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Steady State and Transient Electromagnetic Coupling Through Slabs 

GIORGIO FRANCESCHETII. SENIOR MEMBER. IEEE. AND CHARLES H. PAPAS, MEMBER. IEEE 

Abstract-The problem of electromagnetic transmission through a 
slab where transmitting and receiving antennas are at finite distances 
from the slab is considered. The mathematical formulation of the 
problem is quite general. A detailed solution is presented for the 
case of a highly conducting slab exposed to sinusoidal and transient 
excitations. A discussion is given of the conditions under which meas­
urements with the source and receiver at finite distances are equivalent 
to the same measurements with plane wave excitation. 

I. INTRODUCTION 

0 NE OF THE simplest conceivable ways for determing the 
electromagnetic properties of materials is to measure the 

electromagnetic field transmitted through a slab of the material 
under test. The corresponding mathematical model consists 
of an infinite slab with transmitting and receiving antennas 
placed on opposite sides of the slab. The model provides a 
reasonably good approximation to the real situation of a slab 
of finite extent when the distance between transmitting and 
receiving points is small compared to the transverse slab 
dimensions. 

Measurements can be made in the sinusoidal or the tran­
sient regime. For instance, MIL standards for evaluating the 
shielding effectiveness of materials [ l] require that transmis­
sion measurements be made in the steady state at prescribed 
frequencies and then in a pulsed regime using wire and loop 
antennas placed at prescribed distances from the slab of shield­
ing material. Although these standards are useful for relative 
comparisons, a fundamental question remains unanswered: 
does the measurement depend only on the electromagnetic 
properties of the slab (and on its thickness), or does it depend 
also on antenna type and orientation, antenna distance, and 
(for transient measurements) on transmitted waveform? 

A crude but simple method for studying (or, at least, having 
an estimate of) the field coupled to the inside of an enclosure 
is to consider the transmission through a slab, provided the en­
closure is large in terms of the incident wavelength. The slab 
may be perforated, inhomogeneous, or described by stochastic 
parameters, the last case being relevant to near-millimeter prop­
agation through aerosols used for camouflage tactics. In electro­
magnetic pulse (EMP) experiments it is customary to simulate 
the EMP plane wave signal by using rather sophisticated an­
tennas and guiding devices [2], [3]. An attractive alternative 
to this approach can result from an understanding and ex­
ploration of the role played by localized sources at finite dis­
tances from the test object. 
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The objectives of this paper are to reconsider the problem 
of steady-state and transient coupling through a slab with 
transmitting and receiving antennas located at finite distances 
from the slab; to cast the problem in an elegant form; and to 
show that, at least in the case of a highly conductive slab, sim­
ple analytical solutions to the problem can be obtained. An 
important result of the paper is the determination of antenna 
positions and (in the transient regime) of incident waveforms 
that will yield a transmitted field practically the same as that 
produced by plane wave excitation. 

Transmission through highly conductive slabs is certainly 
not a new problem. For plane wave steady-state excitation, 
transmission line techniques can easily be applied [ 4]. For 
pulsed plane wave excitations, the solution is also available [ 5). 
The situation is much less satisfactory for the case we want to 
study. It is not the aim of this paper to provide a full biblio­
graphy on this subject (for a more complete bibliography see 
[ 6) ). We note only that the first attempt to solve this problem 
was made in 1936 [ 7] by accommodating the classical results 
of Maxwell on eddy currents and thin shields to the case of 
two coaxial loops separated by a plane conducting sheet. Early 
studies on antenna coupling through plane shields were based 
on low-frequency [8], [9] or quasi-static [ 10] approxima­
tions, were mainly relative to loop excitation [8]-[ 10], and 
required numerical computation [ 8 ]-[ 12] of integral expres­
sions for the transmitted field. Although the validity of the 
simple transmission line theory [ 4] for antennas at finite dis­
tances from the shield, or shields of finite extent, has been 
questioned [ 13], it appears that all expressions derived in the 
referenced literature resemble Schelkunoff's formulas [ 14] . 

Due to the symmetry of the problem it can easily be sur­
mised that plane wave expansion techniques provide a power­
ful tool of analysis for an arbitrary type of excitation of an 
infinite slab. These techniques have been recently applied [ 14] , 
[ 15) to the case of electric or magnetic dipole excitation in 
parallel (dipoles parallel to the slab) or coaxial (dipoles normal 
to the slab) configuration, by computing the transmitted field 
through the use of fast Fourier numerical programs. In this 
paper we shall use the same approach. However, we will show 
that, although the Fourier transformation of the fields is a 
logical intermediate step of the analysis, it is not needed in the 
final formulation of the solution. Indeed, the solution can be 
conveniently expressed in terms of a convolution integral, 
wherein the presence of the slab is described by an approp_riate 
transfer function. Then, at least for antennas in coaxial con­
figuration, the convolution integral can be analytically evalu­
ated both in steady-state and transient regimes, and no numer­
ical work is necessary. Inspection of the solution allows us to 
answer the original question about the influence of the finite 
antenna separation on measurements. After all the mathemat­
ical machinery has been worked out and simple, physically 
sound, understandable results are obtained, a discussion of the 
final results is presented in Section VI. 
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Fig. I. Geometry of problem. 

II. CIRCUIT-LIKE ANALYSIS OF ELECTROMAGNETIC 
TRANSMISSION THROUGH A SLAB 

With reference to Fig. 1, let us consider an infinite slab of 
thickness s and characterized, in the frequency domain, by 
permittivity E = EoEr, permeability µ = µ 0µr, and conducti­
vity a. We want to compute the field Et, Ht transmitted at 
z > s along the z axis when the incident field Ei, Hi, i.e., the 
field produced by the sources when the slab is removed, is 
known at z = 0. For this purpose it is convenient to expand 
the incident field in a plane wave set, since the interaction of 
individual plane wave components with the slab can be con­
veniently taken into account. 

Accordingly, let Hzi(x, Y, 0), Ezi(x, Y, 0) be the z com­
ponents of the field incident on the slab surface, with an as­
sumed time dependence exp(iwt). The corresponding spectral 
components h/(u, v), ezi(u, v) are given, at z = 0, by 

1 i+oo i+oo h/(u, v) = -- dx dy Hzi(x, y, 0) 
(27T)2 

-oo -oo 

• exp (jux + jUy) (2.1) 

1 i+oo [+ 00 

e/(u, v) = -- dx dy E/(x, y, O) 
(27T)2 

-00 -00 

• exp (jux + jUy). (2.2) 

At z = s, i.e., at the output of the slab, the spectral com­
ponents h/(u, v), e/(u, v) will be linearly related to the inci­
dent components (2.1) and (2.2) in the case of a slab made of 
a linear material. Hence, 

h/(u, v) = tH(u, v)hzi(u, v) 

e/(u, v) = tE(u, v)e/(u, v). 

(2.3) 

(2.4) 

The transfer coefficients tH, tE can be easily computed for a 
homogeneous isotropic slab by noting that the transverse 
spectral components ht(u, v), et(u; v) are related to the longi­
tudinal ones hz(U, v), ez(U, v) via the following relations: 

WEezKXZ + WhzZX(Kxz) 
h - ---------

t - u2 + v2 (2.5) 

(2.6) 

wherein " = ux + vP + wz and is the propagation vector re­
ferring to a Cartesian system of unit vectors x, y, i, and the 
upper (lower) signs refer to waves propagating in the positive 
(negative) direction of the z axis. Equations (2.5) and (2.6) 
represent the total spectral field as a superposition of TE (ez = 
O) and TM (h2 = O) parts. With the medium being identical at 
both sides of the slab, it is then evident that tH coincides with 
the usual slab transmission coefficient for TE plane wave in­
cidence and, similarly, tE is the same as the slab transmission 
coefficient for TM plane wave incidence. Letting 

(2.7) 

(2.8) 

we have 

4 exp (-jw8 s) 
t(u, v) = (2.9) 

(1+')')2 (1-')')2 
1 - -- exp (-2jw8 s) 

1 + 'Y 

wherein ')' may .be taken equal to 'YH or 'YE in order to obtain 
tH or tE, respectively, and K = ~-

The spectral components hz, ez at any z > s are equal to 
the corresponding values (2 .3) and (2 .4) at z = s times the 
plane wave transfer function exp[-jw(z - s)]. Accordingly, 
the z component Fz i(x, y, z) of the field transmitted at any 
arbitrary abscissa z > s will be expressed in terms of the 
double Fourier integral 

•exp [-jw(z-s)] ·exp (-jux -jvy) (2.10) 

wherein f/ may be taken equal to hzi ore/ and, correspond­
ingly, the values of tH or tE should be used. 

On the other hand, the spectral representation of the z 
components of the incident field (the slab is now removed) at 
any abscissa z is obviously the following: 

• exp (-jux - jUy). (2.11) 

Comparison of (2.10) and (2.11) shows that the transmitted 
field can be computed as the double convolution of the 
incident field and the double Fourier transform of t(u, v) 
exp(iws), hence 

1 1+00 [+oo F f( ) f I • 1 I z x, y, z = --
2 

dx dy Fz 1(x, y, z) 
(27T) -00 -00 

• T(x - x', y - y') (2.12) 
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roo roo 
T(x, Y) = Loo du Loo du t(u, V) exp (jws) 

• exp (-jux - jUy). (2.13) 

In the words of system theory Ft is identified with the output 
of a linear system described by the unit response function 
(2.13) and excited by the input Fi. 

We further note that relations similar to (2.12) exist be­
tween the transmitted and incident transverse components of 
the field, as easily follows from (2.5) and (2.6). It is only ne­
cessary to decompose the incident field in its TE and TM parts 
and then to apply superposition. 

III. THE AZIMUTHALLY SYMMETRIC CASE 

A case of particular interest is obtained when the incident 
field does not depend on x and y separately but rather upon 
the transverse coordinate p = yx2 + y 2. For instance, if the 
source is taken equal to an elementary electric or magnetic 
dipole parallel to the z axis at P(O, 0, -d), then 

. . jw [ z A] • 
Fz'(x, y, z) = Fz'(p, z) = - 2 K A+ \!\! • • z 

K 

wherein 

exp (-jKVP 2 + (d + z)2) 
A(p, z) = C --;::::::;:::===::::;:::--­

VP2 + (d + z)2 
(3.2) 

is an electric or magnetic vector potential, the source intensity 
being proportional to the constant C. 

The integrals (2.12) and (2.13) can now be simplified by 
using the change of coordinates: 

x = p cos </>, y = p sin </>, u = ~ cos i/I, v = ~ sin if;. 

Accordingly, 

T(x, y) = T(p) = 100 

~ d~ t(~) exp (jyK2 - ~Zs) 

1
21T 

• 

0 

exp[-jp~cos(lf;-¢)] dl/J 

and the field transmitted on the a·xis is given by 

F/(0, 0, z) = [
00 

p dp F2 i(p, d + z)T(p) 
0 

= £"" ~ d~ exp (jyK 2 - ~2s)t(~) 

· £00 

p dp F2 i(p, d + z)Jo(~p) 

(3.3) 

(3.4) 

(3.5) 

ju" 

I u' 

r I r' :_,, 
I 

• 
Fig. 2. Integration path in complex u plane. 

wherein the order of integration has been reversed. Upon sub­
stitution of (3.1) in (3.5) the inner integral can be evaluated 
by repeated integration by parts as follows: 

l"" p dp Fi(p, d + z)Jo(P~) 

jwC ["" p exp (-jKyp2 + (d + z)2) 
= ---;2" ~2 o yp2 + (d + z)2 Jo(P~) dp 

we exp [-jyK2 - ~2 (d + z)] 
= - - ~2 -----===----

K2 VK2- ~2 ' 
(3.6) 

the last expression stemming from a known Fourier-Bessel 
transform [ 16). Note that yK2 - p = -tJ~2 - K 2 for ~2 > 
Kz and that we have implicitly assumed k =f. 0 in this section. 

The formal expression for the z component of the field 
transmitted through the slab is now the following: 

p 2 t(o, O, z) = wCK f (I - u2)t(u) exp (-j1<lu) du (3.7) 
r 

wherein l = d - s + z, the integration path r is depicted in 
Fig. 2, and the substitution K 2 - ~2 = K 2 u2 has been used. 

IV. THE CASE OF AN ELECTRIC PLANE SHIELD­
STEADY-STATE EXCITATION 

A case particularly interesting for applications is obtained 
when µr = 1, a ;;i:.. we0 er, i.e., when a highly conducting non­
magnetic slab is used as a shielding screen. As already noted in 
Section I, this is an important configuration in shielding theory 
and practice. The solution to this problem is available in nu­
merical form [ 14] , [ 15] for prescribed sinusoidal time varia­
tion and arbitrary spatial dependence for the fields, and in 
analytical form [ S] for prescribed plane wave excitation and 
arbitrary time variation. 

The case of a magnetic dipole excitation is considered first. 
The expression for t(u) pertinent to this case is the following: 

4uycx2 + u2 
t (u) - ---=== 
H - (u + ycx2 + u2)2 

exp (-jycx2 + u2Ks) 

1 - [u -ycx2 + u2 ]2 exp (-2jycx2 + u2Ks) 
u + -./cx2 + u2 

(4.1) 
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a+ 
a2=-------

jwe0 

a 
(4.2) 

It is noted that tH(u) exhibits no singularity in the lower right 
quadrant of the complex u plane, so that the integration path 
r can be freely deformed therein, e.g., in the new path r' (see 
Fig. 2). When (4.1) is substituted in (3.7) it is noted that we 
can neglect u2 with respect to a2 provided the integrand is 
negligible when u > la I. Accordingly, when 1dlo: I> 1 the in­
tegral (3.7), specified to the case at hand, becomes 

4 exp (-j<.xKs) 
H;/(0, 0, !) = -jwCK exp (-jKl) 

a I - exp (-2j<Y.Ks) 

· l"" u(-ju2 + 3u + 2j) exp (-Klv) dV, ( 4.3) 

and the origin of coordinates is now in correspondence to the 
source. The integral is now straightforward to evaluate and can 
be conveniently normalized to the value of the incident field 
H 11,'(0, 0, !). We have 

[ 

3 3 ] !+ +--
H/(O, 0, = [~ exp (-jcxKs) J jKl (jK/)

2 

Hzi(O, 0, !) a: 1 exp (-2j0'.1<.s) l 
l+ 

jKl 

(4.4) 

It is noted that the first bracketed term t 0 (a, Ks) is just the 
plane wave transmission coefficient under normal incidence 
and appropriate to a highly conducting screen. The second 
term Q(Kl) depends on the mutual distance l between trans­
mitting and receiving points and approaches I when Kl > I. 
Accordingly, it follows that a simple plane wave transmission 
coefficient can be used for evaluating shielding effectiveness 
provided that transmitting and receiving antennas are a few 
wavelengths apart. 

On the other hand, when Kl is small, QH(Kl) ~ 3/jJd, and 

H/(0, 0, l) 

Hzi(O, 0, l) 

3 
- t0(a, Ks) 
jKl 

exp (-ja1<s -j?T/4 )3o 

[ 1- exp (-2ja:Ks)]Vll' 
(4.5) 

wherein o is the skin depth of the screen. Note that ( 4.S) is 
valid provided that 6/l < 1; otherwise the assumption" I CY. ll > 
1 is no longer met. 

The case of an electric dipole excitation can be treated sim­
ilarly. We have 

4a2uv'a2 + u2 

(
a:2u + u-ya:2 + u2 )2 · 

2 
~ exp (-2jya2+u2Ks) 

a u+u+ a2 +u2 

(4.6) 

We can now neglect u2 with respect to a 2 without serious lim­
itation in the validity of the results. The integral corresponding 

to (4.3) is the following: 

If"" exp (-jKlu) 
Ezt(o, O, I)= wCKt0 (a, Ks)· 

1 
u du 

+ j 1"" (I ju) exp (-K!U) dV I 
which can be easily evaluated to yield 

Ez 1(0, 0, l) 

E/(0, 0, /) 

(4.7) 

1 + jKl+ (itc.!)2 exp (jKl)[ Ci(Kl)-jSi(Kl)] i- ( 4.8) 
l 

1 + 
jKl 

wherein the cosinus integral Ci(x) and sinus integral Si(x) 
functions [ 1 7] do appear. 

It is again noted that QE (Kl) ~ 1 when Kl > 1, as easily 
follows upon use of the asymtotic series expansions [ 17] of 
the functions Ci(x) andSi(x), so that (4.8) reduces again to the 
plane wave transmission coefficient t 0 (o:, Ks) provided that 
transmitting and receiving antennas are a few wavelengths 
apart. On the contrary, when Kl is small, a proper series ex­
pansion [ 17] shows that QE(Kl) ~ jKl/2 and 

Ezt(o, 0, l) jKl 
----~-to(a:, ks) 
Ezi(O, 0, l) 2 

____ +_1_'1T_f4_) (K/)2 (j . (4.9) 
exp (-2j0'.Ks) Vll 

V. THE CASE OF AN ELECTRIC PLANE SHIELD­
TRANSIENT EXCITATION. 

We have shown in Section IV that the steady-state z 
components of the field transmitted through a highly conduc­
tive plane shield are given by 

F/(0, 0, l) Fz'co, 0, l)t0 (cx, Ks)Q(Kl). (5.1) 

It is then evident that the z component of the transient trans­
mitted field can be obtained by time-convolving the transient 
z components of the incident field with the inverse Fourier 
transforms of t0 (w) and Q(w), let us say T0 (t) and Q(t). 
Use of Laplace inversion tables [ 18 J shows that 

To(t) J ~ exp (-n2 'fl/t) 
2 ~ (2n 2'fl-t) 

t5!2 
1n 

= 
4
Jr i'; .!!_exp (-n 2 ri/t) 

1T dt tl/2 
1n 

4 L S0 (t) J "" d 

1 n dt 
(5.2) 

where T = e0 /a and is the relaxation time of the material of 
the shield, and 'T/ = s 2 /(c2 r) and is the diffusion time through 
the shield thickness. 
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Fig. 3. Qualitative behavior of first series term of function To(t). 

Fig. 4. Qualitative behavior of pulsed field of time duration T' after 
transmission through a highly conductive slab. 

A qualitative behavior of the first term n = 1 of T 0(t) is 
given in 3, wherein Smax 4 VT/2rren = So(217) and is 
the maximum value of the function S 0 (t) (see also Fig. 4), 
where in Sm ax "e" is the Neper's constant. 

The behavior of successive terms of the series (5 .2) is similar 
to that depicted in Fig. 3. The maxima occur at later times and 
their absolute values are smaller by the factor exp[-2.6(n2 

1)] /n3. Accordingly, they can be safely neglected, and we can 
take only the first term of the series (5 .2). 

After some algebra Laplace inversion I 19] of the two func­
tions Q( w) leads to 

3 exp (-t/T) 
QH(t) = o(t) + ---~ U(t) 

T 

QE(t) o(t) 
2 

exp (-tfT)U(t) 
T 

31t1T exp (-u) +- ------du 

T o (l +~-u) 4 

(5.3) 

(5.4) 

where O(t) and U(t) are the Dirac and the unit step function, 
respectively, T = l/ c and is the free-space transit time from the 
transmitting to the receiving antenna. 

Convolution of (5.2) with the o(t) terms of (5.3) and (5.4) 
just reproduce the function T0 (t). Convolution with the other 
terms may become significant only after a time of order T. 
Accordingly, if the incident field has a time duration small 
compared with T, i.e., its spatial length is small compared with 
the in-between antennas distance l, then the time dependence 
of the transmitted field is simply given by the time convolu­
tion of the incident signal and the function T 0(t). This trans­
mitted field is the same as would be obtained for the ca:se of 
plane wave excitation. Accordingly, the result is obtained that 
the finite distance between antennas plays no significant role 
if the incident waveform is sufficiently short in time. For in-

stance, if the incident signal is a pulse of unit amplitude and 
time duration T', then 

·exp(-~) 
Fz.tco, O, l, t*) = 4 $ Vt* t* , t* ~ T' (5.5) 

l exp (-~) 
T t* 

F,, t(o, 0, l, t*) = 4 $ ..jt* 

t* > r' (5.6) 

where t* t - (l/c) and is the retarded time. A qualitative 
sketch of (5.S) and (5.6) is given in Fig. 4 for T' > 2ri. When 
T' ~ 2'17, then the transmitted field is just given by (5 .2) 
times T'. 

VI. CONCLUSIONS AND PRACTICAL CONSIDERATIONS 

We have considered the problem of the transmission of 
steady-state and transient electromagnetic waves through a 
slab. An analytical solution has been obtained for the case of 
a linear homogeneous isotropic highly conducting infinite 
slab excited by collinear electric or magnetic dipoles. The 
transmitted z components of the field are expressed as the 
product (steady-state case) or the convolution (transient case) 
of the corresponding incident field components and a two­
term factor. In the frequency domain the first term of this 
factor (see (5. I)) is exactly the transmission coefficient of a 
plane wave normally incident on the slab. The second term 
takes into account the finite distance between the transmitting 
and receiving antennas and becomes significant only when this 
distance is of the order of, or smaller than, the free-space 
wavelength (steady-state case) or the spatial length of the inci­
dent pulse (transient case). It is therefore possible to obtain 
plane wave excitation results even when sources (and receivers) 
are located at finite distances. For this all that is needed is the 
proper choice of distance between antennas. 

It is certainly true that these results have been obtained 
under the conditions that the transmitting antenna is a dipole 
oriented normal to the slab, that the transmitted field is com­
puted along the axial direction of the dipole, and that only the 
z components of the field are used in the comparison. How­
ever, we believe that our analysis has a more general validity. 
For instance, results of the collinear configuration can easily 
be extended to transmitted field points off the axis. We should 
only substitute 

J0(~yp2 + p'2 - 2pp' cos </1
1
) (6.1) 

for J0(~p) in (2.12). Then expansion [20] of the Bessel func­
tion (6.1) and integation in¢' gives 

F2 t(p, l) wc1<. l (1- u2 )t(u)Jo(Kp.../l - u2 ) 

r 

• exp (-jKlu) du (6.2) 
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which is the generalization of (3 .7) to the ·case p =I= 0. Then 
3F,/(p, l)/op O for p = O, which implies that the results of our 
analysis are certainly also valid in the neighborhood of the 
axis. Furthermore, use of Maxwell's equations, with (6.2) as 
the longitudinal field, shows that the same is true for trans­
verse fields. In this extension, however, the simplifying as­
sumptions used in the body of this paper should be checked 
again. Should further study show that the above considera­
tions can be extended to more complicated geometries, all 
simulation studies for shielding purposes might be worth 
reconsidering. 

Some few practical notes are now in order. Reference is 
made to a copper slab (a = S .8 X 107 S/m) of thickness s = 
1 mm, so that T 1.52 X 10-19 sand Tl 70 µs. Only the 
plane wave transmission coefficient will be considered. For 
incident pulses of unit amplitude and time duration T' ~ 71, 
the peak of the transmitted field is equal to 2.7 X 10-7 T

1/r/, 
therefore linearly decreasing with the bandwidth (~ 1/1') of 
the signal. In the sinusoidal excitation case the attenuation due 
to the mismatch 41 a I equals that due to the damping inside 
the slab material exp( I a IKs/./2) at the frequency f = 0. 72 
MHz. At this frequency the transmitted field is equal to 11 X 
10-1 2 times the incident one. At higher frequencies the 
signal is decreasing exponentially with the square root of the 
frequency. 

For moderate antenna spacings it is noted that the transmit­
ted field can be computed using the plane wave transmission 
coefficient only when the attenuation is very high. However, 
this may not be the case if even small apertures exist in the 
screen. Accordingly, we believe it is worthwhile to extend the 
analysis presented in this paper to other canonical problems, 
which are amenable to the same analytical approach. Among 
those, we list the problem of an infinite conductive screen 
with a single hole and that of a conductive screen with a regu­
lar lattice of equal small apertures. The former problem can 
take advantage of the solution of a plane wave diffraction by 
apertures in conducting screens [ 21]-[ 23] and, eventually, 
of symmetrization procedures [ 24] . The latter could make use 
of the artifical dielectric theory [ 25] properly accommodated 
to this single sheet problem. 
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Absorption of Energy from a Large Amplitude Electromagnetic 
Pulse by a Collisionless Plasma 
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Abstract-A series of experiments in which an electromagnetic 
pulse (EMP) is propagated through a nitrogen plasma are discussed. 
The pulse has the general characteristics of an EMP. The pulse is ob· 
served as it emerges from the plasma as a function of the plasma param­
eters. As the electron number density increases, it is found that energy 
is increasingly absorbed from the pulse, a process due to joule heating. 
In addition, at higher number densities, ringing of the pulse occurs. The 
nitrogen pressure in these experiments is sufficiently low so that colli­
sions play only a minor role. Also developed is a theoretical model 
based on the fluid transport equations. This theory predicts that the 
electrons of the plasma are attaining a temperature of about IS eV in 
that part of the system where ·the de magnetic field is about 80 G. 
More importantly, it is able to predict the output pulse quite well 
under the conditions that the ambient nitrogen pressure and the elec­
tron number density are low. The theory appears to fail as these param­
eters are increased. 

I. INTRODUCTION 

THE ELECTROMAGNETIC pulse (EMP) generated by a 
nuclear detonation has been the subject of extensive 

study. Computer codes have been developed which attempt to 
model the generation and propagation of the EMP due to both 
a high-altitude detonation [1 J-[7] and a low-altitude detona-
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ti on [ 8 ]-[ 11] . In some of these codes, the current density 
term which appears in Maxwell's equations due !_o conduction 
currents of secondary electrons is modeled as aE, where u is a 
conductivity that is spatially and time dependent. This model 
is satisfactory as long as the thermalization time, i.e., the time 
for the average electron velocity to reach steady state after the 
application of a step function electric field [ 12], is short com­
pared to the time that the EMP electric field changes appre­
ciably. It is generally believed that collision frequencies of 
electrons in air below 40 km are great enough so that this con­
dition is satisfied. 

A more complete description of conduction currents of 
secondary electrons is given by the familiar fluid transport 
equations for mass, momentum, and energy [ 13], [ 5]. We 
shall hereafter refer to these equations collectively as the 
swarm model [ 5] . 

Knight [61 has made the point that the validity of these 
various models needs to be checked by a method that does not 
contain their inherent limitations. He suggests a Monte Carlo 
computer model. However, an even more satisfactory method 
would be to check these models experimentally. It is the pur­
pose of this paper to present some preliminary experimental 
results which are compared to predictions of the electron 
swarm model. 

A theoretical treatment of the propagation of an EMP-type 
electromagnetic pulse through a plasma has been developed by 
one of the authors using the electron swarm model [ 14] and is 
summarized in Section II. Subsequently, at the Plasma Labora­
tory at the University of Arizona, a machine has been built in 
which an EMP-type electromagnetic pulse is allowed to propa­
gate through a nitrogen plasma [ 151-118]. In this machine one 
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