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Abstract 

In this paper we present a new generalized associative memory model with potentially high 
capacity. A memory of this kind with M stored vectors of length N, can be implemented with M 
nonlinear neurons, N ordinary thresholding neurons, and 2MN binary synapses. We show that 
special cases of this model include the Hopfield and high order correlation memories, We 
present a new special case of the model based on a neuron which can implement the 
exponentiation function. Such a neuron can be realized by a MOS transistor operating in the 
subthreshold region. We analyze the capacity of this exponential associative memory and show 
that it scales exponentially with N. In any practical realization however, the dynamic range of the 
exponentiatm will be constrained. We show that the capacity for networks with fixed dynamic 
range exponentiation circuits is proportional to the dynamic range. 

I. Introduction 

Since the seminal papers of Hopfield[ 1][2], there has been much interest in realizing high 
capacity associative memories. However, the capacity of Hopfield memory in terms of number 
of fixed points (exemplars), has been found to be severely constrained both empirically [l] and 
theoretically [3]. Much research has been done in improving the association ability of the 
Hopfield memory by raising the order of the correlation matrix or by using neurons with 
nonlinear discriminant functions [4][5][6]. All of them can be implemented by a three-layer 
feedback network, with the first layer computing the inner products of the input and all 
exemplars, the second layer raising these quantities to some power, and the third layer 
accumulating the weighted sum of all exemplars and thresholding the sum. 

In section II, we propose a new model which is a generalization of the above associative 
memories. In particular, we propose to enhance the performance of the memory by using the 
exponential function instead of polynomial functions. Our motivation is that the exponentiation 
function is relatively easily done in VLSI, using the MOS transistor's exponential drain current 
dependence on the gate voltage in the subthreshold region [7][8]. We find in section III that the 
associative memory we propose exhibits very good performance, and has a capacity that is 
exponential in the length of the stored vectors. Next, we theoretically investigate the issue of 
constraining the dynamic range available for the exponentiation circuits. We find that in this case 
the capacity will also be limited, and will be proportional to the dynamic range both in the new 
associative memory and the high-order associative memory. Section IV presents simulation 
results which show the behavior of the new memory, and also confms the theoretical results in 
section III. 
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11. A General Model of Associative Memories 

In a Hopfield type associative memory [ 11, the connection matrix is derived from a set of 
exemplars (memry vectors) to be memorized. When given an initial input, such a network will 
evolve and become stable at the nearest exemplar (or fixed point) from the input, provided that 
there are not too many exemplars, and the input is not very far away from that fixed point (in the 
Hamming distance sense). Essentially, from these exemplars one can construct regions in the 
binary N-cube ( l,-l}N, so the network, once initialized with any vector inside a region, will 
evolve and become stable at the exemplar associated with that region. Thus each exemplar can be 
regarded as the centroid of a region in ( 1 ,- 1 }N. The main evolution rule for a Hopfield memory 
(with binary neurons) is, 

N 

di' = sgn ( Tij dj) 
j=l 

where d' = [ dl' d i  .... dN' ] is the next state of the network and d = [ dl d2 .... d N  ] is the 
current state. [ Tij ] is the N x N connection matrix. 

We propose the following neural network associative memory given that c@) is to be 
associated with e(k), and d, d are the current state and next state of the network. The main 
evolution equation for this memory is 

M 
d' = sgn ( 1 f ( < c@), d > ) e@) ) (2) 

k=l 

where < a , b > is the inner product of two vectors a and b, and the functionf(.) is a nonlinear 
function. Here if c@h and e@h are the same then this is an autoassociative memory otherwise 
it is a hetemassociative memory. 

Next we will show that some known associative memories are special cases of equation (2). 
. .  1. HoDfield PDe m i v e  Memorv 

Suppose there are M exemplars dl), &I, ..., c(M) to be stored in the memory, then Tij can 
be derived by, 

M 

Combining equations (1) and (3), we have, 

N M  

d; = sgn (c ci@) cj@) dj - M 4)  
j=l k=1 

M N  
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M 

Since equation (4) is true for i = 1,2,...,N, we can rewrite (4) in the vector form, 

M 

d' = sgn ( <c@) , d > cor) - M d ) (5)  
k= 1 

The argument of the sgn function in (4) can be interpreted as a weighted sum of all M 
exemplars minus a constant, and the weights are the inner products of the input d and the 
corresponding exemplars c@). Now suppose the input d is nearest a particular exemplar, say 
CO), that is, 

< d , d ) >  > -  < d , & ) >  V k # l  

then ideally we would like to have the weight associated with 4) be the largest of all weights and 
preferably be the dominant one so that the next state d will be very similar to d) if not identical. 

Comparing equation (5) with the generalized evolution equation (2), we see that the Hopfield 
type memory (with non-zero diagonal) is a special case of the general model which has a linear 
function forf(.). By choosing otherf(.) we can construct several known memories. 

. .  2. Order Inner Product u v e  Memprv 

Iff(.) is chosen to be a power function, i.e. 

f(x) = xp 

then equation (2) becomes the evolution equation of a high-order associative memory [5][6]. 

3. One Shot Ass-ve M w v  yslng N-tlpps . .  

If we let f be an N-flop or winner-take-all function, that is if 

where x1 = < CO) , d >, then obviously no iteration is necessary and the correct memory vector is 
retrieved at once. 

4 .  monen -er P roduu Associ h.tive Memory 

We now propose a new exponential associative memory by choosing f (.) as 

f (x) = b" 

where b is a fixed number and b > 1. Intuitively, the perfomance of such a associative memory 
should be better than a high-order correlation memory since the weight associated with the 
nearest exemplar will be more dominant than in the high-order correlation memory case. 
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Next we shall consider the complexity of such a memory (see Fig. 1). First, we need M 
neurons to calculate the inner products of the input and M exemplars, and to perform the 
nonlinear function f(.). Each of these M neurons has N synapses (matrix W) carrying the 
signals from input. After obtaining the weights we have to compute the weighted sum and 
threshold - this can be done by N ordinary neurons, each with M synapses (matrix WT). We 
therefore need a total of M nonlinear neurons, N ordinary neurons and 2MN binary synapses 
(with value 1 or -1). 

Figure 1 Associative memoryums~ructed with innerproduct method 

III. Capacity of the exponential memory 

From now on, we will consider only the case thatf(x) = bx , where b is a fixed constant 
and b > 1. Thus equation (2) becomes (in the autoassociative memory case) 

Furthermore, suppose the input d is one of the exemplars say then 

where & is b raised to the power of the inner product of c(k) and CO. 
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Now consider the i h  component of d', we have 

In order to compute the capacity of this model, we make the following assumption, each 
exemplar is randomly generated, i.e. every component of a memory vector is the outcome of a 
Bernoulli trial (-1 or 1). We will use a signal to noise ratio (SNR) approach [3][9] to calculate 
the capacity. The signal in equation (7) corresponds to the first term, hence the signal power is 

S = bm 

The second term is actually a sum of M-1 i.i.d. (independent identically distributed) 
random variables (x1,X2,...,xM except xh). Therefore the variance of the second term is M-1 
times the variance of a single random variable. Suppose 

x1 = 13, Ci(U , x2 = 132 Ci(2) , ....., XM = flM Ci(M) 

After some derivation the following results are in order (assuming, without loss of 
generality, ci(h) = +l), 

-N 1 k = O,l,...,N-1 
N-2k 

h ( x l = b  ) = 2 

h ( x l = - b  ) =  2 -N ( T1 ) k = O,l,...,N-1 
N-2k-2 

and the expectation of x1 is 

E[ X1 I = b N N  2- (1 - b-2)(1 + b-2)N-1 

The expectation of (x1)2 and the variance of x1 are 

Therefore, the signal to noise ratio is 
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From eq. (8), one can obtain an estimate of the capacity of this model 

4 N  [Nl + b )I 
(9) - 4N 

M -  - 
S N R  (2 + 2 b4lN SNR 

Equation (9) shows that at a specific SNR, the capacity scales txponentially with N, the length of 
the stored vectors. 

This exponential capacity is very attractive, however, the dynamic range nquired of the 
exponentiators grows exponentially with N. In any real implementation, the dynamic range of 
the exponentiation circuit will be constrained. (In our proposed V U 1  implementations to 
approximately 10s to 107 [8]). We therefore need to analyze the performance of this model in 
the case of fixed dynamic range. Suppose the dynamic range of the exponentiators is fixed at D, 
where 

D = bm 

Then as N grows, b decreases, so M does not d e  exponentially with N(see eq. (9)). We will 
deal with the case where N is very large with D fixed. Let 

where p << 1. Since N >> 1, then 

Substituting the above equation in equation (9), we have 

We thus conclude that with the dynamic range ked, the capacity of the new exponential 
associative memory is proportional to the dynamic range. This agrees with known results for the 
high order associative memory [5] which show the capacity proportional to a power of N, which 
is also equal to the dynamic range. 

IV. Simulation Results 

We have simulated the new exponential memory (we choose b = 2) in order to confirm the 
theoretical results presented above. In each case, we randomly generate 10 sets of M N-bit 
exemplars. For each of these, 10 input vectors are generated by randomly picking a particular 
exemplar and flipping T bits. Then the network is allowed to run until it becomes stable at a 
fmed point. That point is compared to the original exemplar and if they match this run is called a 
success. We then collect the number of successes out of 100 trials and if this is greater than 97, 
then we say that with M exemplars this network can tolerate T errors. The largest T for each M 
we call the attraction radius (denoted by R). In figure 2, we illustrate how the attraction radius 
scales with N. One can see that the four curves are almost parallel to each other, thus the 
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capacity, which is the value of M where the curve meets the horizontal axis, scales approximately 
exponentially with N - which confirms equation (9). In figure 3, we compare the third order 
correlation memory (which has p = 2) with the new memory. One can easily see that the new 
memory has a much larger capacity than the third order memory. Figure 4 shows the attraction 
radius (R) of memories with N=32 and N=64, and with four different dynamic ranges 28,210, 
212, 214. Again the curves are parallel to each other, thus we conclude that the capacity of the 
exponential memory with limited dynamic range scales with the dynamic range - again 
confirxning our theoretical prediction. 

V. Conclusions 

In this paper we have presented a new high capacity associative memory based on using the 
exponential function in the evolution equation. In a practical implementation the capacity of the 
memory is proportional to the dynamic range of the exponentiation circuits. Future work will 
report on the results of implementing these memories in VLSI. 
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Figure 2 Attraction radius (R) vs. the number 
of exemplars stored (M) in the new associative 
memory 
curveA: N=16  
curveB: N-32  
curvet: N=48 
curveD: N=64  

M 

Figure 3 Normalized attraction radius (S) vs. 
the number of exemplars stored (M) 
curve A : N = 32, third odx correlation memory 
curve B : N =  64, thirdordetcorrelation memory 
curve C : N = 32, new 8ssociBtiye memory 
curve D : N = 64, new 8ssOchtive memory 
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Figure 4 Attraction d u s ( R )  vs. the number of exemplars smred(M) in memories with different dynamic ranges 

CWCA: N=32,D=28 
c w e B :  N=32,D=210 
curvec: N=32,D=212 
curve D : N = 32, D = 214 

c w e A :  N=64,D=2* 
curveB: N=64,D=210 
curvec: N=64,D=212 
c w e D :  N=64.D=214 
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