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Abstract: Thi s  paper studies the  mechanics  of undu-  
latory locomotion. This type of locomotion i s  generated 
hy a coupling of in ternal  shape changes t o  external non-  
holonomic constraints.  Employ ing  methods  f r o m  geomet- 
ric mechanics,  we  use  the  dynamic  symmet r i e s  and kine- 
ma t i c  constraints t o  develop a specialized f o r m  of the  dy- 
namic  equations which govern undula tory  sys tems .  These  
equations are wr i t ten  in t e r m s  of physically meaningful 
und intuit ively appealing variables tha t  show the  role of 
znternul shape changes in driving locomotion. 

1 Introduction 
A significant body of research has been developed in 

the area of robotic locomotion. However, prior stud- 
ies have been focused either on a particular set of as- 
sumptions or a particular robot morphology. For ex- 
ample, numerous investigators have studied and demon- 
strated quasi-static, multi-legged locomotion [16]. Begin- 
ning with Raibert [14], hopping robots have received con- 
siderable attention [9], [2]. Bipedal walking and running 
has also been an active area of study [12], [6]. Other re- 
searchers have considered and implemented various forms 
of “snake-like” locomotion schemes [5], [4] and investi- 
gated the geometry of amoeba swimming through a vis- 
cous fluid [15]. However, to  date there exists no unify- 
ing methodology for analyzing or controlling robot loco- 
motion. Ultimately, we seek a mechanics  theory and a 
control theory for robotic locomotion which is uniformly 
applicable to a broad class of locomotory problems. This 
paper introduces a unifying mechanics principle for u n -  
dulatory locomotion. 

Definition: Undulatory locomotion i s  the  process 
of generating n e t  displacements of a robotic mecha- 
n i s m  via a coupling of internal deformations t o  a n  
interaction, between the  robot and  i t s  env ironment .  
Common biological examples of undulatory locomo- 

tion include worms, snakes, amoeba, and fish. In this 
paper, we limit these interactions to those modeled by 
nonholonomic kinematic Constraints. This restriction al- 
lows us to model a rich class of systems and results in 
enough structure to  make the problem tractable. We be- 
lieve that the framework presented here will provide the 
basis for an undulatory locomotion control theory, and 
will ultimately be extended to a very large class of loco- 
motory systems. 

This work has several goals and contributions. First 
we show that locomotion problems can naturally be cast 

in the framework of principal fiber bundles. Second, using 
this structure, we derive a specialized form of the dynam- 
ical equations for mechanical systems with Lagrangian 
symmetries and nonholonomic constraints (which are 
characteristic of many undulatory locomotors). Third, 
we show how these results lead to  a simple and appeal- 
ing insight into undulatory locomotion. Finally, we show 
that the framework presented here is in fact a superset 
of prior work on the mechanics of wheeled nonholonomic 
vehicles and free-floating satellites. 

The results in this paper draw significantly from recent 
results in Lagrangian mechanics due to  Koiller [lo] and 
Bloch et al., [3]. We also note that the role of connections 
in problems of locomotion has been explored in 171, where 
results were developed regarding mechanics and control 
in the case of purely kinematic Constraints. 

2 Mechanics 
It is always possible to  divide a iocomoting robot’s 

configuration variables into two classes. The first class of 
variables describes the posit ion of the robot. We define 
this to  be the displacement of a coordinate frame attached 
to  the moving robot mechanism with respect to  a fixed 
reference frame. Since robots move in Euclidean space, 
the set of body frame displacements is SE(n) ,n  5 3, or 
one of its subgroups- i.e., a Lie group. The second class 
of variables defines the internal configuration, or shape, 
of the mechanism. We require only that the set of all 
possible shapes be described by a manifold, M .  Hence, 
the Lie group, G, together with the shape space, M ,  form 
the total configuration space of the system, which we de- 
note by Q = G x M .  A given configuration is denoted by 

Since we are working with mechanical systems, we will 
assume the existence of a Lagrangian function, L(q,Q),  
on TQ,  the tangent bundle of Q. In the absence of con- 
straints, the robot’s dynamical equations can be derived 
from Lagrange’s equations: 

q E Q. 

d d L  
d t  dqa -(-) - 

where r is a forcing function. In general, though, undula- 
tory locomotion requires some type of interaction with the 
environment, which we will model as a constraint. These 
constraints can take many forms, including viscous fric- 
tion, no-slip wheel conditions, and interaction of a surface 
with a viscous fluid or air. Let us restrict our attention 
to  constraints which are linear in the velocities. Given 
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front wheels 

Fig. 1. Two wheeled planar mobile robot 

k such constraints, we can write them as a vector-valued 
set of k equations: 

w$(q)$ = 0, for i = I.. . IC .  ( 2 )  
This class of constraints includes most commonly inves- 
tigated nonholonomic constraints. 

The constraints can be incorporated into the dynamics 
through the use of Lagrange multipliers. That is, Eq. 1 is 
modified by adding a force of constraint with an unknown 
multiplier, A. 

( 3 )  

Example 1. Consider the two wheeled planar mobile 
robot shown in Figure 1. The robot’s position, (x, y,  0) E 
SE(2) ,  is measured via a frame located at the center of 
the wheel base. The position of the wheels is measured 
relative to  vertical and is denoted ( & , $ 2 ) .  Each wheel 
is assumed to  rotate independently and without slipping. 
The configuration space is then Q = G x M = SE(2)  x 
(S1 x Sl). The Lagrangian for this problem is 

where m is the mass of the robot, J is its inertia, and 
J ,  is the inertia of each of the wheels. The constraints 
defining the no-slip condition can be written as in Eq. 2: 

i c o s O + I j s i n O - - ( $ l + & ) = ~  P ’  
2 

- k sine + y cos0 = 0 (4) 
. P .  

2w 
0 - -($I - 4 2 )  = 0. 

The equations of motion can then be derived using Eq. 3.  
In this case, however, the kinematic constraints provide 
an immediate way of determining the robot’s motion as 
a function of internal shape changes since there are three 
constraints on the three dimensional group of body dis- 
placements. If we makc thc standard assumption that 
the base variables are controllable, then given the time 
evolution of $1 and 4 2 ,  we can completely solve for the 
motion of the robot using Eq. 4, which we rewrite in a 
slightly more revealing manner: 

That is, the motion in the group variables’ ( i , y , Q ) ,  is 
strictly a function of the internal shape velocities ($I,&). 

Fig. 2.  The simplified model of the Snakeboard 

Example 2. Next we turn to  an example which will be 
used throughout the paper for the purposes of illustra- 
tion. The simplified model of the Snakeboard (c.f., [ll]) is 
shown in Figure 2 and consists of a rigid body connecting 
two sets of wheels whose rotations can be independently 
specified. Attached is a momentum wheel which rotates 
about the center of mass, thereby exerting a torque on 
the lower portion of the board. The snakeboard’s po- 
sition variables are (x,y,O) E G = SE(2) ,  and are de- 
termined by a frame affixed to  its center of mass. The 
internal shape variables are ( d ,  $ b ,  $f), and so the base 
space is S1 x S1 x S1 = M .  The configuration space is 
Q = G x M = SE(2)  x S1 x S1 x S1. The Lagrangian is 

1 
f s J w ( ( d ; b  f e )2  + ($f f e)2) .  (6) 

Control torques at the rotor and wheels are assumed, so 

T = ( 0 , 0 1 0 ,  T$, rb ,  Tf) 

The assumption that the wheels do not slip in the direc- 
tion of the wheel axes determines two constraints that 
can be written as linear functions of the velocities: 

- sin($j + 8 ) i  + cos(4f + 0)y + 1 cos($f)e = 0 

- sin(4b + 0 ) i  + cos(4b + 0 ) 1 j  - I cOs($b)e = 0. 
( 7 )  

Notice that for the snakeboard we no longer have 
enough kinematic constraints to uniquely define the mo- 
tion of the robot. For this reason, the simple technique of 
using the constraints to  solve for the robot’s motion as a 
function of shape changes that was employed in the first 
example is no longer viable. The snakeboard’s dynam- 
ics must come into play. Thus, we are relegated to  using 
Eqs. 2 and 3 to define the robot’s dynamics and explicitly 
solving for k unknown Lagrange multipliers. There are a 
number of drawbacks to  this approach. First, the system 
is equivalent to  2n + k first order differential equations. 
Second, physical intuition is often lost when eliminat- 
ing the Lagrange multipliers. That is, we do not have a 
relationship, such as Eq. 5, in which the effect of inter- 
nal shape changes on robot motion is readily apparent. 
Third, it is difficult to  incorporate into Eq. 3 any special 
features which might simplify the ensuing analysis. With 
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these issues in mind, we now embark upon an alternate 
approach in order to  make use of the additional structure 
given to us by the inherent symmetries found in problems 
of locomotion. 

3 Mechanics with symmetries 
3.1 M a t h e m a t i c a l  background 

We begin by introducing some general mathematical 
concepts, which will be illustrated by the snakeboard ex- 
ample. First, we show that locomotion systems can be 
modeled on a principal fiber bundle and review some ideas 
that are associated with them. 

Recall the division of the configuration space, Q = 
G x M .  Such a configuration space is termed a trivial fiber 
bundle. G is called the fiber, and Q is said to  be fibered 
over the base space, M .  Q is "trivial" because the product 
structure is global. In our context, the words fiber and 
base are interchangeable with robot position and internal 
shape, respectively. There are two natural projections 
which we will use. Given a point ( g , r )  E G x M = &, 
define these projections as 7r1 : Q + G : ( g , r )  tj g and 

The use of a Lie group will be important for describing 
the robot's motion through its environment. Formally, 
the displacement of the robot's body fixed frame is con- 
sidered as a left translation. That  is, if the robot's initial 
position is denoted by g, and it is displaced by an amount 
h, then its final position is h g .  This displacement can be 
thought of as a map Lh : G + G given by L h ( g )  = h g  
for g E G. The left translation induces a left ac t ion  of G 
on Q. 

~2 : Q -+ M : ( g , r )  T .  

Definit ion 3. A lef t  ac t ion  of a Lie group G on a man- 
ifold Q is a smooth map @ : G x Q + Q such that: (1) 
@ ( e ,  q )  = q for all q E Q, and e the identity element of G; 
and (2) @ ( h , @ ( g , q ) )  = @ ( h g , q )  for every g , h  E G and 

It will be useful to  consider the left action as a map from 
Q into Q, with the element h E G held fixed. Nota- 
tionally, @h : Q + Q is given by (g , r )  C )  ( @ ( h , g ) , r )  = 
(hg, r ) .  The lifted action, which describes the effect of @h 

on velocity vectors in TQ, is the tangent map of a h .  This 
is the linear map, D,@h : TpQ -+ ThaQ (often denoted 

q E Q. 

Tp@h). 

Definit ion 4 .  Let M be a manifold and G a Lie group. 
A trivial yrancipal jiber bundle with base M and structure 
group G consists of the manifold Q = G x M together 
with the free left action of G on Q given by left translation 
on the group variable: @ h ( g ,  r )  = ( h g ,  r )  for r E M and 
h , g  E G. 
That is, our bundle configuration space has additional 
structure arising from the Lie group component. This 
additional structure is important for the ensuing devel- 
opments. 
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Example  2: (cont'd) The configuration space for the 
snakeboard is Q = G x M = SE(2)  x (S1 x 9' x Sl), and 
a configuration is denoted q = (x, y ,  8, '$, $ b ,  $f). The 
action is the left action of SE(2)  on itself. Given h = 
(a1,az,a) E SE(2) ,  

@ h ( q )  = (xcosa  - y s i n a + a l , x s i n a + y c o s a + a 2 ,  

0-t  a,'$,$b,$f). 
From this the lifted action is easily computed as 

Dy@h(vy)  = (v, cos a - wy sin a,  w, sin a + vy cos a,  

where vq = (U,, vu, v g ,  U$, ub, v f )  E TyQ is a point in the 
tangent space of Q at q.  

Associated with a Lie group, G, is its Lie algebra, de- 
noted 9. The Lie algebra can be identified with T,G and 
generates G via the exponential mapping, exp : 9 + G 
(see [l]). The exponential mapping also associates with 
each E E g a vector field on G, and by extension on 
Q = G x M ,  called the infinitesimal generator, [Q, given 

U0 , , vb, v f )  1 

Each infinitesimal generator is tangent to  the fiber, and 
the set of all such vectors at q E Q forms a subspace of 
TyQ called the vertical subspace, 

VyQ = { E Q ( ~ )  E T y Q I  I E a> .  
Eq. 8 takes elements of the Lie algebra and maps them 
to infinitesimal generators. It is an isomorphism between 
g and V,Q. This implies that  any vector uy E VyQ can 
be written as the infinitesimal generator at q of some Lie 
algebra element, i.e., vy = [ ~ ( q )  for some I E g. 

Example  2: (cont'd) The Lie algebra for SE(2)  is de- 
noted se(2) ,  and the relationship between an element, 

= ( a l ,  a2, a )  E se(2) ,  and the corresponding infinitesi- 
mal generator on TQ is given by 

The vertical subspace is given trivially by TG x {0}: 
EQ (z, !/, 8 ,  '$, $b , $f) = (a1 - Ya, a2 f xa, a ,  O , O , o ) .  

d a d  
ax ay ' ao = sp{- - -}. (9) 

3.2 Noether's theorem 
Conservation laws (e.g., conserved linear and angular 

momentum) naturally arise when a Lagrangian remains 
invariant under the action of a Lie group, as stated in 
Noether's theorem [l], [3]: 

Theorem 5. (Noether) Let L be a Lagrangian which 
is invariant under the action of a Lie group, G, (i.e., 

for all curves, c( t )  : [a, b] -+ Q satisfying Lagrange's equa- 
tions (Eq. l), we have that 

L(%(d,D,@hv,) = L(q,u,) V h  E G,v, E T,Q). Then, 



for all E E 8.  Equivalently, p = 0, where p = ( g ;  [ Q )  is 
the gen,eralized m o m e n t u m .  

For the case in which G is SE(2)  or SE(3 ) ,  Noether’s 
theorem is equivalent to conservation of linear and angu- 
lar momentum. However, undulatory locomotion relies 
on some type of interaction with the environment. Unfor- 
tunately, conservation laws are not necessarily preserved 
in the presence of the constraints which are inherent to  
undulatory locomotion. The next section describes an ex- 
tension to the classical theory that combines the effects 
of symmetries and constraints. 

3.3 Symmetries with constraints 

constraint distribution (i.e., the set of all velocities that 
satisfy the constraints) as where 

Given the constra,ints as in Eq. 2, we can write the Fig. 3.  Instantaneous center of rotation 

Dq = { U ,  E T,Q I w5.i = 0 ,  V i  = 1,.  . . , k } .  a = -I![cos $hb cOS(4f  + e )  $- COS 4f cos($bb + e ) ]  
(10) 

The constraints are said to  act vertically if the constrained 
fiber distribution, 

b = -I[cos4b sin(4f + 0) + cos4f sin(qhb + e ) ]  
c = sin(#b - $bf). 

The vertical distribution was defined in Eq. 9, and so the 
S = D n V Q ,  (I1) constrained fiber distribution is: 

is nonempty. Assuming this to  be true, we have the fol- 
lowing proposition, first developed in [3]. For proofs of 
this proposition and those to follow, the reader is referred 
to PI, ~ 3 1 .  

Proposition, 6. Let L and D define a constrained sys- 
tem on Q = G x M whose Lagrangian is G-invariant. If c 
is a curve which satisfies the Lagrange-d’Alembert equa- 
tions (Eq. 3) for a system with nonholonomic constraints 
(Eq. 2) , then the following generalized m o m e n t u m  equa- 
t ion  holds for all vector fields, [k E S:  

where 

d d d  S, = D, n V,Q = span{u- + b- + e-} az ay 80 
Note, the  constrained fiber distribution physically corre- 
sponds t o  ins tantaneous  rotations of the  snakeboard about 
a poin t  where the  two  snakeboard wheel axes intersect 
(Figure 3). 

This basis for S satisfies the necessary conditions given 
in Proposition 6. For the snakeboard, the constrained 
m o m e n t u m  of Eq. 13 is computed as 

is the con,strain,ed m,omentum.  
That is, in the presence of constraints, momentum-like 
quantities exist, but they may not be conserved. Eq. 12 
determines how the momentum-like quantity, p c ,  evolves. 
T h e  non-conservation of momentum- l i ke  quantit ies i s  the  
key t o  dynamzc undula torv  locomotton. It describes why 
the snakeboard can start from rest and build up momen- 
tum, even though no external forces act on the system 

Example  2: (cont’d) An easy calculation shows that 
the snakeboard Lagrangian, Eq. 6, is invariant with re- 
spect to the SE(2)  group action. The wheel constraints 
of Eq. 7 can be expressed as a constraint distribution: 

[Ill. 

where [ k  E S ,  f = J + J ,  + 2Jw is the sum of the 
moments of inertia, and R is the radius from the instan- 
taneous center of rotation to  the snakeboard’s center of 
mass (Fig. 3). Thus, pc  corresponds t o  the  snakeboard’s 
angular m o m e n t u m  about the  ins tantaneous  center of ro- 
tation. If the front and back wheels were fixed, this mo- 
mentum would be conserved, as the wheels would pro- 
vide a holonomic constraint forcing the snakeboard to  
rotate about the fixed center. For the snakeboard, the 
constrained momentum is one-dimensional. In general 
we would derive momenta corresponding to  each uncon- 
strained degree of freedom along the group orbit, i.e., the 
number of momenta would equal dim S. The generalized 
momentum equation, Eq. 12, for the snakeboard is: 
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3.4 Constructing the connection 

We now introduce a. key concept in the theory of prin- 
cipal fiber bundles which also has an important role in 
locomotion analysis. 

Definrition 7. [8] A connect ion is an assignment of a 
horizontal subspace, HqQ c TqQ, for each point q E Q 
such that 

(1) TqQ = VqQ CB HqQ, 
( 2 )  D,@hH,Q = Hh.,Q, for every q E Q and 

(3) HqQ depends smoothly on q. 
h E G, and 

Condition (1) implies that T,Q can everywhere be divided 
into a vertical subspace, V,Q, and a horizontal subspace, 
HqQ. Connections are useful because of the following 
fact. The horizontal subspace defined by the connection 
is everywhere isomorphic to  the tangent space of the base: 
HpQ Y T T z ( q ) M .  The horizontal lift is the isomorphism 
which maps vectors in T,,(,)M to  the corresponding lifted 
vectors in H,Q c TqQ under this identification. The 
horizontal lift, then, is the key to understanding the re- 
lationship between motion in the base space (via tangent 
vectors on Trz(q)A4) and motion in the total space, Q ,  
where locomotion is effected. 

The connection is a general geometric structure that 
will enable us to  describe how internal shape changes cre- 
ate net robot motion. This is the generalization and for- 
malization of the intuitive procedure that lead to  Eq. 5. 
As shown in the snakeboard, the kinematic Constraints, 
Eq. 2, are generally not sufficient to  define the robot's 
motion. It is necessary to supplement the kinematic con- 
straints with symmetry constraints, in the form of the 
constrained momenta, in order to  define a connection. 
In order to  do so, we must make two assumptions re- 
garding S. The first assumption, that the constraints be 
G-invariant, is a natural one when dealing with locomo- 
tion. Like the Lagrangian, locomotion constraints should 
not depend upon the robot's absolute position and orien- 
tation, and so are expected to  be invariant with respect 
to the group. The second assumption is more techni- 
cal in nature. Let dimG = s. Then it is assumed that 
dim S = dim 2) -dim A 4  = s - k .  Intuitively, this assump- 
tion implies that there are no constraints acting directly 
on the internal shape changes. 

Given these assumptions, the constrained momenta 
described in Proposition 6 give the additional constraints 
necessary to  construct a connection. Recall that Eq. 2 
gives k constraints, w'((q)q = 0, i = 1,.  . . , k ,  on an s- 
dimensional group. Given our dimensional assumption 
on S ,  we can choose a basis for S and hence develop s - k 
additional u f i n e  constraint equations, wli+', . . . , w', from 
the constrained momenta, 

where the (Ec)?' form a basis for SI  and hence each 
lies in g (but may vary pointwise over &). In or- 

der to  establish an invariant horizontal distribution (i.e., 
satisfy condition (2) of Defn. 7), we must show that Eq. 14 
is G-invariant. 

Proposition 8. Given a system with L and 2) G- 
invariant, and for which there exists a G-invariant basis 
for S ,  X1,. . . ,xspk , the constrained momentum given 
by (P")~(v~) = ( g ( u q ) ; X z ( u q ) )  is itself G-invariant, i.e., 
(pc) i (Tp@huq)  = (P')~(V~), for i = 1,.  . . , s - k .  

The constrained momenta of Eq. 14 may then be ap- 
pended to the kinematic constraints of Eq. 2 in order to 
define the fiber equations: 

wq = r, (15) 
where 7 = (0,. . . ,0 ,  (p" ) ) ' ,  . . . , (p")")  is an affine term 
stemming from the constrained momenta developed in 
Proposition 6. The mot ion  of a n  undulatory system must 
satisfy the fiber equations. 

Using the invariance of Eq. 15, we can separate the 
fiber equations into fiber and base components. First, 
rewrite Eq. 15 as 

ws(g,  rib + w r ( g ,  r)+ = ;U. (16) 
Invariance of Eq. 15 means w g ( @ h g , r ) D q @ h  = w s ( g , r )  
and w,(@hg,r) = w,(g,r). Setting h = 9-l in the for- 
mer relation gives wg(g, r )  = wg(e, r)D,ag-l = wg(r)g-l, 
while the latter relation implies that w, is independent of 
g. It can also be shown that w S ( r )  is invertible, and so 
Eq. 15 becomes 

g-lg = A(r)7: + y ( r )pc ,  (17) 
where g-l represents the lifted action applied to  vectors 
tangent to the fiber, and y ( r )pc  = w;) ' (r)r .  

Practically speaking] the fiber equations, Eq. 15, play 
the most central role in the mechanics of undulatory lo- 
comotion. Formally, the connection is defined by setting 
7 = 0 in Eq. 15. If = y = 0, then Eq. 17 describes the 
horizontal lift, i.e., the relationship between base vectors 
in T,,(,)M and vectors in the full state space, TpQ. 

The relationship between the connection and the fiber 
equations can be interpreted as follows. Recall that g - l q  
is an element of the Lie algebra, g, which physically corre- 
sponds to the velocity of the robot's body fixed reference 
frame (as seen by an observer in the body frame). The 
connection (described by ;U = y = 0 in Eqs. 15, 17) di- 
rectly describes how internal shape changing motions, +, 
lead to  robot motion, g-lg. However, the moving robot 
may have built up some momentum due to  previous mo- 
tions. When there is no motion in the base space (7: = o),  
the robot's motion is driven solely by the momentum 
terms, y. Thus, the fiber equations determine the robotj's 
motion from the combination of built-up momentum and 
internal shape changes. They are formulated in a, way 
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which makes explicit each of these two contributions to 
locomot ion. 

However, the momentum terms in the fiber equations 
are themselves governed by the generalized momentum 
equation, Eq. 12. For the case of undulatory locomotion, 
where the constraints are assumed to be group invariant, 
it can further be shown that Eq. 12 is also invariant with 
respect to the group action. 

Proposit ion 9. Given a constrained mechanical sys- 
tem, define the function Pc(q,q) = $$($(< ' (q ) )L )  = 

$pC,where (6 is a G-invariant vector field in S and (' is 
the Lie algebra-valued function over Q which generates 
(6. As a function on T Q ,  P" is G-invariant. Thus, for 
all g E G, 

P"(@hq, T * @ h d  = P"(q ,  4). 
Practically speaking, this proposition implies that 

Eq. 12 can always be expressed strictly in terms of base 
variables and constrained momenta, i.e., 

5" = f ( r , + , p C ) .  (18) 

Example 2: (concl.) Combining the kinematic con- 
straints and the constrained momentum, the fiber equa- 
tions are: 

where 

f ( r )  = sin(4b - 4 f ) ( J T ,  J,, J,). 

The invariance of the constraints and the constrained mo- 
mentum allows us to  extract the group variables from 
Ey. 19. Letting e denote the identity group transforma- 
tion, we have 

W(e , r )g - lg  = 

- sin 4 b  cos d)b -1 cos (bb  

- sin d)f cos 4f 1 cos 4 f 
-27nlcos 4 b  cos 4f -ml sin(4b + + f )  jsin(4b - 4f)  ( c y 0  si;0 

-sin0 cos0 0 

Finally, we can write this as 

where 

The generalized momentum equation (Eq. 12) is 

l j c  = mtLi + mblj + fc19 + J,C$ + J,c(& + $f) .  
Using the invariant form of the connection, it is possi- 
ble to rewrite this equation solely in terms of the base 
variables and the momentum: 

. ( p ' -  f ( r ) + ) + f ( r ) + ,  
2 d t  

where U,(.) = w,(e,r)  as defined in Eq. 16, and 
det w g ( r )  = -(mR2+j)c which corresponds to the inertia 
of the board about the instantaneous center of rotation 
(see Figure 3 ) .  Most importantly, however, notice that 
the dependence on the fiber variables has been completely 
eliminated from the generalized momentum equation. 

3.5 Summary and limiting cases 
In summary, by using a geometric approach, and by 

using the symmetries and constraints which are natural 
to  undulatory locomotion systems, we have reduced the 
system of n second order ODE'S with k first order con- 
straints (Eqs. 2 and 3 )  to  a system of s first order (affine) 
constraints termed the fiber equations, s - k first order 
generalized momentum equations (Eq. 18), 

g-lg = A(r)+ + y ( r ) p C  

and a group of second order equations on the base space. 
This paper does not discuss the "reduced dynamics" on 
the base space, as these dynamics are not as important for 
the understanding of undulatory locomotion. Thus, the 
equations which are important to  understanding undula- 
tory locomotion are reduced to  two first order equations 
that make explicit how internal shape changes and physi- 
cal inertial lead to  robot motion. We now briefly consider 
special cases of these equations that have occurred in pre- 
vious work. For additional discussion of these ideas, the 
reader is referred to [ 3 ] ,  [7]. 

Purely kinematic constraints. With a sufficient 
number of kinematic constraints, the system's motion 
along the fiber is fully constrained. In this kinematic  
case, the connection takes the simpler form: 

(21) li" = ! ( r ,+,Pc) ,  

g-lg = A(r)+. (22) 
Most commonly studied wheeled vehicles, such as Exam- 
ple 1, fall into this category. Eq. 22 describes a system on 
the fiber with no drift-a case that has been extensively 
studied in the literature on nonholonomic systems. 

Pure symmetry constraints. There are no kine- 
matic constraints in the cases of falling cats, satellites 
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with rotors or attached robot arms, and platform divers. 
However, all of these systems have inherent Lagrangian 
symmetries, and therefore conserved momenta. In these 
cases, the fiber and generalized momentum equations 
take the form: 

1-1 is the generalized momenta, and is constant. If p = 0, 
these equations reduce to  Eq. 22. Using A(r)  it is clear 
how internal shape changes lead to  net reorientation of 
the system. The use of fiber bundles and connections 
plays a primary role in understanding the mechanics and 
control of systems with dynamic constraints. 

4 Discussion 
Undulatory locomotors have no jets, thrusters, tracks, 

or legs to  generate motion. Instead, motion is generated 
by a coupling of internal shape changes to  external con- 
straints. This paper has focused on systems with non- 
holonomic kinematic constraints. This class of systems 
includes not only the snakeboard, but also the “active 
cord” mechanism of Hirose [SI, and any terrestrial un- 
dulatory robotic system that uses wheels to  provide mo- 
tion constraints. Also, many of the snake and worm-like 
systems discussed in [4] can be analyzed using the tech- 
niques described here. Fish and some other undulatory 
rnechanisms seem to use a similar principle to generate 
movement, but the constraints are more complicated than 
the ones considered in this paper. It is possible that our 
framework can be extended to  include these systems as 
well. Furthermore, the same basic process seems to  ex- 
ist in legged locomotion, though the discontinuous nature 
of the dynamics makes it more difficult to  analyze these 
types of systems from a classical standpoint. 

A key observation in this work is that the constraints 
inherent in undulatory systems provide the means to  de- 
termine motion as a function of internal shape change. 
When kinematic constraints are not sufficient to  uniquely 
determine the robot’s motion, dynamic symmetries pro- 
vide the additional constraints. of connections on princi- 
ple bundles to  describe the relationship between internal 
deformations and locomotive effect because the connec- 
tion encompasses much of the information which is essen- 
tial to locomotion. Using these tools, we can parameter- 
ize the dynamics in terms of physically meaningful vari- 
ables of generalized momenta, internal shape, and motion 
of the robot reference frame. 

While this paper introduced a useful framework for 
studying undulatory mechanics, many open questions re- 
main. Controllability of Undulatory systems is a central 
issue that remains unresolved. Given an initial configu- 
ration, 40,  and a final configuration, 41, an undulatory 
robot such as the snakeboard is said to  be controllable 
if there exists a path connecting qo to  q1 which satis- 
fies the robot’s dynamical equations. Using a principle 
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fiber bundle framework, Kelly and Murray [7] have re- 
cently derived a controllability test for systems which are 
described by the kinematic connection of Eq. 22. We 
believe that the formulation developed in this work will 
ultimately lead to  an analogous controllability test for 
more general classes of systems which include dynamic 
constraints. Beyond the question of controllability lies 
the practical importance of developing motion planning 
schemes to  generate feasible, or perhaps optimal, paths 
for undulatory motion planning problems. Finally, we 
wish to  develop a better understanding of the concept of 
a “gait” in undulatory systems. For example, in [ll] it 
was shown that the snakeboard exhibits different “gaits” 
which generate motion. The geometric interpretation of 
these gaits is still unclear. 
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