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Quadratic Stability with Real and Complex Perturbations 

ANDY PACKARD AND JOHN DOYLE 

A bstract-ln the context of quadratic stability, the distinction be­
tween complex and real norm bounded, linear fractional perturbations 
is artificial, and the quadratic stability notions are equivalent to an H = 
norm condition on the transfer function that the perturbation "sees." 
In this note, we show that these connections are not true when the 
uncertainty is structured. 

I. INTRODUCTION 

Our notation is standard. C" xm and R' xm are, respectively, the set 
of complex and real n x m matrices. For ME C" xn, the maximum 
singular value of Mis denoted by a(M). M* is the complex conjugate 
transpose of M. For square matrices, p( · ) is the spectral radius. If 
M = M*, then all the eigenvalues of M are real, and the notation 
Amax(M) is clear. 

Let n and m be positive integers, and suppose ME cn-mJX(n-mJ, 

partitioned as 

( 1.1) 

where M11 E C"x", M12 E cnxm, M21 E cmxn, and M22 E cnxn. 
Let~ be a prescribed closed, convex subset of cm xm, which contains 
the origin, and define the norm bounded set B~ := { .6. E ~: a(.6.) :c; I}. 
Suppose that for each .6. E B~, I - M 22 .6. is invertible, and define the 
linear fractional transformation F 1 (M, .6.) as 

The subscript I refers to the lower block of M being closed with the 
matrix .6., as shown in the figure below. 
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For ll E cnxn with I - M,,n invertible, F 11 (M, 0) denotes 
the resultant matrix when the upper loop of M is closed by fl, 
Fu(M, ll) :=M22 + M 21 ll(/ - M 1,0)- 1M 12 . Typically, we will use 
this notation when dealing with frequency responses. 

Let { .6.k }i""o c B~ be given, along with an initial condition x0 E C", 
define xk E C" by 

(1.3) 

In this formulation, the matrix M, 1 is assumed to be the nominal state­
space model, and .6.k E B~ is viewed as a norm bounded perturbation 
from an allowable perturbation class ~. The matrices M 12 , M 21 , and 
M 22 reflect prior knowledge on how the unknown perturbation affects 
the nominal dynamics M 11 . This type of uncertainty, called linear frac­
tional, is natural for many control problems, and encompasses many 
other special cases considered by researchers. 

Definition 1.1: The pair (M, ~)is quadratically stable if there exists 
a P EC" xn, with P = P* > 0, such that 

max Amox([F1(M, .6.)]* PF1(M, .6.) - P) < 0. 
-"EB!>. 

Remark 1.2: The definition simply implies that there is a single, 
quadratic Lyapunov function V(x) := x* Px that establishes the stabil­
ity of the entire set 

{F1(M, .6.): .6. EB~}. 

In this case, regardless of .6.k E B~, as the uncertain system in (1.3) 
evolves, the Euclidean norm of P' Xk, llP' xk 11 2 decreases by at least 
a factor of {3 < I every time step k, and hence robustness with respect 
to time-varying perturbations is guaranteed. 

Definition 1.3: The pair (M, ~) is robustly stable if 

max: p[F1(M, .6.)] = f3 < I. 
-"EB!>. 

Remark 1.4: This condition implies that for unknown, but fixed (with 
respect to k) uncertainty .6. E B~, the uncertain system described by 
(1.3) is exponentially stable. In general, this would imply nothing about 
the stability of the time-varying uncertain system, where the uncertain 
element .6. is allowed to vary with k. 

If the set ~ is cm xm, then several notions are equivalent. This is 
summarized in the following theorem, which is essentially found in [8]. 

Theorem 1.5: LetM E c<n+mJX(n+mJ be given, withp(M1 1) <I and 
a(M22 ) < I. Then the following are equivalent. 

I) The pair (M, cm Xm) is quadratically stable. 
2) The pair (M,cmxm) is robustly stable. 
3) max ii[F 11 (M, e1°/ 11 )] <I. 

OE\O,hl 

Remark 1.6: For unstructured block uncertainty, the small gain con­
dition [condition 3)] is a necessary and sufficient condition for robust 
stability to complex perturbations, and is also equivalent to quadratic 
stability with respect to those perturbations. 

When Mis in fact real, an additional condition, involving real (besides 
complex) uncertainties, is true. Versions of this result are found in (6], 
[9], and [4]. 

Theorem 1.7: Let ME R<n+mJ xin+ml be given, with p(M 11 ) < I and 
ii(M22 ) < I. Then the following are equivalent. 

I) The pair (M, Rmxm) is quadratically stable. 
2) The pair (M, cmxm) is quadratically stable. 
3) The pair (M, cm Xm) is robustly stable. 
4) max ii[Fu(M, e10 In)l <I. 

OE\O, •I 

Remark 1.8: When the data (i.e., M) are real, the small gain theorem 
is a necessary and sufficient condition for robust stability with complex 
perturbations, and in fact is equivalent to quadratic stability with either 
real or complex uncertainties. 

Remark 1.9: Note that the norm condition [condition 4)] is an II · II= 
norm on the transfer function that the perturbation "sees." This the­
orem shows that II · II= design techniques can be used to synthesize 
quadratically stable systems, and that there is equivalence between the 
two notions. 
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Theorem 1.7 states that there is a single Lyapunov function 
establishing the stability of the set of matrices { F 1 (M, il): il E 
Rmxm, a(il) <::: l} if and only if every element of the set {F1(M, 
il): il E cm Xm' a(il) <::: 1} is an exponentially stable matrix. This sug­
gests some possible underlying similarity between time-varying real per­
turbations and fixed complex perturbations when general perturbations 
arise in a linear fractional manner. In the next section, we formalize two 
conjectures along these lines, and show that, unfortunately, neither are 
true. 

II. CONJECTURES AND COUNTEREXAMPLES 

We begin with a definition of a structured, block diagonal uncer­
tainty set, as introduced in [2]. Let F be either the complex, or real 
field. Suppose s and f are nonnegative integers, and positive integers 
r 1 , r2, · · ·, r,, m,, m2, · · ·, m1 are specified with L:;~ 1 r; + L:;_

1 
m1 = 

m. Define a set of block diagonal matrices over the field F as 

t:.F := {diag [o,I,, ,· · · ,oJ,,, il, ,. · · ,il1 J: 

O; E F, ilj E Fm, Xm,} C Fm Xm. (2.1) 

The question this section addresses is as follows. "If ME R<n+m1 X<n tmJ, 

and a certain property is true for the pair (M, ll.R ), can any other prop­
erty be automatically attributed to the pair (M, de), or vice versa?" 

Theorem I. 7 above shows that when s = 0, f = 1, m1 = m, and 
the property is quadratic stability, then the two pairs share the property 
simultaneously. We explore this notion further when the uncertainty is 
structured as in (2. I). 

Conjecture 2 .1: Suppose Mis real, and ll. F is a perturbation structure. 
If the pair (M, ll. R) is quadratically stable, then the pair (M, de ) is 
robustly stable. 

This can be shown false with a simple counterexample. Let 
-1 <f3 <I anddefineMER 3 x 3 as 

M:= [-~ -~ :1 
-1 (3 0 

(2.2) 

This matrix M comes from [7], where it was used in a slightly different 
context. Define ll. R and ll. e as 

ll.R := {diag [01, 02): O; ER} 

ll.e := {diag [01, 02]: o; EC}. 

For il Ell.R or il Ede, F 1(M, il) is 

F (M il) = {3(01 -02). 
I ' 1 -{320102 

First, we show that this system is quadratically stable when considering 
real perturbations. If 01 , "2 E R, with lo; I <::: 1, then 

IF1(M, il)j <::: I 1 :(321 <I, 

therefore, the function V(x) = xT x is a suitable Lyapunov function that 
works for all il E Bil. R • However, by choosing o1 = j and "2 = - j, 
the quantity F 1 (M, il) is 

2{3j 
F 1(M, il) = --2 1-{3 

which by choosing (3 close enough to I (or -1) is arbitrarily large, and 
hence the uncertain system is not stable for fixed il E Bll.e . Hence, the 
conjecture is false. D 

Conjecture 2.2: Suppose Mis real, and ll.F is a perturbation struc­
ture. If the pair (M, de) is robustly stable, then the pair (M, ll.R) is 
quadratically stable. 

This is also false. Define ll. R and ll. e as in the above counterexample. 
Let constants a and (3 be chosen so - I < a < I , - 1 < (3 < I , and define 

Mas 

a 0 2{3a 0 

0 -a 0 -2{3a 
M:= (2.3) 

0 0 (3 

0 (3 0 

For il in either Bil. R or Bil. e, the linear fractional transformation 
F1(M, il) is well defined, and is given by 

It is straightforward to calculate that the eigenvalues of F1 (M, il) are 
±a, independent of the values of lo1 I <::: 1 and 1"21 <::: I. Hence, the 
pair (M, de) is robustly stable. However, consider the following time­
varying real perturbation. Fork even, define At = diag [l, 0], and for 
k odd, define ilk = diag [O, - I]. Then the two-step evolution of xk is 
governed by 

(2.4) 

fork odd. The eigenvalues of this matrix are at a2 (2{32 +1±2f3y0F+JJ. 
As long as {3'f'o0, a can be chosen close enough to 1 so that one of these 
eigenvalues is bigger than 1 . Hence, the system is not even stable for 
time-varying real perturbations, and then certainly the pair (M, ll.R) is 
not quadratically stable. 

In fact, for any f > 0, and lf3 I E (0, 1), the constant a can be prop­
erly chosen in ( -1 , 1) so that the real, time-varying perturbation 
ileven := diag [€,OJ and ilodd := diag [O, -f] is destabilizing (in spite of 
the fact that constant perturbations from the set Bll.e are not destabiliz­
~- D 

The above counterexample has another interpretation, which is fairly 
intuitive from a frequency domain point of view. For notational purposes, 
first write the uncertain difference equation xk + 1 = F, (M, At )xk as 

(2.5) 

If I - Mn ilk is invertible, then for each xk, there exist unique vectors 
Xk+i, vh and wk solving (2.5). Now, if we partition x, il, w, and 
v E C 2 as 

and use the definition of M in (2.3), the state equations are written 
explicitly as 

wk = iikvk 

wk = likvk. 

(2.6) 

(2.7) 

(2.8) 

In terms of Z transforms, the time-invariant, zero state descriptions of 
(2.6) and (2.7) can be written as 

v(z) = T(z)w(z) 

v(z) = B(Z)W(Z) 
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where 

T(z) = {3z +a, 
z -a 

z -a 
B(z) ={3~-. 

z+a 

Abusing notation, these equations are shown pictorially below. 

At low frequency (z = I), T has a gain of {3(1 + a)j(I - a). Hence, 
the constant input sequence wk := r will produce the constant output 
iik = r{3(1 + a)/(I - a) [by proper choice of initial condition-in the 
above state representation this would be x0 := 2r{3a /(I - a)]. 

Likewise, at high frequency (z = -1), B has a gain of {3(1 + a)j(I -
a), so an initial condition of x0 := 2t{3a /(I - a) and input sequence 
wk := (-l)k +It will produce the output sequence vk = [(-If- 1 t{3(l + 
a)]/(I - a). 

It then follows that if the initial conditions are chosen with r = t 
# 0, and bk =bk = [(- ll · 1 (I - a)]/{3(1 +a), then the loop equations 
(2.6), (2.7), and (2.8) are solved, the signals wand v are as described 
above, and the state xk does not decay to zero. Note that for a arbi­
trarily close to 1, the norm of this destabilizing perturbation 4 is arbi­
trarily small. In this example, the time-varying real perturbations shift 
the frequency content of the signals that they multiply. The subsystems T 
and B have large ({3(1 +a)/(I -a)) gains in different frequency ranges, 
therefore, the varying perturbations need only to couple these large gains 
together by appropriately shifting the frequency content of the signals to 
cause instability. Since the gains of the subsystems are large, the neces­
sary gain of the perturbation is small. With constant perturbations, be 
they real or complex, this frequency shifting is impossible, and stability 
is assured. 

III. II . II x; AND BLOCK DIAGONAL QUADRATIC STABILITY 

In this section we explore what connections between 11 ·II ::x: and 
quadratic stability exist when the uncertainty is structured as in (2. I), 
recalling the strong connection for unstructured uncertainty (Theorems 
1.5 and 1.7). 

In an excellent paper [l] necessary and sufficient conditions are given 
for quadratic stability of the pair (M, A), where ME Rin+ '" 1 xin-mJ, and 
A is of the form 

A:= {diag [01, 02, ···,om]: Ii, ER}. 

To state their result, define the finite set A, 

A,,:= {F1(M, 6.): 6. EA, Ii; =±I}. 

Note that A, has 2"' elements, and is the image, under F1 (M, 6.), of 
the vertices of BA. The theorem from (I] is as follows. 

Theorem 3.1: Given Mand A as above. The pair (M, A) is quadrat­
ically stable if and only if there is a single quadratic Lyapunov function 
establishing the stability of the finite set of matrices A, . 

The problem of finding a single quadratic Lyapunov function for a 
finite set of matrices is then reformulated as a convex optimization, and 
the solution is discussed completely in [!]. Some synthesis results for 
state feedback problems with real uncertainty and quadratic stability ob­
jectives are found in [IO]. 

For complex uncertainties, it is simpler to relate quadratic stability to 
a scaled II· II oc norm. We begin with a lemma about constant scaling of 
transfer functions. 

Lemma 3 .2: Let !D c cm x"' be a set of invertible matrices. Define 

~ := {diag [T, D]: TE cxn, T = T* > 0, DE !D} 

C c(n+m)Xln~m). (3.J) 

Let Mc C 1" tmix1n~mi be given, with p(M11 ) <I. Then, there exists a 
DE !D with 

if and only if 

max if[DFu(M, e18 ln)D- 1
] < 1 

8E[O. 2K[ 

inf a(DMiY- 1
) <I. 

DED 

Proof This follows from the results in [I] or [5]. 
Next, consider a specific block structure A of the form 

where m 1 + m 2 = m. Define !D and -:n as 

(3.2) 

!D:={diag[dlm,,lm,J:d>O}cRmxm (3.3) 

~ := {diag [d1ln, D]: d1>0, DE !D} C R(n•m)X(n+m) (3.4) 

and ~ as in (3.1). 
Assume that for all 6. E BA , the matrix I - M22 6. is nonsingular 

(this would be satisfied if and only ifµ:. (M22) < 1, where µ:. (M22) is 
the structured singular value of M 22 with respect to the structure A [2]. 
Then the following lemma is equivalent to a main result of [2], and is 
discussed further in [5]. 

Lemma 3.3: 

max if[F1(M, 6.)] < 1 if and only if inf ii(DMD- 1
) <I. 

.'.!.EB!> DED 

Lemma 3 .4: Consider the set A as defined in (3.2), and corresponding 
!D in (3.3). The pair (M, A) is quadratically stable if and only if there 
is a D E !D such that 

max if[DFu(M,e18 In)D- 1
] <I. 

BEID.2'1 

Remark 3 .5: Using the structured singular value theory developed 
in [2], it is possible to show that the pair (M, A) is robustly sta­
ble if and only if for each () E (0, 21r], there is a D 0 E !D such that 
ii[D8F u(M, ei8 In )D;; 1 J < I. This is a weaker condition, since the scal­
ing matrix can change with frequency () while the condition in Lemma 
3.4 involves a constant scaling matrix. 

Proof For each T E C" xn, T T* > 0, define MT E 
c<n+m)X{n+m) by 

TM12]· 

Mn 

Now the pair (M, A) is quadratically stable if and only if there is a 
T E C" xn, with T = T* > 0, such that 

Using Lemma 3.3, this is true if and only if there exists a Tsuch that 

which is equivalent to 

inf ii(DMTD- 1
) <I 

DED 

inf a(DMD- 1
) <I. 

DED 

This is the same condition as in Lemma 3.2. CJ 

Hence, for two full complex blocks, the notion of quadratic stability is 
equivalent to a II· II 00 criterion, with constant, diagonal scaling matrices. 
The equivalence for more than two blocks is in general not true, since 
the result in Lemma 2.3 exploits the fact that A has only two blocks. 

IV. CONCLUSIONS 

In this note we have shown that the equivalence between real and com­
plex perturbations in the context of quadratic stability to linear fractional, 
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unstructured perturbations is not true when the perturbations are block 
structured. For a limited class of problems, quadratic stability in the face 
of structured complex perturbations is equivalent to scaled II ·II cc norms, 
and hence 11-11 cc synthesis techniques, coupled with diagonal constant 
scalings, can be used to design quadratically stable systems. 
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On the Norms Used in Computing the Structured 
Singular Value 

NAM-KIU TSING 

Abstract- Different norms are considered to replace the Euclidean 
norm in an algorithm given by Fan and Tits (IEEE Trans. Automat. 
Contr., vol. 33, pp. 284-289, 1988) which is used for the computation 
of the structured singular value of any matrix. It is shown that the 11 

norm is the best possible norm in a certain sense. 

Recently, there has been a considerable amount of interest in the study 
of the structured singular value, the concept of which was originated 
by Doyle [I] and is used as a tool for the analysis and synthesis of 
feedback systems with structured uncertainties (e.g., see [2], [3] and 
their references). 

Let M be an n x n complex matrix, and X = (k 1 ,···,km) 
an m tuple of positive integers which satisfies I:;: 

1 
k; = n. 

For i = 1, · · · , m, denote the ith-block-projection matrix by P; = 
blockdiag(Ok,,. . .,ok,_,,/k,•Ok, ,,. .,Okm) where Ok and hare 
the zero matrix and identity matrix, respectively, of order k x k for any 
positive integer k. Then the structured singular value of M with respect 
to the block structure X is the nonnegative scalar 

µ(M) = ~~1~ {llMxll: llP,xll llMxll = llP;Mxll, i = 1, .. -,m} 

where II· II denotes the Euclidean (/2 ) norm in !f' and DB the correspond­
ing unit sphere. One major issue in the study of µ(M) is the computation 
of it. In their paper [2], the authors devise an algorithm [2, Algorithm 
I], which we shall explain immediately, to compute µ(M). They first 
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define, for any real number a, the Hermitian matrices 

A;(a) = aP1 -MH P 1M, for i = l,· · · ,m 

and them-form numerical range associated with A 1 (a),··· ,Am (a): 

W(a) = {(v1, · · ·, vm) E .rr : 3x E DB 

suchthatv, =XH A;(a)xforalli}. 

A function c(·): Jl --+ Jl, which depends on Mand :K'., is then defined 
by 

c(a) =min {llvll: v E W(a)} 

where II ·II again denotes the Euclidean norm (on Ir this time). Then 
they show [2, Corollary 1 and Proposition l] that, for any matrix M with 
structure X, c(-) satisfies 

c(-) is continuous 

c(µ 2
) = 0, c(a) > 0 for all a> µ 2 

and 

c(a +s) <'.'. c(a) +s for all s 2 0 and real a 

(I) 

(2) 

(3) 

where µ = µ(M). The initial step in [2, Algorithm l] is to set Q\J = 
u2(M) where u(M) is the largest singular value of M. The iteration step 
is to set ak+ 1 = ak -c(ak) fork = 0, 1, 2, · · · . The authors show in [2, 
Theorem 2] that, since c(·) satisfies (1)-(3), Algorithm 1 will generate 
a monotonic decreasing sequence { ak } with liTilA: ~ x ak = µ2 . The 
structured singular value µ can thus be obtained. They also remark in 
the footnote that the Euclidean norm in the definition of c(·) can be 
replaced by the /1 norm to get the strongest version of Proposition 1. 
The purpose of the present note is to elaborate on this remark. 

Suppose we consider any norm N(-) on .rr instead of the Euclidean 
norm. Similar to the case of c(-), we may define a function cN : Jl __, Jl 
(which also depends on Mand :K'.) by 

cN(a) =min {N(v): v E W(a)}. 

It is not hard to see that c N ( ·) always satisfies (I) and (2); and if in 
addition c N (-) satisfies (3) also, then the function c(·) in Algorithm 1 
can be replaced by c N (-). Let 

m = {N(-): N(-) is a norm on .rr and cN(-) satisfies 

condition (3) for all matrices M with structure X}. 

Then Algorithm 1 will work with c(-) being replaced by any cN (-) where 
NO E m. In view of the iteration step of the algorithm, we may want 
to choose a norm N 0 (-) E m such that 

for all N (-) E m and a > µ 2 

so that the resulting algorithm has the fastest convergent rate and is thus 
the most efficient. The following result shows that 11·II1 , i.e., the 11 norm 
on .rr defined by 

for all v = (v1,· ··,vm) E .rr, 
i=l 

will give such a "best possible" norm. 
Theorem: Let X = (k 1 , ···,km) be a given block structure. Then 
a) II . II 1 E m, and 
b) for any N(-) Em, llvll 1 2 N(v) for all v E Jl'", so that 

for any real a and complex matrix M with block structure X. 
Proof: 
a) The proof of the fact that c 1 (-) satisfies (3) is similar to (and 
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