
Self- Clustering Recurrent Net works

Zheng Zeng, Rodney M. Goodman
Department of Electrical Engineering, 116-81

Padhraic Smyth
Jet Propulsion Laboratory, 238-420

California Institute of Technology
Pasadena, CA 91125

Abstract-Recurrent neural networks have re-
cently been shown to have the ability to learn fi-
nite state automata (FSA’s) from examples. In
this paper it is shown, based on empirical analy-
ses, that second-order networks which are trained
to learn FSA’s tend to form discrete clusters as
the state representation in the hidden unit acti-
vation space. This observation is used to define
‘self-clustering’ networks which automatically ex-
tract discrete state machines from the learned net-
work. However, the problem of instability on long
test strings is a factor in the generalization per-
formance of recurrent networks - in essence, be-
cause of the analog nature of the state representa-
tion, the network gradually “forgets” where the in-
dividual state regions are. To address this problem
a new network structure is introduced whereby the
network uses quantization in the feedback path to
force the learning of discrete states. Experimental
results show that the new method learns FSA’s
just as well as existing methods in the literature
but with the significant advantage of being stable
on test strings of arbitrary length.

I . INTRODUCTION

ARIOUS direct search algorithms have been pro- V posed for learning grammars from positive and nega-
tive examples (strings) [1,4,8,11]. More recently recurrent
neural networks have been investigated as an alternative
method for learning simple grammars [2,3,5,7,9]. All of
these methods have shown the capability of recurrent net-
works to learn different types of simple grammars from
examples.

In this paper we restrict the focus to a recurrent net-
work’s behavior in learning regular grammars -- regular

The research described in this paper was supported in part by
DARPA under grants number AFOSR-90-0199 and N00014-92-
5-1860. In addition this work was carried out in part by the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

California Institute of Technology
Pasadena, CA 91109

grammars are the simplest type of grammar in the Chom-
sky hierarchy and have a one-to-one correspondence to
finite state machines [6].

The motivation of this work is to obtain a clearer under-
standing of the behavior of recurrent networks, in partic-
ular with regard to both their learning characteristics and
internal state representations. In turn, this information
may give more insight into their capability for fulfilling
other more complicated tasks.

Giles et al. have proposed a “2nd-order” recurrent net-
work structure to learn regular languages [5]. Henceforth,
all references to 2nd-order recurrent networks imply the
network structure described in [5]. The experiments re-
ported in this paper confirm their claim that 2nd-order
nets can learn various grammars well. In addition, we
have found empirically that this structure learns these
grammars more easily than the simple recurrent network
structure (or the Elman structure) [3] which does not use
2nd-order units. However, a stability problem emerges
with the 2nd-order trained networks as longer and longer
input strings are presented (similar behavior in recurrent
networks has been found in different contexts [9,10]). The
stability problem led us to look deeper into the internal
representation of states in such a network and the fol-
lowing interesting behavior was observed: during learn-
ing, the network attempts to form clusters in hidden unit
space as its representation of states. This behavior oc-
curred in al l the learning experiments we performed. Once
formed, the clusters are stable for short strings, i.e., strings
with lengths not much longer than the maximum length
of training strings. However, in 14 out of 15 learned net-
works,when sufficiently long strings are presented for test-
ing, the clusters (states) start to merge and ultimately
become indistinguishable. To solve this problem, in this
paper we propose a discretized combined network struc-
ture which can be shown to successfully learn stable state
representations. In the new network, instead of regions
of activation space, the states of the network are actu-
ally isolated discrete points in the hidden unit activation

0-7803-0999-5/93/$03.00 01993 IEEE 33

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216301465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

r-
I

I
I

I

I
I
I
I
I
I
I

I
I
I

I
I,,

I

I
I

I

I

I
I
I
I
I
I

I
I
I
I

I
, - J

Fig. 1. Equivalent first-order structure of second-order network

space.

11. AN EQUIVALENT GATING MODEL FOR
SECOND-ORDER NETWORKS

A convenient way to view 2nd-order networks which deal
with binary sequences is to decompose the network struc-
ture into two separate component networks controlled by
an “enabling” or “gating” signal (Fig. 1). The network
consists of two 1st order networks with shared hidden
units. The common hidden unit values are copied back to
both netO and netl after each time step, and the input
stream acts as a switching control to enable or disable one
of the two nets. For example, when the current input is 0,
netO is enabled while netl is disabled. The hidden unit
values are then decided by the hidden unit values from the
previous time step weighted by the weights in net0. The
hidden unit activation function is the standard sigmoid
function, f(z) = *. Note that this representation of
a 2nd-order network, as two networks with a gating func-
tion, provides insight into the nature of 2nd order nets,
i.e., clearly they have greater representational power than
a single simple recurrent network, given the same number
of hidden units.

111. THE LEARNING PROCEDURE AND THE

We use $ to denote the activation value of hidden unit
number i at time step t . w3 is the weight from layer 1
node j to layer 2 node i in netn. n = 0 or 1 in the case of

EXTRACTION O F STATE MACHINES

binary inputs. Hidden node $ is chosen to be a special
indicator node, whose activation should be close to 1 at
the end of a legal string, or close to 0 otherwise.

A standard 2nd-order network (or equivalently, the
gated network of Fig. 1) was used in all of the experi-
ments described in this section. The following grammars
were used in our initial experiments:

Tomita grammars [ll]:

0 # 1 - 1*
o #4 - any string not containing “000” as a

substring.

0 #5 - [(Ol(lO)(Ol~lO)]*
0 #7 - 0*1*0*1*

Simple vending machine: The machine takes in 3
types of coins: nickel, dime and quarter. Starting
from empty, a string of coins is entered into the
machine. The machine “accepts”, i.e., a candy bar
may be selected, only if the total amount of money
entered exceeds 30 cents.

A training set consists of randomly chosen variable length
strings with length uniformly distributed between 1 and
LmaX , where L,,, is the maximum training string length.
Each string is marked as “legal” or “illegal” according
to the underlying grammar. The learning procedure is a
gradient descent method in weight space (similar to that
proposed by Williams and Zipser [12]) to minimize the
error at the indicator node for each training string [5].

In a manner different from that described in [5], we
present the whole training set (which consists of 100 to
300 strings with L,,, in the range of 10 to 20), all at
once to the network for learning, instead of presenting a
portion of it in the beginning and gradually augmenting it
as training proceeds. Also, we did not add any end symbol
to the alphabet as in [5]. We found that the network
can successfully learn the machines (2-7 states) we tested
on, with a small number of hidden units (4-5) and with
training in less than 500 epochs. This agrees with the
results described in [5].

To examine how the network forms its internal represen-
tation of states, we recorded the hidden unit activations at
every time step of every training string in different training
epochs. As a typical example, shown in Fig. 2(a)-(e) are
the SO-S~ activation-space records of the learning process
of a 4hidden-unit network. The underlying grammar was
Tomita #4, and the training set consisted of 100 random
strings with Lmax = 15. Note that here the dimension
SO is chosen because of it being the important “indicator
node”, and S3 is chosen arbitrarily. The observations that
follow can be made from any of such 2-D plots from any

34

s3

0.40

0.20

0.03
om

os0

om

0.40

am

0.20 0.40 om om

-

-

-

-

s3

0.40

0.20 i[0.03 om

s3
1.00-

- '$5,.
0.80 -

om - ' \ 1

0.40 - '.. -

\ -
' \ I

%\ 1

so ob0 0.L 0.b o h 0.L l b 0

0.20 -

om -

0.20

s3
1.00-

- '$5,.
0.80 -

om - ' \ 1

0.40 - '.. -

\ -
' \ I

%\ 1

so ob0 0.L 0.b o h 0.L l b 0

0.20 -

om - \
0.03

om 0.20 om OM om 1.03

Fig. 2. Hidden unit activation plot SO - S3 in

7

so

s3
MO-

t

o", I , , , ,j
om 030 0.40 OM os0 im so

so

(e) (f)

eanung Tomita grammar #4. (So is the I axis.) (a)-(e) are plots of all activations on 1 ie
training data set. (a) During 1st epoch of training. (b) During 16th epoch of training. (c) During 21st epoch of training. (d) During 31st
epoch of training. (e) After 52 epochs, training succeeds, weights are fixed. (f) After training, when tested on a set of maximum length 50.

run in learning any of the grammars in the experiments.
Each point corresponds to the activation pattern of a cer-
tain time step in a certain string. Each plot contains the
activation points of all time steps for all training strings
in a certain training epoch as described in the caption.

It can be observed that the network attempts to form
clusters in activation space as its own representation of
states and is successful in doing so. When given a string,
the activation point of the network jumps from cluster to
cluster as input bits are read in one by one. Hence, the
behavior of the network looks just like a state machine's
behavior. Motivated by these observations, we applied
the L-means clustering algorithm to the activation record
in activation space of the trained network to extract the
states (rather than dividing up the space evenly as in [5]).
Empirically, results were more reliable when k was cho-
sen to be a large number, for example, 20. The initial
seeds were chosen randomly. We then defined each clus-
ter found by the k-means algorithm to be a "state" of the
network and used the center of each cluster as a represen-
tative of the state. The transition rules for the resulting

state machine were calculated by setting the S:-' nodes
equal to a cluster center, then applying an input bit (0
or 1 in binary alphabet case), and calculating the value
of the $ nodes. The transition from the current state
given the input bit is to the state that has a center closest
in Euclidean distance to the obtained Si values. We then
applied Moore's state machine reduction algorithm on the
originally extracted machine to get an equivalent minimal
machine which accepts the same language but with the
fewest possible number of states. In this manner we were
able to extract machines that are equivalent to the mini-
mal machines corresponding to the underlying grammars
from which the data was generated.

IV. THE STABILITY PROBLEM W I T H LONG TEST
STRINGS

With the 2nd-order networks described above, the trained
networks perform well in classifying unseen short strings
(not much longer than L,,,), but as longer and longer
strings are presented to the network, the percentage of
strings correctly classified drops substantially. Shown in

35

Fig. 2(f) is the recorded activation points for s0-S~ of the
same trained network from Fig. 2(e) when long strings
are presented. The original net was trained on 100 strings
with L,,, = 15, whereas the maximum length of the test
strings in Fig. 2(e) was 50. Activation points a t all time
steps for all test strings are shown.

It can be seen that the well-separated clusters formed
during training begin to merge together for longer and
longer strings and eventually become indistinguishable.
These points in the center of Fig. 2(e) correspond to ac-
tivations at time steps longer than L,,, = 15, which
means that network could not make hard decisions on long
strings. The activation points of a string stay in the orig-
inal clusters for short strings and start to diverge from
them when strings become longer and longer. The diverg-
ing trajectories of the points form curves with sigmoidal
shape.

Similar behavior was observed for 14 out of 15 of the
networks successfully trained on different machines, ex-
cluding the vending machine model which is somewhat of
a pathological case since all long strings are legal.

V. A SELF-CLUSTERING NETWORK THAT CAN FORM
STABLE STATES

From the above experiments it is clear that even though
the network is successful in forming clusters as its state
representation during training, it has difficulty in creating
stable clusters, i.e., to form clusters such that the activa-
tion points for long strings converge to certain centers of
each cluster, instead of diverging as observed in our ex-
periments. The problem can be considered as inherent to
the structure of the network where it uses analog values to
represent states, while the states in the underlying state
machine are actually discrete. One intuitive suggestion to
fix the problem is to replace the analog sigmoid activation
function in the hidden units with a threshold function:

1.0 if t 2 0.5
0.0 if x < 0.5 D(x) =

In this manner, once the network is trained, its represen-
tation of states (i.e., activation pattern of hidden units)
will be stable and the activation points won't diverge from
these state representations once they are formed. How-
ever, there is no known method to train such a network,
since one can not take gradient of such activation func-
tions.

An alternative approach would be to train the original
2nd-order network as described earlier, but to add the dis-
cretization function D(x) on the copy back links during
testing. The problem with this method is that one does
not know a prior i where the formed clusters from train-
ing will be. Hence, one does not have good discretization

Fig. 3. A combined network with discretization

values to threshold the analog values in order for the d i s
cretized activations to be reset to a cluster center. Exper-
imental results have confirmed this prediction. For exam-
ple, after adding the discretization, the modified network
can't even correctly classify the training set which it has
successfully learned in training. As in the previous ex-
ample, after training and without the discretization, the
network's classification rate on the training set was l O O % ,
while with the discretization added, the rate became 85%.
For test sets of longer strings, the rates with discretization
were even worse.

We propose that the discretization be included in both
training and testing in the following manner: Fig. 3 shows
the structure of the network with discretization added.

From the formulae below, one can clearly see that in
operational mode, i.e. when testing, the network is equiv-
alent to a network with discretization only:

ht = f(Xwl"j 's;- ') , V i , t
j

s: = D(hf),
0.8 if x 2 0.5
0.2 if x < 0.5 where D (t) =

36

0.8 if I 2 0.0
0.2 if x < 0.0 where Do(z) =

(Here xt is the input bit at time step t . We use hi to
denote the analog value of hidden unit i at time step t ,
and < the discretized value of hidden unit i at time step

The sigmoid nodes can be eliminated in testing to sim-
plify computation.

During training, however, the gradient of the soft sig-
moid function is made use of as a “pseudo gradient” E131
to provide a heuristic hint as to which direction (and how
close) a step up or a step down would be in the thresholded
output function.

By adding these discretizations into the network, one
might argue that the capacity of the net is greatly reduced,
since each node can now take on only 2 distinct values, as
opposed to infinitely many values (at least in theory) in
the case of the undiscretized networks. However, in the
case of learning discrete state machines, the argument de-
pends on the definition of the capacity of the analog net-
work. In our experiments, 14 out of 15 of the learned net-
works have unstable behavior for nontrivial long strings,
so one can say that the capability of such networks to dis-
tinguish different states may start high, but deteriorates
over time, and would eventually become zero.

t.1

VI. EXPERIMENTAL RESULTS

Shown in Fig. 4(a),(b),(c) are the ho - hl activation-space
records of the learning process of a discretized network
(h values are the undiscretized values from the sigmoids).
The grammar being learned is again the Tomita gram-
mar #4. The parameters of the network and the training
set are the same as in the previous case. Again, any of
the other 2-D plots from any run in learning any of the
grammars in the experiments could have been used here.

Fig. 4(c) is the final result after learning, where the
weights are fixed. Notice that there are only a finite num-
ber of points in the final plot in the analog activation
h-space due to the discretization. Fig. 4(d) shows the dis-
cretized value plot in SO - SI, where only 3 points can be
seen. Each point in the discretized activation S-space is
automatically defined as a state. The transition rules are
calculated as before, and an internal state machine in the
network is thus constructed. In this manner, the network
performs self-clustering. For this example, 6 points were
found in S-space, so a 6-state-machine was constructed as
shown in Fig. 5(a). Not surprisingly this machine reduces
by Moore’s algorithm to a minimum machine with 4 states
which is exactly the Tomitagrammar #4 (Fig. 5(b)). Sim-
ilar results were observed for all the other grammars in the
experiments.

0.40

0.20 i am 0.00

t

t . j t
0.20 o.a[. .

t .
0” , , , , , { . m t , , , , , , I

om 0.20 0.40 om 0.80 imh0 om 0.20 0.m om om imSO

Fig. 4. Discretized network learning Tomita grammar #4. (a) ho -
h3 during 1st epoch of training. (b) ho - h3 during 15th epoch of
training. (c) ho - h3 after 27 epochs when training succeeds, weights
are fixed. (d) SO - S3, the discretized copy of ho - h3 in (c).

There are several advantages from introducing dis-
cretization into the network:

1.

2.

3.

37

Once the network has successfully learned the state
machine from the training set, it’s internal states are
stable. It will always classify input strings correctly,
independent of the length of these strings.

No clustering is needed to extract out the underly-
ing state machine, since instead of using vague clus-
ters as its states, the network has formed distinct,
isolated points as states. Each point in hidden-unit
activation space is a state. The network behaves ex-
actly like a state machine with no instability what-
soever.

Experimental results show that the size of the state
machines extracted out in this approach are of a
much smaller size than that found previously by the
clustering method (Section 111). Note that in the
new discretized structure there is no need to man-

1 41

Fig. 5. Extracted state machine from the discretized network after
learning Tomita grammar #4. (double circle means “accept” state,
single circle means “reject” state.) (a) &state machine extracted
directly from the discrete activation space. (b) Equivalent minimal
machine of (a).

ually choose the number of clusters to “discover”
the internal network states (no need to choose k for
k-means) - in this sense the network performs self-
clustering.

It should be noted that convergence has a different
meaning in the case of training discrete networks as op-
posed to the case of training analog networks. In the
analog networks’ case, learning is considered to have con-
verged when the error for each sample is below a certain
error tolerance level. In the case of discrete networks,
however, learning is only stopped and considered to have
converged when zero error is obtained on all samples in
the training set. In the experiments reported in this paper
the analog tolerance level was set to 0.2. The discretized
networks took on average 30% longer to train in terms of
learning epochs compared to the analog networks for this
specific error tolerance level.

VII. CONCLUSIONS

In this paper we explored the formation of clusters in hid-
den unit activation space as an internal state representa-
tion for 2nd-order recurrent networks which learn regular
grammars.

These states formed by such a network during learning
are not a stable representation, i.e., when long strings are
seen by the network the states merge into each other and
eventually become indistinguishable.

We introduced a new network structure which uses
hard-limiting threshold discretization in the feedback
path. Experimental results show that the network has
similar capabilities in learning finite state machines as
the original 2nd-order network, but is stable regardless
of string length since the internal representation of states
in this network consists of isolated points in activation
space.

REFERENCES

D. Angluin, C. H. Smith, “Inductive inference: theory and
methods,” ACM Computing Survey, Vo1.15, No.3, p.237,
1983.

A. Cleeremans, D. Servan-Schreiber, J. L. McClelland,
“Finite state automata and simple recurrent networks,”
Neuml Computation, Vol.1, pp.372-381, 1989.

J. L. Elman, “Distributed representations, simple re-
current networks, and grammatical structure,” Machine
Learning, vo1.7, No.s 2/3, pp.195-225, 1991.

K. S. Fu, Syntactic Pattern Recognition and Applications,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun,
Y. C. Lee, “Second-order recurrent neural networks,” Neu-
ral Computation, vo1.4, No.3, pp.393-409, 1992.

J. E. Hopfcroft, J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-Wesley,
Reading Mass., 1979.

M. I. Jordan, Serial Order: A Parallel Distributed Process-
ing Approach, Tech. Rep. No.8604, San Diego: University
of California, Institute for Cognitive Science, 1986

S. Muggleton, Grammatical Induction Theory, Addison-
Wesley, Turing Institute Press, 1990.

J. B. Pollack, “The induction of dynamical recognizers,”
Machine Learning, vo1.7, No.s 2/3, pp.227-252, 1991.

D. Servan-Schreiber, A. Cleeremans, J. L. McClelland,
“Graded state machmes: the representation of tempo-
ral contingencies in simple recurrent networks,” Machine
Learning, vo1.7, No.s 2/3, pp.161-193, 1991.

M. Tomita, “Dynamic construction of finite-state au-
tomata from examples using hill-climbing,” Proceedings of
the Fourth Annual Cognitiue Science Conference, pp.105,
1982.

R. J. Williams, D. Zipser, “A learning algorithm for con-
tinually running fully recurrent neural networks,” Neural
Computation, Vol.1, No.2, pp.270-280, 1989.

Z. Zeng, R. Goodman, P. Smyth, “Learning finite state
machines with self-clustering recurrent networks,” Neuml
Computation, in press.

38

