We use the Filter-Subtract-Decimate (FSD) 
Laplacian pyramid (101, which is a variation on the Burt and Adelson 
Laplacian pyramid [SI. In the following we refer to the input image 
as G O ,  the LPF versions are labeled GI  thru G.Y with decreasing 
resolutions and the corresponding BPF versions are labeled LO thru 
L.Y respectively. A recursive procedure allows for the creation of the 
FSD pyramid, as follows: 

GYz+, = 11- * G,,: L,, = G,, - G:,+,: 
G,,+I = Subsampled G:3+l. (1) 

The LPF. ll-. is Gaussian in shape, normalized to have the sum of 
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Fig. 3.  Detailed sketch of the system. 

its coefficients equal to 1. The values used in this work for W, which 
is a 5-sample separable filter, are (1/16, 1/4, 3/8, 1/4, 1/16). 

In order to extract the orientationally tuned band-pass filtering 
responses, the oriented pyramid is formed next. The oriented pyramid 
is the result of modulating each level of the Laplacian pyramid with 
:i set of oriented sine waves, followed by the same LPF operation 
used above, and corresponding subsampling, as defined in (2)': 

where r' = xi'+ y j  (.r and y are the indices of the Laplacian image), 

' This filtering operation is not the standard one found in the literature. Most 
modulate the filter and then perform a convolution with the image. Here we 
propose a reversal in the order of operations for a computationally efficient 
filtering scheme. 

and 

H,, = ( i ~ / 4 ) n :  (n = 0.1.2.3) 

Here, 72 is the scale coefficient and n represents the orientation 
coefficient. A three-scale pyramid is utilized (7) = 0 , l .  2). Each level 
of the pyramid is multiplied with four sine waves at four orientations 
(0, 45, 90, 135 degrees). The orientation and frequency bandwidth 
of each orientationally tuned bandpass filter is thus 45 degrees and 1 
octave, respectively. For a theoretical analysis of the pyramid filters' 
characteristics the reader is referred to [ I  11, [12]. 

It is the local statistics of the oriented pyramid's coefficients which 
characterize the image local-area response to the different orientations 
and frequencies. A measure of power associated with each filtered 
map is defined next as the nonlinear operation given below: 
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Thc mean values of the power maps, at three scales and four 
orientations, together with the power of the nonoriented component 
L,,  at each scale, produce IS feature maps which we use to represent 
the input image. Gaussian pyramids are formed on each of the power 
maps, €',,,>. The Gaussian levels of the P,L,, which have the same 
size as the lowest spatial frequency power map are used to form the 
feature vector. These generate reduced-size feature maps, with the 
features corresponding to the average of the power of the image's 
local response to specific orientation and frequency ranges. Using 
15 equal-sized feature maps generated in this way, each 8 * 8 local 
window of the input image gets mapped to a 15-dimensional feature 
vector as the output of the feature extraction stage (see Fig. 3). 

Iv. T H E  LEARNING SYSTEM 

The goal of the leaming system is to use the feature representation 
described above to discriminate between the input patterns, or tex- 
tures. Both unsupervised and supervised leaming stages are utilized. 
A minimal set of features are extracted from the 15-dimensional 
attribute vector, which convey sufficient information about the visual 
input for its differentiation and labeling. We thus use the learning 
SI stem to extract the most important features. 

A Unsupervised Clustering 
The unsupervised leaming stage can be viewed as a preprocessing 

stdge for achieving a more compact representation of the filtered 
input. The goal is to quantize the continuous valued features which 
ai-e the result of the initial filtering, thus shifting to a more symbolic 
representation of the input domain. 

The output of the filtering stage consists of IS continuous-valued 
feature maps. Thus, each local area of the input image is represented 
via a 15-dimensional feature vector. An array of such vectors, viewed 
across the input image, is the input to the leaming stage. A detailed 
sketch of the system is presented in Fig. 3. 

We wish to detect characteristic behavior, across the 15- 
dimensional feature space, for the family of textures to be learned. 
I n  this work, each dimension out of the 15-dimensional attribute 
kector is individually clustered. All samples are thus projected onto 
each axis of the space and one-dimensional clusters are found using 
the IC-means clustering algorithm [ 131. This statistical clustering 
technique consists of an iterative procedure of finding IC means in 
the sample space, following which each input sample is associated 
with the closest mean in Euclidean distance. The means, labeled 
I ) .  1.2. .  ' .  . IC - 1 arbitrarily, correspond to discrete codewords. Each 
continuous-valued input sample gets mapped to the discrete codeword 
representing its associated mean. The output of this preprocessing 
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Fig. 4. Rule-based network. 

stage is a IS-dimensional quantized vector of attributes which is 
the result of concatenating the discrete-valued codewords of the 
individual dimensions. Each dimension can be seen to contribute a 
probabilistic differentiation onto the different classes via the clusters 
found. As some of the dimensions are more representative than others, 
it is the goal of the supervised stage to find the most informative 
dimensions for the desired task (with the higher differentiation 
capability) and to label the combined clustered domain. 

In the algorithm implemented here, IC was chosen as the number 
of output classes we wish to learn. A different value of Ii could 
have been chosen with comparable results [ 111. The fact that this is 
a preprocessing step, prior to the rule-based network classification, 
reduces substantially the difficulty of picking an appropriate number 
of clusters. 

B.  Super-vised Leur-ning txia a Rule-Based System 

The goal of the supervised stage is to classify the input image, 
while finding the most informative input dimensions, or attributes, 
for the desired task, thus reducing the dimensionality of the rep- 
resentation. We wish to learn a classifier which maps the output 
features of the unsupervised stage to the texture class labels. Any 
classification scheme could be used. However, we utilize rule-based 
information-theoretic approach (ITRULE) which is an extension of 
a first-order Bayesian classifier, because of its ability to output 
probability estimates for the output classes. The classifier defines 
correlations between input features and output classes as probabilistic 
rules of the fomi: If 1.  = y then S = .r with probability P. Here, 
I- = (1'). . . . .I\. ) represents the attribute vector and S is the set 
(X I . .  . . . J , ~ ,  ) of t u  possible output classes. In this work, = 13 
and t i t  is the number of texture classes learned. Given an initial 



808 IEEE TRANSACTIONS ON PA'JTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16. NO. 9, SEPTEMBER 1994 

Input output 

Probability Maps 

grass raffia wood 

sand herring wool 
Fig. 5. 
ity maps (bottom). 

Five class natural texture classification. Input mosaic is presented (top left), followed by the labeled output map (top right) and probabil- 

labeled training set of examples, where each example is of the form 
(1-1 = y l . .  . . ,IS. = y,, . -7i = .rl ), the system learns a classifier such 
that when presented with future test attribute vectors, it estimates the 
posterior probability of each class. A data-driven supervised learning 
approach utilizes an information theoretic measure to learn the most 
informative links or rules between features and class labels. Such a 
measure was introduced as the J measure [I41 defined as 

Here, the information content of a rule is represented as the average 
amount of information that attribute values !/ give about the class 1. 

The .I measure has several desirable properties as a rule information 
measure. It is comprised of two main terms. The first is p(17 = ! I ) ,  
the probability that the particular set of attribute values will occur. 
The second term is the cross-entropy of S and S given y. This is a 
measure of the goodness of tit between the a posteriori belief about 
S and the U priori belief. Maximizing the product of the two terms 
is equivalent to simultaneously maximizing both the simplicity of the 
specific correlation vector, 1.. and the goodness of fit to the perfect 
predictor of .Y, The Jmeasure  is used in a search algorithm to search 
the space of all possible rules relating the attributes to the class, -Y, 
and produce a ranked set of the most informative rules which classify 
S. For details about the rule-extraction algorithm see [ 151. 

The most informative set of rules via the ,J measure is learned in a 
training stage. following which the classifier uses them to provide an 
estimate of'the probability of a given class being true. When presented 
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with a new input evidence vector, I-, a set of rules can be considered 
to “fire.” These are a subset of the correlations leamed which the input 
attribute vector matches. Using Bayes’ rule, the classifier estimates 
the log posterior probability of each class given the rules that fire [ 1.51: 

( 5 )  logp(.r I rules that fire) = logp( . r )  + Ell-, 
J 

with 

whzre p ( . r )  is the prior probability of the class .r, and It; represents 
the evidential support for the class as provided by rule j. In the 
absence of any rules firing, the estimate of each class is given by 
the bias value, namely the log of the prior probability of the class. 
Given a set of rules which fire, each rule contributes a weight to its 
corresponding output class. A positive weight implies that the class is 
truc, while a negative weight implies it is false. The 11;s provide the 
user with a direct explanation of how the classification decision was 
arrived at. Each class estimate can now be computed by accumulating 
the “weights of evidence” incident on i t  from the rules that fire. This 
can be done in a parallel manner. The largest estimate is chosen as the 
initial class label decision. The probability estimates for the output 

classes can now be used for feedback purposes for spatial smoothing 
and further higher-level processing. 

The rule-based classification system can be mapped into a three- 
layer feed-forward architecture as shown in Fig. 4. The input layer 
contains a node for each attribute. The hidden layer contains a 
node for each rule and the output layer contains a node for each 
class. Each rule (second layer node J )  is connected to a class via 
the multiplicative weight of evidence 11;. This hybrid rule-based 
neural model combines the explicit knowledge representation in the 
form of rules with the parallel implementation of neural-network 
architectures. 

V. SIMULATION RESULTS 
We present the result of applying the above-described system 

to textured images. The system was tested on both structured and 
unstructured natural textures. taken from the Brodatz library of natural 
textures [16], as well as on natural scenery. 

An example of a five-class natural texture classification is shown 
in Fig. 5 .  The mosaic is comprised of grass, raffia, herringbone 
weave, wood and wool (center square) textures. The input mosaic 
is presented (top left). followed by the labeled output map (top right) 
and the corresponding probability maps for a preleamed library of six 
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Training Set 

Input o u t p u t  
Fig. 7. Natural-scene analysis: 3-texture case. The training set, composed of 
gravel, rock and wood textures, is presented (top). It is followed by an input 
lest image (bottom left) and the corresponding output label map (bottom right). 

textures (grass, raffia, wood, sand, herringbone weave, and wool, left 
to right, top to bottom, respectively). The input poses a very difficult 
task which is challenging even to humans. Based on the probability 
maps (with white indicating probability closer to 1) the very satisfying 
result of the labeled output map is achieved. The five different regions 
have been identified and labeled correctly (in different shades of gray) 
with the boundaries between the regions very strongly evident. It is 
worth noting that the probabilistic approach enables the analysis of 
both structured textures (such as the wood, raffia and herringbone 
weave) and unstructured textures (such as the grass and wool). 

Table I presents the class-confusion matrix for the I O  textures of 
Fig. 2. Very high percentage classification rates are achieved for both 
the structured (top row) and the unstructured (bottom row) textures. 
The training set consists of one 128’ 128 image for each texture. 
Three other images are used in testing. Four runs were made, each 
with a different training input, and the averages of these four runs 
are listed in the table. Note that the classification rates are based 
on labeling correctly 8 * 8 windows . This defines a very high- 
resolution classification strategy which enables segmentation as well 
as recognition. 

Fig. 6 demonstrates the capability of the system to generalize 
to the identification of an unknown class. In this task a presented 
pattem, which is not part of the preleamed library, is to be recognized 
as such and labeled as an unknown area of interest. This task is 
termed “pattem discovery” and its application is widespread, from 
identifying unexpected events to the selection of areas of interest 
in scene exploration studies. Learning the unknown is a difficult 
problem in which the probability estimates prove to be valuable. Our 
criterion for declaring an unknown class is when the sum of 11;’s 
( 5 )  is negative for each class; i.e. there is negative evidence for each 
preleamed class. In the presented example, a three texture library was 
leamed, consisting of the wood, raffia and grass textures. The input 
consists of wood, raffia and sand (top left). The output label map (top 
right) which is the result of the analysis of the respective probability 
maps (bottom) exhibits the accurate detection of the known raffia and 
wood textures, with the sand area labeled in black as an unknown 

class. This conclusion was based on the negative weights of evidence 
for each of the preleamed classes-indicated as zero probability in the 
corresponding probability maps. We have thus successfully analyzed 
the scene based on the existing source of knowledge. 

The application of the texture discrimination system to natural 
scene analysis has been pursued [17] and is demonstrated in the 
following two examples. In Fig. 7 .  the three texture classes of gravel, 
rock and wood were learned (top) and a new mosaic test image was 
presented for recognition and labeling (bottom left). Here the images 
were taken using a 35 mm camera at the Jet Propulsion Laboratory 
(JPL). Note that the training image patches are different from the 
testing images. The input test image is successfully segmented and 
labeled as can be seen in the result label map (bottom right). Note 
that black represents a class label in this figure. An example of an 
airborne image classification is presented in Fig. 8. In this example 
the classes learned are bush (output label dark gray), ground (output 
label gray) and a structured area, such as a field present or the man- 
made structures (white). Here, the training was done on 128’ 128 
image examples (1 example per class). The input image is 8OO* 800. 
In the result presented (right) we see that the three classes have been 
found and a rough segmentation into the three regions is achieved. 
Note in particular the detection of the bush areas and the three main 
structured areas in the image, including the man-made field, indicated 
in white. The above results demonstrate the network’s capability for 
generalization and robustness to noise in complex real-world images. 

VI. SUMMARY AND DISCUSSION 
We have presented a texture-analysis system in which learning 

of texture-discrimination rules is achieved in a multi-resolution 
environment. We have thus combined a learning paradigm with 
pyramidal feature-extraction techniques. 

We have demonstrated the ability of the learning approach to 
contribute in a variety of applications. High-percentage classification 
rates are achieved for both structured and unstructured (stochastic) 
textures. The classification results presented in this work are com- 
petitive in performance with other techniques widely used in the 
literature. The main advantages of the learning approach are the 
ability to handle all types of textures within one framework, and 
to produce probability estimates for the output classes. A minimal 
feature set is learned and the classification rules are available for 
the user’s information. The system can thus enhance the user’s 
knowledge of the input domain via its own extracted rule knowledge 
base. Note that a segmentation of the image is achieved via the 
recognition process. 

The output probability maps give more information about the 
decision process than do the hard-decision output common in other 
methods. We have demonstrated the generalization capability of 
the system, based on the probability maps, to the identification of 
an unknown class, so-called “pattern discovery.” An application to 
natural scene analysis, with initial attempts at remote-sensing image 
analysis, are shown. These initial results are very encouraging and 
indicate the robustness of the system in coping with noisy real-world 
applications. 

We have recently achieved classification accuracy rates of 97‘A 
on large complex databases of 30 textures [ l l ] ,  [18], demonstrating 
the scalability of the system performance. Scale and rotation-invariant 
recognition is the topic of current investigation. Encouraging rotation- 
invariant recognition results can be found in [ 181. 
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Fig. 8. Aerial image analysis. The input test image is shown (left) followed by the system output classification map (right). Dark gray indicates a bush 
light gray is a ground cover region and white indicates man-made structures. 
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Geometric Primitive Extraction Using a Genetic Algorithm 

Gerhard Roth and Martin D. Levine 

Abstract-Extracting geometric primitives from geometric sensor data 
is an important problem in model-based vision. A minimal subset is 
the smallest number of points necessary to define a unique instance of 
a geometric primitive. A genetic algorithm based on a minimal subset 
representation is used to perform primitive extraction. It is shown that the 
genetic approach is an improvement over random search and is capable 
of extracting more complex primitives than the Hough transform. 

Index Terms- Genetic algorithms, geometric primitive extraction, 
Hough transform, template matching, minimal subset. 
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