
WP14 16:00
Development of Advanced Control Design Software for

Researchers and Engineers

J. Packardt Glover§

MUSYN INC.
1009 Fifth St. SE

Minneapolis, MN 55414
612.378.1742 415.704.8730

1 Introduction

This paper gives a brief description of The it Analysis and Synthesis
Toolkbo (p-Tbols), an advanced control design toolbox to be used in
conjunction with MATLAB. p-Tbols introduces CONSTANT, SYS-
TEM, and VARYING matrix types and over a hundred commands to
manipulate them, induding HZ optimal control and p analysis and
synthesis functions. The VARYING type allows for matrices which
are functions of an independent variable, and the SYSTEM type is a
packed system matrix. The MATLAB implementation of these data
types is described briefly in Section 2. A brief synopsis of the p-Tools
functions are listed in Section 4. As an example of their use, the fol-
lowing commands implement the first D - K iteration of p-synthesis
for a SYSTEM matrix ays, using the p-Tools commands hint syn,
frap, mu, musynit, nult, stav, starp, and vplot. A slightly
more detailed example of a p-synthesis design is given in Section 5.
>> min.o(sys)
system: 8 states 6 outputs 6 inputs
>> blk-struct = [2 2; 2 2}; nmeas=2; ncont=2;
>> omega m logspace(0,4,50); gama_min=.8; gaa_max=6;
>> tolerance.O05;
>> [ki,g1,gf1)...
hintfsyn(ys ,nma ,ncont, aaumn ,gaa_aa,tolerance);
>> Endsl,dvl,sens1,rplJ * mu(frspC(gl,oega) ,blk_struct);
>> Edssl,dsysr] .m..
musynfit('lst-iter ',dvl,esli,blk_struct,nseas,ncont);
>> sys2 = au1t(dsysl,sys,minv(dsysr));
>> vplot('liv,m' ,badal,vnorm(frap(starp(sys2,kl),omega)))

p-Tools has undergone several years of refinement in short courses
and at various test-site locations. It is based on experience over a
ten-year period with MATLAB derived control toolboxes as well as
the HoneyX system developed at Honeywell's System and Research
Center, where the most extensive applications of the methods provided
by p-Tools has taken place. Beta test sites for the p-Tools software
include Honeywell, McDonnell Douglas, and Philips. The software
package has also been used in graduate controls classes at Caltech,
Georgia Tech, U. C. Berkeley, and the University of Minnesota, and a
textbook based on the toolbox is in preparation.

p-Tools is a unique software package in a number of respects.
The most obvious feature is the introduction of control-specific data
structures into the proven MATLAB environment. Perhaps more im-
portantly, p-Tools represents the cutting edge in making advanced
control theory available both to the researcher and the applications
engineer. It will continue to be an outlet for the authors' theoretical
research results, and its ongoing use at key industry and government
centers will insure that it has contact with the most advanced control

applications. The p-Tools authors have a strong commitment to ap-
plications and the development of theory with relevance to engineer-
ing design. Extensions under development include additional model
reduction methods, analysis of systems with mixed complex and real
parametric uncertainty, model validation and system identification for
robust control, as well as several additional case studies.

2 The Data Structures

p-Tools represents systems (either in state-space form or as frequency
dependent input/output data) as single data entries, providing all of
the information about a system in a single MATLAB variable. In
addition, the p-Tools functions which return a single variable can be
nested, allowing you to build complex operations out of a few nested
operations.

2.1 SYSTEM Matrices

Standard systems [4] are represented in p-Tools by a single
MATLAB data structure, referred to as a SYSTEM matrix. The ac-
tual format of the data storage is

A B u
C D O ?

where the zeros correspond to a row or column of zeros. The -Inf
in the lower right corner indicates to the p-Tools functions that the
matrix is a SYSTEM matrix. The number of states, nx, uniquely
determines the partitioning of the rest of the data.

2.2 VARYING Matrices

Matrix-valued functions of a single, independent real variable are rep-
resented in p-Tools with a data structure called a VARYING matrix.
Frequency response and time responses of systems are the most com-
mon use for this type of structure, but other uses are possible. For
example, a system which depended on a parameter could be repre-
sented as a VARYING matrix with the parameter as the independent
variable and the matrix-valued function actually being a SYSTEM.
Similarly, one can have VARYING matrices of VARYING matrices,
and so on.

Consider a matrix valued function of a single real variable G
R -_ Cx' evaluated at N discrete values of x E R, cal thenm
ZX,Z2 . . .,ZN. Let Gi E C"xm be defined asG (). Then, inp-Tools,
the actual data representation of the function G is a MATLAB matrix
with n N + 1 rows, and.m + 1 columns, as shown below;

'Dept. of Aerospac E and Mecbanica, University of Minnesota
tDept. of MechnicalE , University of California, Berkeley
tDept. of Electrical Engeering, Califomia ititute of Technology
i Dept. ofE e , Cmbridge University, England
'Dept. of Eectrical En er , University of California, Santa Babara

996

[Gi]

[Gi]

[GN]
L0 o N

XI

XN
0

0

tnf

The In in lower right corner tags this as a VARYING matrix. The
number just to the left of the Inf, in this example, N, indicates how
many data points are represented, and then the first N values in the
rightmost column are the independent variables values. The function
data consists of the matrices, which are stacked one on top of one
another.

2.3 CONSTANT Matrices

If a MATLAB entity is neither a SYSTEM nor a VARYING matrix it
is treated by p-Tools as a CONSTANT matrix. CONSTANT matrices
can be arguments to functions which normally expect VARYING or

SYSTEM matrix arguments.

3 Plotting VARYING Matrices

The function vplot plots VARYING matrices. The argaments for
vplot are similar to MATLAB's plot command, with the exception
that it is not necessary to specify the values for the x-axis. The x-
axis data corresponds to the independent variables, which are already
stored within each VARYING matrix. An important feature of vplot
is its ability to plot multiple VARYING matrices on the same plot
without having to have the same independent variables.

In the MATLAB plot command, different axis types are provided
by different functions, loglog, sesilogx, and others. vplot provides
this capability by an optional string argument. The default is a lin-
ear/linear scale. The generic vplot function call looks lke

vplot('axistype' ,vmati,'linetype' ,vat2,...).
The axistype argument, a character string, allows the specifica-

tion of logarithmic or linear axes as wel as: magnitude, log magnitude,

and phase. There are also some control specific options: bode, nyq,
and nic which specify Bode, Nyquist, and Nichols plots respectively.
The linetype arguments are optional and are identical to those pro-
vided by MATLAB for the plot command.

4 Commands Grouped by Function

Standard Operations/ Basic Functions

abv Stack constant/varying/system matrices above one

another
cjt Conjugate transpose of varying/system matrices
crand Complex random matrix generator
daug Diagonal augmentation of constant/varying/system

matrices
madd Addition of constant/varying/system matrices
minv Inverse of constant/varying/system matrices
nmult Multiplication of constant/varying/system matrices
ascl Scale (by a scalar) a system or varying matrix
msub Subtraction of constant/varying/system matrices
sbs Stack matrices next to one another
sclin Scale system input
sciout Scale system output
Sel Select rows/columns or outputs/inputs
starp Redheffer star product
transp Transpose of varying/system matrices

Matrix Information, Display and Plotting

dravag interacive mosed-taed sketch and fitting tool
mia o Information on a matrix
sprint! Formatted printing of a matrix
rifd Display real, imaginary, frequency and damping data
see Display varying/system matrices
seeiv Display independent variables of a varing matrix
seesys Formatted varying/system display
vplot Plot a varying matrix
vzoos Mouse driven axis selection of plot window

Modeling Functions

nd2sys Convert a SISOtMer function into a system matri-
pck Create a system from (A, B, C, D)
pss2sys Convert [A B;C D) into a -Tools system matrix
sys2pas Extract [A B; C DJ from a system
sysic System interconnection program
umpck Extract state-space data (A,B,C,D) from a system
zp2sys Convert poles and zeros to a system matrix

System Matrix Functions

reordsys Reorder states in a system matrix
sash3d Sample-hold approxmation of a continuous system
spoles Poles of system matrix
statecc Apply a coordinate transformation
stran Bidiagonal coordinate transormation
sysrand Generate a random system matrix
szeros Transmission zeros of a sytem matrix
tustin Prewarped continuous to discrete transformation

Model Reduction Functions

hankur Optimal Hankel norm approximation of a system
adecomp Decompose a system matrix into two system matrices
sfrvtbal Frequency weighted balanced realization of

a system matrix
sfrvtbld Stable frequency weighted realization of

a system matrix
sncfbal Balanced realization of coprime factors of a system

matrix
srelbal Stochastic balanced realization of a system matrix
sresid Residualize states of a system matrix
strunc Truncate states of a system matrix
sysbal Balanced realization of a system matrix

System Response Functions

cosstr Generate a cosine signal as a varying matrix
dtrsp Discrete time response of a linear system
frsp Frequency response of a system matrix
sinstr Generate a sine signal as a varying matrix
si-ggen Generate a sigal as a varying matrix
step-tr Generate a step signal as a varying matrix
trap Time response of a linear system

H2 and H, Analysis and Synthesis Functions

csord Order complex Schur form matrices
h2norm Calculate 2-norm of a stable, strictly proper system
h2ayn H2 control design
hinffi Ho. full information control design
hinfnors Calculate co-norm of a stable, proper system
hinfsyn H,:,. control design

997

pkvnors Peak norm of varying matrix
ric-eig Solve a Riccati equation via eigenvalue decomposition
ricachr Solve a Riccati equation via real Schur decomposition

Many of the MATLAB matrix functions have analogous p-bols
functions which are identical on CONSTANT matrices, but operate
on VARYING matrices on a matrix by matrix basis. These functions
a-re

vabs vceil rdot vdiag voig veval
raps rfloor vay vig mom rpinv
vpoly rrcond vreal vrootw vrl nsvd

Additional p-Tools functions which exted MATLAB functional-
ity to VARYING matrices are

rconj rcjt robe rift rifftt ldiv vCdi, vrho vtp

The functions renal and vebe perform a named operation on
VARYING matrices. rebe performs MATItAB or user defied func-
tions on the elements of a VARYING- matrix (for example: sin, tan
...). veval can perform any function induding those with multiple
input and output arguments. rob and veral allow the evaluation
of any MATLAB matrix function on VARYING matrices. Several of
these functions are illustrated below.

MATLAB Matrix Eunction [rbols VARYING Function

A + B+... nad(AB,..,B
A / B ; A \ B vrdir(A,B); v1div(A,B)
A .* B rverac'.*'.A,B)

I' b rernl(",A,b)
As cjt(A) (or vcjt(A))
sin(A) vobe(in's A)
nax(aba(eig(A)) vrho(A)

4.1 Special features

p-Tools has several features that help make it user friendly. In ad-
dition to standard MATLAB help facilties, whenever a command is
typed without any argaments, or with an incorrect number of argu-
ments, a usage line is returned. For example, if the user has forgotten
the inputs to mu, simply type

>> u
usage: Ebnds ,rowd,sw,rot_pj a mu(matin,blk ,opt)

For creating systems, in addition to ndasys, zp2sys, sysic, and
other programs that take command line arguments, drmaag is an
interactive moue-based sketch and fitting tool. drawnag creates a
VARYING file of points at the locations where the mouse is cliked
and a stable, minimum-phase system which approaximately fits the

points. This is particulaly useul for creating weights for p-synthesis
and candidate loopshapes for loopshaping designs.

The p-Tools cmands for handling VARYING matrices are par-
ticularly use for studying parametrized systems. Suppose we want
to design a controller for the system

P(S) =
Ka

-Ta + I

where K E [1, 10) and T E [.1, 1]. We can easily form a VARYING ma-
trix with the 4 extreme corner systems with the folowing commands:

>>pl a nd2sys(Ci,[I);
>-p2- scl(pi,10);
>>p4 nd sy(ClE.l 13);
> ap3a cl(pI,10);
>>pstack . rpck(Cpl;p2;p3;p4;pt (.it;2;3;4;iJ);

The VARYING matrix pstack contains 5 systems, with the last one
a repeat of the first. This is done to provide good Nichol chart plots.
The commands

>>* i= t(nd2sys(1,Ci 0),nd2sys(C1 4tE.0 1)),...
>>nd2sys(Ij1,e-3 1)));
>>cstack s rpckC[c;c;c;c;cJ,[1;2;3;4;)i);
>flstack a oval('slt-',cstack,pstack);

form a 3rd order controler and multiply it by each plat to form a
VARYING matrix of loop transfer functions. We can then take the
frequency response and plot it in several ways.

>lvar = veval(frsp'.lstack,omega);
>>»nic - veval('vnpck'1,rar);
>>1bode a vovla('vunpck',uvapiPv(Cvar22 13));
>»lbode * sel(lbode,1:4,1);

>>vplotQ(nic' ,lnic); grid;
>>vplot('bode' 1bode);

I

I

I1

-' w-

}100
110

I14 D-W I. .I
10o 101 102

)il1,1, l~
103 104

Structured Singular Value (p) Analysis and Synthesis

b[knorm Blka nom of constant/rying matrices
dypert Create a rational perturbation from a data
fitmag Fit magitude data with rational traner function
fttang]p Fit magitude data with rational transfer function
fitays F-it frequency rpose data with transfer function
goupha. Generate a minimum phase frequency repons to

magnitude data
mar it Fit magnitude data with rational transfer function

(a batch process)
mu p-analysis of constant/varying matrices
muftbtch Batch D scaling rational fit routine
usynfit Interactive D scaling rational fit routine

musynflp Interactive D scaling rational fit routine
raCe]. Generate a radom perturbation
sisorat Fit a frequency point with first order, all-pass, stable

transfer function
unmwrapd Construct D scaling from au
unwrapp Construct A perturbation from mu

Varying Matrix Manipulation
getiv Get the inddependent variable of a varying matrix
indrcmp Compare the independent variable data
negangle Calculate angle of elements between 0 and -2r
scliv Scale the independent variable
sortir Sort the independt vriable
tackon String together varying matrices
rar2con Convert a varying matrix to a comtant matrix
varyrand Generate a random varying matrix
rdcmate Decimate varying matrices
vinerp Interpolate varying matrices
vpck Pack a varying matrix
vunpck Unpack a varying matrix
xtract Extract portions of a varying matrix
xtracti Extract portons of a varyng matrix

5 Robust Performance Design Example

This section contains an example of p-synthesis as applied to a pa-
per design for the linearized pitch axis controller of an experimental
highly maneuverable airplane, using a model taken from data for the
HIMAT vehicle. Because of space constraints, only minimal engineer-
ing motivation will be give for this problem; it is presented only to
illustrate the software. The p-Tools software comes with six M-files,
himatsi through himatzx6, which go through this example in greater
detail. The problem is posed as a robust performance problem,
with multiplicative plant uncertainty at the plant input and plant
output weighted sensitivity function as the performance criterion.
The design procedure involves several steps:

1. Specification of dosed loop feedback structure.

2. Specification of model uncertainty and performance objectives
in terms of frequency-dependent weighting matrices.

3. Construction of open-loop interconnection for control synthesis
routines.

4. 74,, optimal controller design for the open-loop interconnection.

5. Analysis of ROBUST PERFORMANCE properties of the re-
sulting dosed-loop systems using the structured singular value,
p (p-analysis).

6. Use of frequency dependent smilmarity scalings, obtained in the
p-analysis step, to scale the open loop interconnection, and re-
design 7-tn controller (iterating on steps 5, 6, and 7 constitutes
an approach to p-synthesis).

The state vector consists of the vehide's basic rigid body variables:

:T = (6v, a, q,6)
representing the forward velocity, angle-of-attack, pitch rate, and pitch
angle, respectively. The control inputs are the elevon (4.) and the
canard (6). The variables to be measured are a and 9.

Ld2]

1C2]

Figure 1: HIMAT Closed-loop Interconnection Structure

The control design objective is to design a stabilizing controller
K such that for all stable perturbations AG(s), with IIAGII. c 1,
the perturbed closed-loop system remains stable, and the perturbed
weighted sensitivity transfer function,

S (AG) := Wp (I + P(I+ AGWdS)K)
has IS (AG) lio < 1 for all such perturbations.

5.1 Models and performance objectives
Sources of uncertainty include uncertainty in the canard and the elevon
actuators, in the forces and moments generated on the aircraft due to
their defiections, uncertainty in the linear and angular accelerations
produced by the aerodynamically generated forces and moments, and
many others. In this example, we choose not to model the uncertainty
in a detailed manner, but rather to lump all of these effects together
into 1 full-block uncertainty at the input of a 4-state, nominal model

of the aircraft rigid body. This nominal model has no (i.e., perfect)
actuators and only quasi-steady dynamics. The nominal model for the
airplane is loaded from the utools/subs directory.

> ukhiaat;
> ainfo(hiat)
> seasys(hiwat,'iX9.1o)
-2.3e-02 -3.7e+01 -1.99+O -3.2e+01 O.0o'00 O.*Oe+o
0.09+00 -1.9o+00 9.8e-01 0 .0400 1 -4.18-01 0.Oe+00
1.2e-02 -1.2e01 -2.6e+00 0.00+00 I -7.8.+01 2.2e+01
O.Oe+00 O.Oe+00 i.Oe+00 0.O0e+00 1 OOo+00 O.o0+o0

O.Oe+00 5.7e+01 0.Oe+00 O.oe+oo O .0e+00 0.O0+00
O.Oe+0 0.Oe+00 0.0e+00 5.7e+01 O.e+00 0.0Oe+00

The partitioned matrix represents the [A B; C DJ state space data
For this example, Wdas :0=w&(s,92, with wd&(s) = 50(+1'+OOlO), anc

Wp(s) = wp(s)I2, where wp(s) = 0.0+3). The engineering motivatior
for a performance specification like this would most naturally com
from the desire to be able to have independent tracking of the angl
of attack and pitch angle. Wda can be formed as follows:

>vdel = nd2sys(C[100lL[l 10O000LSO);
> wdel = daug(wdel,wdel);
> up = nd2sys(E0.5,1i5.EE1,0.03D); vp - daug(up,vp);

The phrases robust stability, nominal performance, and ro-
bust performance are used in this framework extensively. For this
problem, they mean:

Nominal Performance:

j|Wv(I + Gr K)-Q < 1

Robust Stability:

OWasKG0n(I+KGriomYll||<C 1

Robust Performance:

W, (I + GK)-' H0 < 1

is satisfied for every G e 9i. The property of robust perfor-
mance is equivalent to a structured singular value test.

5.2 Building the open-loop interconnection with sysic

A 6-input, 6-output SYSTEM matrix, himatic, (also referred to as
F(s))

z pertin
e himatic | dist
Y_ control

has internal structure shown in Figure 2.

[Z28 parti dist

control y

Figure 2: HIMAT Open-loop interconnection Structure

This can be produced with nine MATLAB commands, Listed below.
The fist 8 lines describe the various aspects of the interconnection,

999

G

and may appear in any order. The last comniand, sysic, produces
the final interconnection. The commands can be placed in an M-file,
or executed at the command Line.

> systenames = ' hinat vp wdel ';
> iLnputvar = ' pertin(2) ; dist(2) ; control(2) 1';
> outputvar= 'Ewdel ; up; -hisat -dist ';
> inputsto.himat = ' control + pertin)';
> input.tosdel = ' control IJ;
> input.tosp I'(hint + dist J';
> sysoutane 'himatic';
> cleanupsysic * 'yes';
> sysic;

5.3 p-synthesis and D - K iteration

For notational purposes, let P(s) denote the transfer function of the
six-input, six-output open-loop interconnection, hinatic. Define a
block stmcture A as

A:= A l]:Ai EC2x2 A2 EC2X2 c X4.

The first block of this structured set corresponds to the full-block
uncertainty A0 used in section 5.1 to model the uncertainty in the
airplane's behavior. The second block, A2 is a fictitious uncertainty
block, used to incorporate the 4,> performance objectives on the
weighted output sensitivity transfer function into the p-framework.

Recall that a stabilizing controller K achieves closed-loop, robust
performance if and only if for each frequehcy w E [0, ooj, the struc-
tured singular value

p&a [F (P, K) (jw)] < 1
Using the upper bound for p, (recall that in this case, 2 fUl blocks,
the upper bound is exactly equal to p) we can attempt to minimize
the peak closed-loop p value by posing the optimization problem

mms[in-|[) 0 F (P,K) d 1(q)I2 °i
Katabixing d12t K b I

d(.)Minphan,scebJc

An approximate p-synthesis involves a sequence of minizations, first
over the controller variable K (holding the d variable fixed), and then
over the d variable (holding the K variable fixed). This is often referred
to as the D - K iteration.

5.4 74o design on the open-loop interconnection

In this section, we carry out the first step of the D -K iteration, which
is an 740 (sub)optimal control design for the open-loop interconnec-
tion, hinatic. In terms of the iteration, this amounts to holding the
d variable fixed (at 1), and minimizing the 1 norm of Fl (P, K),
over the controller variable K, as shown.

Z pertin
e hinatic tist zzl7IIiz pzrtin

r - e - tgfi)-- dist

The function hinfsyn designs a (sub)optimal 74, controllaw based
on the open-loop interconnection structu provided. Syntax, input
and output arguments to hinfsyn are:

> Ek,clp] = hinlfsyn(p,neas,ncon,glow,ghigh1tol);

The arguments are:

Inputs
open-loop interconnection (SYSTEM matrix) p
number of measurements m

number of controls
lower bound on achievable norm
upper bond on achievable norm
abslute tolerance for bisection method

Outputs
controller (SYSTEM matrix)
dosed-loop (SYSTEM matrix)

In this example, the clling sequence is

ncons
glow
ghigh
tol

k
cip

> [ki,clpiJ a hinfsynChimatAc,2,2,0.8,8.0,.06);
> clplg frsp(clpi,omga);
> clplgs vsvd(clplg);
> subplot(211) ,vplot('liv,a' ,clplgs)
> title('Singular Value Plot of clpi')
> xlabel' Frequency (rad/a)')

The two 2 x 2 transfer functions assocated with robust stability
and nominal performance may be evaluated separately, the
command sl.

> rob-stab a sel(clpig, [I 2J, [i 2));
> noperf * sel(clplg, [3 4)1(3 4));
> subplot(212)
> vplot('liv,a' ,vnors(robstab),vnora(noa.perf))
> tapi = 'ROBUST STABILITY (solid) and';
> txp2 = I IOKINAL PERFORMANCE (dashed)';
> titleCEtmpi tnp2)
> xlabel('Frequency (rad/s)')

O-S~ ~-

-)
0.5

0.4

0.2-

01

Note that the controlled system achieves both nominal performance
and robust stability, since the peaks of the relevant singular value plots
are less than 1.

5.5 Assessing ROBUST PERFORMANCE with p

The ROBUST PERFORMANCE properties of the dosed-loop system
can be analyzed using p-analysis. For a frequency domain p-analysis
of ROBUST PERFORMANCE properties, the block structure should
consist of a 2x2 uncertainty block, and a 2x2 performance block. We'll
now make this calculation on the losed-loop from the XOO design. The
density of the frequency points is increased fom 50 to 100 in order to
have smoother plots.

> blk[22 ; 2 2);
> oegai = logspace(-i,4,100);
> clpgi frsp(clpi,omegai);
> [bndsl,dveci,sen1,pveci] - zu(clp.gi,blk);
> vplot('liv,u,' ,vnor(clp-gl),bndsl)
> title('Naxiuu Singular Value and an Plot')
> x1abel('Frequency (rad/a)')
> text(.i5,.9,'aa singular value (solid)','scj')
> text(.3,.4,'au bounds (dashed)','sc')
> text(.2,.15,'H-infinity Controller','ac')

1000

1;

16

1.4

0o

0.6

M. .SigwVa" in Plot

104 i0@ 101 102 103 104

Freus (MA4)

Figure 3: The dashed plot (which is actually two plots) is both the
upper and lower bounds for A4(Ft (P, K) (y)).

Hence, the controlled system (from flO) does not achieve robust
perifrmance. This conclusion follows from the p plot, which peaks to
a value of 1.69, at a frequency of 73.6 rad/s. Since the upper and lower
bounds are equal here, this is exact. The worst-case perturbattion can

be constructed using dypert.

5.6 One+ iteration of A-synthesis

Designing an H,,,o control law was the first computational step in p-

syntheais. The second step involved a p analysis on the closed-loop
system. This calculation produces frequency dependent scaling matri-
ces, called the D-scales. Using musyit, the varying variables in the
D-ecales can be fit (in magnitude) with stable, minimum phase ratio-
nal functions and absorbed into the generalized plant for additional
iterations. The syntax for uusynf it is

> £dsysL,dsysRJ
uusynfit(predaysL,Ddata,sens,blk,nnoas,ncont);

predsysL: the rational D scaling matrix from the previous iteration.

Ddata: the frequency varying D-scaes from the previous p-analysis
step. These are the 'new" D's which need to be absorbed onto
the existing scalings.

sea: the sensitivity variable from the previous p analysis step.

bik: the uncertainty block structure, same as from the p-analysis.

nueas: number of measurements, same as in the 4,O design.

ncon: number of controls, same as in the design.

The output arguments are two system matrices, dsysL and dsysR.
For the most part, these are the same thing - they are stable, minimum
phase, block diagonal approximations to the product of the previous
rational D, and the frequency varying D (from p calculation) which
was the adjustment that was to be made to -the rational D. The

new interconnection structure is formed from the orginal unaled
hiuatic together with dsysL and dsyssR.

This rational D fitting concludes the first iteration of the D - K
iteration approach to p synthesis. The process is repeated, begin-
ning with a new 74, design on the generalized plant nuici. This
open-loop interconnection, suici, consists of the rational D-scalings
dsysLl and dsysRi absorbed onto the original open-loop interconnec-
tion, bisatAc.

The second iteration of D-K iteration is comprised of the following
steps listed below. A third order fit was used for the D-scaling.

> Ek2,clp2J a hinfsyn(muici,2,2,O.8,1.8,0.03);
> clpj2 - frsp(clp2,ouega);
> Ebnds2,dvec2,sen2,pvec23 = uu(clp4g2,blk);
> [dsysL2,dzYss23 * musynfit(dsysLi,dvoc2,sns92,blk,2,2);
> nuic2 = mult(dsysL2,hiaat-ic,ainvCdsysR2));

The third iteration of D - K iteration is:

> Ek3.clp3J n hinfsyn(muic2,2,2,0.8,l.1,0.03);
> clpgS3 - frsp(clp3,ouega);
> [bnds3,dvec3,sens3,pvec3) = u(clp4g3,blk);
> vplot('livd',dbnds3)
> title('u Plot of Third D-K Iteration')
> xlabelC'Frequency (radls)')

-)

On the third iteration, the value of p was less than 1 across fre-

quency. This implies that robust performance was achieved for the
closed loop system with controller k3. Following the steps above, one
can carry on as many iterations as desired. In general, the D K

iteration process is continued until either p is less than 1, indicating
the robust performance has been achieved, or the peak p value of the
dosed-loop system stops decreasing.

6 Summary

This paper provides a brief description of The p Analysis and Synthesis
Toolba (p-Tools), an advanced control desip toolbox to be used in
conjunction with MATLAB.

> nsv..ic - ult(dsysL,himat iJc,xinv(dsysR));

uusynf it runs interactively using the gaphics window, but there
is batch version as well. For the first iteration a 4th order fit was used.

This increases the number of states in the open-loop interconnection
structure by 16 states.

> EdsysLl,dsysRl1 a ausynfit('first',dveci,snsil,blk,2,2);
> muicl - ault(dsysLl,hiuat-ic,uinv(dsysRfi));

1001

- bcim& (smdd)

H-mimy C5ffeA
0.4- ' ""- --- - """

I

