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Abstract:  

A major challenge in carbon‒hydrogen (C‒H) bond functionalization is to have the catalyst control 

precisely where a reaction takes place. Here we report engineered cytochrome P450 enzymes that 

perform unprecedented enantioselective C‒H amidation reactions and control the site selectivity 

to divergently construct β-, γ- and δ-lactams, completely overruling the inherent reactivities of the 

C‒H bonds. The enzymes, expressed in Escherichia coli cells, accomplish this abiological carbon‒

nitrogen (C‒N) bond formation via reactive iron-bound carbonyl nitrenes generated from nature-

inspired acyl-protected hydroxamate precursors. This transformation is exceptionally efficient (up 

to 1,020,000 total turnovers) and selective (up to 25:1 regioselectivity and 96% enantiomeric 

excess), and can be performed easily on preparative scale. 

 

One Sentence Summary:  

Directed evolution of cytochrome P450 enzymes fine-tunes site selectivity of new-to-nature C‒H 

amidation for modular, sustainable and scalable preparation of enantio-enriched β-, γ- and δ-

lactams. 

 

Main Text: 

Functionalization of unactivated carbon‒hydrogen (C‒H) bonds represents one of the most 

sought-after strategies to construct and diversify molecules, dramatically reshaping the logic of 

synthetic chemistry (1-4). Since organic molecules often contain multiple, similar C–H bonds, a 

major challenge is to control the site at which a reaction takes place. Current approaches to target 

specific C‒H bonds rely mainly on substrate control, wherein the substrate guides the catalyst with 

directing groups (5, 6) or bears one C–H bond that is inherently more reactive (7-11). The former 

strategy necessitates extra synthetic steps to manipulate directing groups, while both strategies 

significantly limit the breadth of potential substrates. An appealing strategy is to use a modular 

catalyst platform that could be tuned to deliver different site selectivities, thereby enabling 

regiodivergent C‒H functionalization of a broad range of substrates. However, such strategies 

remain elusive (12, 13). 

Enzymes, the catalytic machinery of the biological world, exert exquisite control over 

selectivity in biochemical transformations (14). This is exemplified by cytochrome P450 enzymes, 

which can hydroxylate a specific C‒H bond within a complex molecule (15, 16). Furthermore, this 

site selectivity can be tuned by protein engineering techniques like directed evolution (17-19). In 
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the past few years, our group and others expanded the boundaries of biocatalytic C‒H 

functionalization by repurposing native cytochrome P450s to perform new-to-nature carbene and 

nitrene transfer reactions (20-22). These enzymes have not yet been engineered to control the site 

selectivity of the non-natural reactions comparable to what has been achieved with P450-catalyzed 

hydroxylation. 

It was recently shown that C‒H insertion of sulfonyl nitrenes can be catalyzed by variants of 

cytochrome P450BM3 having the axial heme-ligating cysteine amino acid residue substituted with 

serine (so-called cytochrome P411s) (23, 24). Carbonyl nitrenes are synthetically more useful than 

sulfonyl nitrenes, but are generally considered ineffective for C‒H functionalization due to their 

low stability and facile decomposition to isocyanates through a well-known Curtius-type 

rearrangement (25). Recently, Chang and co-workers reported that an iridium-based catalytic 

system could harness carbonyl nitrenes for intramolecular C‒H amidation; however, these 

catalysts were not enantioselective and only formed the thermodynamically favored products (26). 

We hypothesized that cytochrome P450s and other hemeproteins could be engineered to generate 

reactive carbonyl nitrenes, direct them to C–H amidation over competing decomposition pathways, 

and precisely control the enantioselectivity and site selectivity of the reaction. 

Rather than using the carbonyl analogues of the sulfonyl azides to generate enzyme-bound 

nitrenes, we sought a more easily accessible and biocompatible nitrene precursor. A recent report 

by Tsutsumi and coworkers identified a naturally occurring nitrene-transfer reaction catalyzed by 

a cytochrome P450 enzyme in which the nitrene is generated from an acyl-protected 

hydroxylamine (27). We reasoned that acyl-protected hydroxamates 1, which are readily prepared 

from carboxylic acids in one step (Fig. 1A), could act as suitable nitrene sources in new enzymatic 

reactions.  

Motivated by the extensive pharmaceutical applications of β-lactams (28), we challenged 

hemeproteins to construct these strained, four-membered rings through intramolecular C‒H 

amidation, an unprecedented reaction (29-31). We chose as the model substrate hydroxamate 1a 

with two sets of reactive C‒H bonds, potentially affording β-lactam 2a through C(sp3)–H 

amidation or δ-lactam 3a through C(sp2)‒H amidation (Fig. 1B). We first tested whether free heme 

could catalyze C‒H amidation in biocompatible conditions and observed alkyl amine 4 as the sole 

product, presumably from Curtius-type rearrangement of the carbonyl nitrene followed by 

hydrolysis (Table S1). We then tested a panel of hemeprotein variants, including P450s, P411s, 

cytochromes c, and globins. Most evaluated hemeproteins, including the P411 variants previously 

engineered for C‒H insertion of sulfonyl nitrenes (23, 24), only generated amide 5, presumably 

through reduction of the carbonyl nitrene intermediate. A few hemoproteins of various lineages, 

however, produced small amounts of the lactam products (Tables S1 and S2). In particular, 

P411variant E10-V78F S438A (E10FA), which was originally engineered to catalyze carbene 

transfer to alkynes (32), was able to transform substrate 1a to the desired β-lactam (2a), giving 

only 1.5% yield but 90% enantiomeric excess (ee). The δ-lactam 3a was also detected, with 1.0% 

yield. In stark contrast to the reaction catalyzed by free heme, amine 4 was not observed in the 

reaction using this hemeprotein, supporting our hypothesis that an enzyme could divert highly 

unstable carbonyl nitrenes to the desired C–H amidation and bypass the Curtius-type 

rearrangement. 

We chose E10FA as the parent for directed evolution of lactam synthases (LS). To improve 

catalytic activity as well as site- and enantio-selectivity of C‒H amidation for the synthesis of β-

lactam 2a, amino acid residues located near the heme iron in a closely related crystal structure 



(P411 E10) were targeted for sequential rounds of site-saturation mutagenesis and screening (Fig. 

1C). In each round of mutagenesis, the libraries of enzymes were expressed and screened as whole-

cell catalysts in 96-well plates for increased product formation and/or enantioselectivity. Two 

rounds of site-saturation mutagenesis and screening introduced mutations F78L and A264G, 

leading to a 28-fold improvement in total turnover number (TTN) to 52,000 for β-lactam 2a while 

almost eliminating formation of δ-lactam 3a (Fig. 1D). Double site-saturation mutagenesis and 

screening subsequently added mutations T327R and V328M, which further increased TTN to 

71,000 and ee to 96%. Another round of double site-saturation led to the discovery of the final 

variant LSsp3 containing two more mutations L263N and A268F, which affords the desired β-

lactam 2a with 223,000 TTN (96% yield) and 96% ee. Adding both the E. coli expressing LSsp3 

and precursor 1a portion-wise to a reaction mixture boosted the TTN for β-lactam 2a to 1,020,000 

(see supplementary materials for details). 



 

Fig. 1. Hemeprotein-catalyzed intramolecular C‒H amidation. (A) Design of acyl-protected 

hydroxamate 1 as nitrene precursor, inspired by naturally occurring nitrene precursors in the 

biosynthesis of benzastatins (27) (Ac, acetyl; Piv, pivaloyl). (B) Reaction scheme and proposed 

catalytic cycle of intramolecular C‒H amidation catalyzed by P411 variant. (C) Crystal structure 

of a variant closely related to P411 E10 (PDB ID: 5UCW), with mutated residues marked in blue. 

(D) Directed evolution of E10FA to LSsp3 for the synthesis of β-lactam 2a and further improvement 

of total turnover number (TTN) via process optimization. Experiments were typically performed 

at analytical scale using suspensions of E. coli cells expressing E10FA variants [optical density at 

600 nm (OD600) = 2.5] in KPi (0.1 M, pH 8.0) buffer, 50 mM substrate 1a, 5 vol % organic 

cosolvents, and 400 μL reaction volume at room temperature under anaerobic conditions for 36 



hours. See supplementary materials for further details. Single-letter amino acid abbreviations (here 

or in Fig. 3): A, Ala; E, Glu; F, Phe; G, Gly; L, Leu; M, Met; N, Asn; P, Pro; R, Arg; T, Thr; Y, 

Tyr. 

 

With variant LSsp3 in hand, we next evaluated a collection of hydroxamates for enantioselective 

β-lactam synthesis (Fig 2A). Various aryl substituents were accepted to furnish β-lactams 2b–2g 

with excellent TTN (up to 180,000) and ee (up to 94%); only trace amount of δ-lactams through 

C(sp2)‒H amidation were detected. Introducing two methyl groups adjacent to the carbonyl group 

did not hamper the reaction, leading to the formation of product 2h in 191,000 TTN. Olefin-

containing substrates could also undergo highly enantioselective C‒H amidation (2i, 2j) with no 

competing aziridination observed, highlighting the enzyme’s exquisite chemoselectivity. An α-

alkynyl C‒H bond was also readily amidated (2k). Substrates with heteroatom substituents, such 

as amide and silyl groups, reacted well to give desired products 2l and 2m. 

The reactive C–H bonds in all the preceding substrates were weakened by adjacent substituents. 

This is not required, however, as evidenced by the ester-substituted β-lactam 2n, which was formed 

with 111,000 turnovers. Substrates with secondary and tertiary aliphatic C‒H bonds were also 

accepted, leading to products 2o–2p. The pristine site selectivity of the enzyme was further 

highlighted by the formation of product 2q from a substrate with multiple similar aliphatic C‒H 

bonds. Even aliphatic C‒H bonds adjacent to a trifluoromethyl group were amenable to C‒H 

amidation, affording product 2r with 58,000 turnovers and 88% ee. The transformation could be 

applied to preparative-scale synthesis without sacrificing yield or enantioselectivity (Fig. 2B). 

Isolation of most products was also straightforward: product 2s, for example, was simply filtered 

from the aqueous reaction mixture, resulting in 86% yield (1.62 g, 92% HPLC purity) and 92% ee. 
 



 

Fig. 2. Scope of β-lactam products. (A) Synthesis of β-lactams from corresponding 

hydroxamate substrates using LSsp3. Experiments were typically performed at analytical scale 

using LSsp3-expressing E. coli cells resuspended to OD600 = 2.5 or 3.0 in KPi (0.1 M, pH 8.0) 

buffer, 25 mM or 50 mM substrate 1, 5 vol % organic cosolvents, and 400 μL reaction volume at 

room temperature under anaerobic conditions for 36 hours. (B) Gram-scale synthesis of β-lactam 

2s using cell lysate of E .coli expressing LSsp3. See supplementary materials for further details. In 

all cases, regioisomeric ratio (r.r.) > 20:1. 

 

Having achieved β-lactam synthesis by intramolecular C(sp3)‒H amidation, we next asked 

whether other types of C‒H bonds could be amidated selectively. The parent enzyme E10FA 

showed trace reactivity towards C(sp2)‒H bonds, but only two rounds of site-saturation 

mutagenesis and screening generated variant LSsp2, with mutations F78A and T327P, that 

exclusively functionalized C(sp2)−H bonds (Fig. 3A). Instead of forming the corresponding β-



lactams (2a, 2s–2u), LSsp2 diverted the substrates to the corresponding δ-lactams (3a, 3s–3u) with 

excellent TTNs (Fig. 3B). 

To further demonstrate the tunability of enzyme-catalyzed C‒H amidation, we synthesized 

precursor 1v with two sets of C(sp3)‒H bonds, potentially affording β-lactam 2v or γ-lactam 6v 

(Fig. 3C). Variant LSsp3 gave β-lactam 2v as the major product, together with 6v in 2.2:1 ratio. 

Sequential site-saturation mutagenesis on residues R327, P329 and A330 and screening delivered 

variant LSβ, which produces β-lactam 2v with r.r. up to 25:1. Bearing mutations R327P, P329L, 

and A330V from LSsp3, LSβ provided 180,000 TTN and 96% ee for 2v. As shown in the synthesis 

of β-lactams 2w–2y, this variant generally enforces high selectivity for the β-lactam products, 

despite the presence of weaker benzylic C‒H bonds and the option to form less-strained γ-lactams. 

Meanwhile, variant LSγ was also revealed, which has mutations P329V A330M and can selectively 

synthesize γ-lactam 6v (Fig. 3C). The site selectivity of LSγ was largely insensitive to aromatic 

substitution, such that γ-lactams 6w–6y were afforded with up to 25:1 r.r., 209,000 TTN, and 97% 

ee (Fig. 3C).  

Finally, we challenged the enzymes with nitrene precursor 1z, which has three sets of reactive 

C(sp3)−H bonds. Variants LSβ, LSγ, and LSsp3 selectively formed β-lactam 2z, γ-lactam 6z and δ-

lactam 3z, respectively. The excellent site selectivity shown in this example further showcases the 

powerful regiocontrol of the enzymes that is tunable by directed evolution (Fig. 3D). 



 

Fig. 3. Engineering lactam synthases for regiodivergent intramolecular C‒H amidation. 
(A) Evolutionary trajectory of variants LSsp2, LSsp3, LSβ, and LSγ. (B) Selectivity and scope of 

LSsp2 and LSsp3-catalyzed intramolecular C‒H amidation. (C) Selectivity and scope of LSβ and 

LSγ. (D) Regiodivergent amidation of aliphatic, homobenzylic, and benzylic C(sp3)‒H bonds 

catalyzed by LSβ, LSγ, and LSsp3. Regioisomeric ratio (r.r.) indicates the mole ratio of major 

product to combined minor regioisomers. See supplementary materials for details. 

 

We have engineered a new ‘lactam synthase’ that can be tuned by directed evolution to convert 

substrates into different lactams through a catalyst-controlled C‒H amidation process. Reactivity 

trends due to bond strength, inductive effects, steric accessibility, or ring strain could be 

completely overturned in this catalyst-controlled process. Our findings suggest that genetically 



tunable enzymatic catalysis may provide a general strategy to address the challenge of site 

selectivity in C‒H functionalization. 
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