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Abstract-Recurrent neural networks have re- 
cently been shown to have the ability to learn fi- 
nite state automata (FSA’s) from examples. In 
this paper it is shown, based on empirical analy- 
ses, that second-order networks which are trained 
to learn FSA’s tend to form discrete clusters as 
the state representation in the hidden unit acti- 
vation space. This observation is used to define 
‘self-clustering’ networks which automatically ex- 
tract discrete state machines from the learned net- 
work. However, the problem of instability on long 
test strings is a factor in the generalization per- 
formance of recurrent networks - in essence, be- 
cause of the analog nature of the state representa- 
tion, the network gradually “forgets” where the in- 
dividual state regions are. To address this problem 
a new network structure is introduced whereby the 
network uses quantization in the feedback path to 
force the learning of discrete states. Experimental 
results show that the new method learns FSA’s 
just as well as existing methods in the literature 
but with the significant advantage of being stable 
on test strings of arbitrary length. 

I .  INTRODUCTION 

ARIOUS direct search algorithms have been pro- V posed for learning grammars from positive and nega- 
tive examples (strings) [1,4,8,11]. More recently recurrent 
neural networks have been investigated as an alternative 
method for learning simple grammars [2,3,5,7,9]. All of 
these methods have shown the capability of recurrent net- 
works to learn different types of simple grammars from 
examples. 

In this paper we restrict the focus to a recurrent net- 
work’s behavior in learning regular grammars -- regular 
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grammars are the simplest type of grammar in the Chom- 
sky hierarchy and have a one-to-one correspondence to 
finite state machines [6]. 

The motivation of this work is to obtain a clearer under- 
standing of the behavior of recurrent networks, in partic- 
ular with regard to both their learning characteristics and 
internal state representations. In turn, this information 
may give more insight into their capability for fulfilling 
other more complicated tasks. 

Giles et al. have proposed a “2nd-order” recurrent net- 
work structure to learn regular languages [5]. Henceforth, 
all references to 2nd-order recurrent networks imply the 
network structure described in [5]. The experiments re- 
ported in this paper confirm their claim that 2nd-order 
nets can learn various grammars well. In addition, we 
have found empirically that this structure learns these 
grammars more easily than the simple recurrent network 
structure (or the Elman structure) [3] which does not use 
2nd-order units. However, a stability problem emerges 
with the 2nd-order trained networks as longer and longer 
input strings are presented (similar behavior in recurrent 
networks has been found in different contexts [9,10]). The 
stability problem led us to look deeper into the internal 
representation of states in such a network and the fol- 
lowing interesting behavior was observed: during learn- 
ing, the network attempts to form clusters in hidden unit 
space as its representation of states. This behavior oc- 
curred in al l  the learning experiments we performed. Once 
formed, the clusters are stable for short strings, i.e., strings 
with lengths not much longer than the maximum length 
of training strings. However, in 14 out of 15 learned net- 
works,when sufficiently long strings are presented for test- 
ing, the clusters (states) start to merge and ultimately 
become indistinguishable. To solve this problem, in this 
paper we propose a discretized combined network struc- 
ture which can be shown to successfully learn stable state 
representations. In the new network, instead of regions 
of activation space, the states of the network are actu- 
ally isolated discrete points in the hidden unit activation 
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Fig. 1. Equivalent first-order structure of second-order network 

space. 

11. AN EQUIVALENT GATING MODEL FOR 
SECOND-ORDER NETWORKS 

A convenient way to view 2nd-order networks which deal 
with binary sequences is to decompose the network struc- 
ture into two separate component networks controlled by 
an “enabling” or “gating” signal (Fig. 1). The network 
consists of two 1st order networks with shared hidden 
units. The common hidden unit values are copied back to 
both netO and netl after each time step, and the input 
stream acts as a switching control to enable or disable one 
of the two nets. For example, when the current input is 0, 
netO is enabled while netl is disabled. The hidden unit 
values are then decided by the hidden unit values from the 
previous time step weighted by the weights in net0. The 
hidden unit activation function is the standard sigmoid 
function, f(z) = *. Note that this representation of 
a 2nd-order network, as two networks with a gating func- 
tion, provides insight into the nature of 2nd order nets, 
i.e., clearly they have greater representational power than 
a single simple recurrent network, given the same number 
of hidden units. 

111. THE LEARNING PROCEDURE AND THE 

We use $ to  denote the activation value of hidden unit 
number i at time step t .  w3 is the weight from layer 1 
node j to layer 2 node i in netn. n = 0 or 1 in the case of 

EXTRACTION O F  STATE MACHINES 

binary inputs. Hidden node $ is chosen to be a special 
indicator node, whose activation should be close to 1 at 
the end of a legal string, or close to 0 otherwise. 

A standard 2nd-order network (or equivalently, the 
gated network of Fig. 1) was used in all of the experi- 
ments described in this section. The following grammars 
were used in our initial experiments: 

Tomita grammars [ll]: 

0 # 1 -  1* 
o #4 - any string not containing “000” as a 

substring. 

0 #5 - [(Ol(lO)(Ol~lO)]* 
0 #7 - 0*1*0*1* 

Simple vending machine: The machine takes in 3 
types of coins: nickel, dime and quarter. Starting 
from empty, a string of coins is entered into the 
machine. The machine “accepts”, i.e., a candy bar 
may be selected, only if the total amount of money 
entered exceeds 30 cents. 

A training set consists of randomly chosen variable length 
strings with length uniformly distributed between 1 and 
LmaX , where L,,, is the maximum training string length. 
Each string is marked as “legal” or “illegal” according 
to the underlying grammar. The learning procedure is a 
gradient descent method in weight space (similar to that 
proposed by Williams and Zipser [12]) to  minimize the 
error at the indicator node for each training string [5]. 

In a manner different from that described in [5], we 
present the whole training set (which consists of 100 to 
300 strings with L,,, in the range of 10 to 20), all at 
once to the network for learning, instead of presenting a 
portion of it in the beginning and gradually augmenting it 
as training proceeds. Also, we did not add any end symbol 
to the alphabet as in [5]. We found that the network 
can successfully learn the machines (2-7 states) we tested 
on, with a small number of hidden units (4-5) and with 
training in less than 500 epochs. This agrees with the 
results described in [5]. 

To examine how the network forms its internal represen- 
tation of states, we recorded the hidden unit activations at 
every time step of every training string in different training 
epochs. As a typical example, shown in Fig. 2(a)-(e) are 
the SO-S~ activation-space records of the learning process 
of a 4hidden-unit network. The underlying grammar was 
Tomita #4, and the training set consisted of 100 random 
strings with Lmax = 15. Note that here the dimension 
SO is chosen because of it being the important “indicator 
node”, and S3 is chosen arbitrarily. The observations that 
follow can be made from any of such 2-D plots from any 
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eanung Tomita grammar #4. (So is the I axis.) (a)-(e) are plots of all activations on 1 ie 
training data set. (a) During 1st epoch of training. (b) During 16th epoch of training. ( c )  During 21st epoch of training. (d) During 31st 
epoch of training. (e) After 52 epochs, training succeeds, weights are fixed. (f) After training, when tested on a set of maximum length 50. 

run in learning any of the grammars in the experiments. 
Each point corresponds to the activation pattern of a cer- 
tain time step in a certain string. Each plot contains the 
activation points of all  time steps for all training strings 
in a certain training epoch as described in the caption. 

It can be observed that the network attempts to form 
clusters in activation space as its own representation of 
states and is successful in doing so. When given a string, 
the activation point of the network jumps from cluster to 
cluster as input bits are read in one by one. Hence, the 
behavior of the network looks just like a state machine's 
behavior. Motivated by these observations, we applied 
the L-means clustering algorithm to the activation record 
in activation space of the trained network to extract the 
states (rather than dividing up the space evenly as in [5]). 
Empirically, results were more reliable when k was cho- 
sen to be a large number, for example, 20. The initial 
seeds were chosen randomly. We then defined each clus- 
ter found by the k-means algorithm to be a "state" of the 
network and used the center of each cluster as a represen- 
tative of the state. The transition rules for the resulting 

state machine were calculated by setting the S:-' nodes 
equal to a cluster center, then applying an input bit (0 
or 1 in binary alphabet case), and calculating the value 
of the $ nodes. The transition from the current state 
given the input bit is to the state that has a center closest 
in Euclidean distance to the obtained Si values. We then 
applied Moore's state machine reduction algorithm on the 
originally extracted machine to get an equivalent minimal 
machine which accepts the same language but with the 
fewest possible number of states. In this manner we were 
able to extract machines that are equivalent to the mini- 
mal machines corresponding to the underlying grammars 
from which the data was generated. 

IV. THE STABILITY PROBLEM W I T H  LONG TEST 
STRINGS 

With the 2nd-order networks described above, the trained 
networks perform well in classifying unseen short strings 
(not much longer than L,,,), but as longer and longer 
strings are presented to the network, the percentage of 
strings correctly classified drops substantially. Shown in 
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Fig. 2(f) is the recorded activation points for s0-S~ of the 
same trained network from Fig. 2(e) when long strings 
are presented. The original net was trained on 100 strings 
with L,,, = 15, whereas the maximum length of the test 
strings in Fig. 2(e) was 50. Activation points a t  all time 
steps for all test strings are shown. 

It can be seen that the well-separated clusters formed 
during training begin to merge together for longer and 
longer strings and eventually become indistinguishable. 
These points in the center of Fig. 2(e) correspond to  ac- 
tivations at time steps longer than L,,, = 15, which 
means that network could not make hard decisions on long 
strings. The activation points of a string stay in the orig- 
inal clusters for short strings and start to  diverge from 
them when strings become longer and longer. The diverg- 
ing trajectories of the points form curves with sigmoidal 
shape. 

Similar behavior was observed for 14 out of 15 of the 
networks successfully trained on different machines, ex- 
cluding the vending machine model which is somewhat of 
a pathological case since all long strings are legal. 

V. A SELF-CLUSTERING NETWORK THAT CAN FORM 
STABLE STATES 

From the above experiments it is clear that even though 
the network is successful in forming clusters as its state 
representation during training, it has difficulty in creating 
stable clusters, i.e., to form clusters such that the activa- 
tion points for long strings converge to  certain centers of 
each cluster, instead of diverging as observed in our ex- 
periments. The problem can be considered as inherent to 
the structure of the network where it uses analog values to 
represent states, while the states in the underlying state 
machine are actually discrete. One intuitive suggestion to 
fix the problem is to replace the analog sigmoid activation 
function in the hidden units with a threshold function: 

1.0 if t 2 0.5 
0.0 if x < 0.5 D(x)  = 

In this manner, once the network is trained, its represen- 
tation of states (i.e., activation pattern of hidden units) 
will be stable and the activation points won't diverge from 
these state representations once they are formed. How- 
ever, there is no known method to train such a network, 
since one can not take gradient of such activation func- 
tions. 

An alternative approach would be to train the original 
2nd-order network as described earlier, but to add the dis- 
cretization function D(x)  on the copy back links during 
testing. The problem with this method is that one does 
not know a prior i  where the formed clusters from train- 
ing will be. Hence, one does not have good discretization 

Fig. 3. A combined network with discretization 

values to threshold the analog values in order for the d i s  
cretized activations to be reset to  a cluster center. Exper- 
imental results have confirmed this prediction. For exam- 
ple, after adding the discretization, the modified network 
can't even correctly classify the training set which it has 
successfully learned in training. As in the previous ex- 
ample, after training and without the discretization, the 
network's classification rate on the training set was l O O % ,  
while with the discretization added, the rate became 85%. 
For test sets of longer strings, the rates with discretization 
were even worse. 

We propose that the discretization be included in both 
training and testing in the following manner: Fig. 3 shows 
the structure of the network with discretization added. 

From the formulae below, one can clearly see that in 
operational mode, i.e. when testing, the network is equiv- 
alent to  a network with discretization only: 

ht = f(Xwl"j 's;- ' ) ,  V i ,  t 
j 

s: = D(hf), 
0.8 if x 2 0.5 
0.2 if x < 0.5 where D ( t )  = 
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0.8 if I 2 0.0 
0.2 if x < 0.0 where Do(z) = 

(Here xt is the input bit at time step t .  We use hi to 
denote the analog value of hidden unit i at time step t ,  
and < the discretized value of hidden unit i at time step 

The sigmoid nodes can be eliminated in testing to sim- 
plify computation. 

During training, however, the gradient of the soft sig- 
moid function is made use of as a “pseudo gradient” E131 
to provide a heuristic hint as to which direction (and how 
close) a step up or a step down would be in the thresholded 
output function. 

By adding these discretizations into the network, one 
might argue that the capacity of the net is greatly reduced, 
since each node can now take on only 2 distinct values, as 
opposed to infinitely many values (at least in theory) in 
the case of the undiscretized networks. However, in the 
case of learning discrete state machines, the argument de- 
pends on the definition of the capacity of the analog net- 
work. In our experiments, 14 out of 15 of the learned net- 
works have unstable behavior for nontrivial long strings, 
so one can say that the capability of such networks to dis- 
tinguish different states may start high, but deteriorates 
over time, and would eventually become zero. 

t.1 

VI. EXPERIMENTAL RESULTS 

Shown in Fig. 4(a),(b),(c) are the ho - hl activation-space 
records of the learning process of a discretized network 
( h  values are the undiscretized values from the sigmoids). 
The grammar being learned is again the Tomita gram- 
mar #4. The parameters of the network and the training 
set are the same as in the previous case. Again, any of 
the other 2-D plots from any run in learning any of the 
grammars in the experiments could have been used here. 

Fig. 4(c) is the final result after learning, where the 
weights are fixed. Notice that there are only a finite num- 
ber of points in the final plot in the analog activation 
h-space due to the discretization. Fig. 4(d) shows the dis- 
cretized value plot in SO - SI, where only 3 points can be 
seen. Each point in the discretized activation S-space is 
automatically defined as a state. The transition rules are 
calculated as before, and an internal state machine in the 
network is thus constructed. In this manner, the network 
performs self-clustering. For this example, 6 points were 
found in S-space, so a 6-state-machine was constructed as 
shown in Fig. 5(a). Not surprisingly this machine reduces 
by Moore’s algorithm to a minimum machine with 4 states 
which is exactly the Tomitagrammar #4 (Fig. 5(b)). Sim- 
ilar results were observed for all the other grammars in the 
experiments. 

0.40 
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t 

t . j  t 
0.20 o.a[ . . 

t .  
0” , , , , , {  . m t ,  , , , , , I  
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Fig. 4. Discretized network learning Tomita grammar #4. (a) ho - 
h3 during 1st epoch of training. (b) ho - h3 during 15th epoch of 
training. (c) ho - h3 after 27 epochs when training succeeds, weights 
are fixed. (d) SO - S3, the discretized copy of ho - h3 in (c). 

There are several advantages from introducing dis- 
cretization into the network: 

1.  

2. 

3. 
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Once the network has successfully learned the state 
machine from the training set, it’s internal states are 
stable. It will always classify input strings correctly, 
independent of the length of these strings. 

No clustering is needed to extract out the underly- 
ing state machine, since instead of using vague clus- 
ters as its states, the network has formed distinct, 
isolated points as states. Each point in hidden-unit 
activation space is a state. The network behaves ex- 
actly like a state machine with no instability what- 
soever. 

Experimental results show that the size of the state 
machines extracted out in this approach are of a 
much smaller size than that found previously by the 
clustering method (Section 111). Note that in the 
new discretized structure there is no need to man- 
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Fig. 5. Extracted state machine from the discretized network after 
learning Tomita grammar #4. (double circle means “accept” state, 
single circle means “reject” state.) (a) &state machine extracted 
directly from the discrete activation space. (b) Equivalent minimal 
machine of (a). 

ually choose the number of clusters to  “discover” 
the internal network states (no need to  choose k for 
k-means) - in this sense the network performs self- 
clustering. 

It should be noted that convergence has a different 
meaning in the case of training discrete networks as op- 
posed to the case of training analog networks. In the 
analog networks’ case, learning is considered to  have con- 
verged when the error for each sample is below a certain 
error tolerance level. In the case of discrete networks, 
however, learning is only stopped and considered to have 
converged when zero error is obtained on all samples in 
the training set. In the experiments reported in this paper 
the analog tolerance level was set to 0.2. The discretized 
networks took on average 30% longer to  train in terms of 
learning epochs compared to the analog networks for this 
specific error tolerance level. 

VII. CONCLUSIONS 

In this paper we explored the formation of clusters in hid- 
den unit activation space as an internal state representa- 
tion for 2nd-order recurrent networks which learn regular 
grammars. 

These states formed by such a network during learning 
are not a stable representation, i.e., when long strings are 
seen by the network the states merge into each other and 
eventually become indistinguishable. 

We introduced a new network structure which uses 
hard-limiting threshold discretization in the feedback 
path. Experimental results show that the network has 
similar capabilities in learning finite state machines as 
the original 2nd-order network, but is stable regardless 
of string length since the internal representation of states 
in this network consists of isolated points in activation 
space. 
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