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ABSTRACT 

Since its arrival at Saturn in 2004, Cassini performed nine flybys devoted to the determination of Titan’s 

gravity field and its tidal variations. Here we present an updated gravity solution based on the final data set 

collected during the gravity-dedicated passes, before Cassini's plunge into Saturn's atmosphere. The data set 

includes an additional flyby (T110, March 2015, primarily devoted to imaging Titan’s north polar lakes) 

carried out with the low-gain antenna. This flyby was particularly valuable because the closest approach 

occurred at a high latitude (75°N), over an area not previously sampled.  

Previously published gravity results (Iess, et al., 2012) indicated that Titan is subject to large eccentricity tides 

in response to the time varying perturbing potential exerted by Saturn. The magnitude of the response 

quadrupole field, expressed in the tidal Love number k2, was used to infer the existence of an internal ocean. 

The new gravity field determination provides an improved estimate of k2 of about 0.62, accurate to a level of 

a few percent. The value is higher than the simplest models of Titan suggest and the interpretation is 

unclear; possibilities include a high density ocean (as high as 1300 kg/m3), a partially viscous response of the 

deeper region, or a dynamic contribution to the tidal response. The new solution includes higher degree and 

order harmonic coefficients (up to 5) and offers an improved map of gravity anomalies. The geoid is poorly 

correlated with the topography, implying strong compensation. In addition, the updated geoid and its 

associated uncertainty could be used to refine the gravity-altimetry correlation analysis and for improved 

interpretation of radar altimetric data. 

Keywords: Geophysics; Orbit determination; Radioscience; Titan interior. 

1. INTRODUCTION 

On 15 September 2017, Cassini plunged into Saturn’s atmosphere and completed its long-lasting mission. 

After 7 years spent in deep space and 13 years orbiting Saturn, the spacecraft collected an incredible 

amount of scientific data about the Saturnian system. One of the main objectives of the mission was the 

study of Titan, Saturn’s largest moon. Also, Titan was crucial for navigating Cassini around the system 

because it was exploited to perform large orbital correction maneuvers with low propellant cost. For this 

reason, Cassini performed 124 flybys of Titan during the mission (labelled with a T, which stands for Titan, 

followed by the number of the pass, e.g., T011), nine of which were entirely dedicated to the study of its 

gravity field, with the aim of inferring its interior structure. During the gravity-dedicated Titan passes, Cassini 

pointed its High-Gain Antenna (HGA) toward Earth, ensuring the best possible data quality. Since Cassini 

lacks a scan platform, this attitude does not simultaneously allow the operation of the other instruments 

that require pointing. Also, during gravity passes, thruster firings, commonly used for attitude maneuvers, 
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were absent in order to preserve the coherency of Cassini’s orbit, allowing an accurate reconstruction of the 

dynamical system. In addition to the nine gravity-dedicated Titan passes, during the high-altitude T110 pass 

the gravity data were acquired using the omnidirectional Low-Gain Antenna (LGA) whilst Cassini's Visual and 

Infrared Mapping Spectrometer (VIMS) took a high-resolution regional map of Titan’s north polar lakes.  

The analysis of the first four gravity flybys (Iess, et al., 2010) reported accurate measurements of Titan’s 

gravity field up to degree 3. The inclusion of two additional flybys (Iess, et al., 2012) shed light on Titan’s tidal 

response to eccentricity tides, revealing its large deformability over timescales of the orbital period, an 

indication of a global ocean at depth. Here,  we update Titan’s gravity field and its internal structure by 

including the data collected during three additional gravity-dedicated flybys and the T110 pass. 

The main details of the passes when Cassini collected gravity data are reported in Table 1. Each pass has a 

different orbital geometry, but the spatial coverage of Titan is not uniform (see Figure 1a); the equatorial 

region of the planet has been sampled more than the polar regions. To determine Titan’s tidal response to 

Saturn at its orbital frequency, the mean anomaly is the key quantity (Iess, et al., 2012). Cassini’s sampling of 

Titan’s mean anomalies is very broad (see Figure 1b) and allows us to further constrain Titan’s tidal behavior. 

The Sun-Earth-Probe (SEP) angle is very important in determining the Doppler noise in the radio link, due to 

the effect of solar plasma noise turbulence (Asmar, et al., 2005; Iess, et al., 2014). The Doppler noise budget 

is influenced also by a daily variability due to the troposphere conditions at the ground station. For these 

reasons, the Doppler noise varies from a minimum of 0.017 mm/s during T011 to a maximum of 0.068 mm/s 

during T045 (see Table 1). 

 

 
Date of C/A Altitude Latitude Longitude SEP angle 

Number of 
Doppler 
points 

RMS of Doppler 
residuals (at 60 s) 

T011 27 Feb. 2006 1812 km 0.2 °S 255.6 °E 150.2 deg 1051 0.017 mm/s 

T022 28 Dec. 2006 1297 km 45.4 °N 355.9 °E  130.6 deg 1151 0.024 mm/s 
T033 29 June 2007 1933 km 8.4 °N 63.1 °E 46.4 deg 1508 0.028 mm/s 

T045 31 July 2008 1614 km  43.5 °S 162.7 °E 30.0 deg 1288 0.068 mm/s 

T068 20 May 2010 1397 km 48.9 °S 241.1 °E 120.3 deg 2226 0.025 mm/s 
T074 18 Feb. 2011 3651 km 1.0 °N 113.4 °E 131.2 deg 1847 0.063 mm/s 

T089 17 Feb. 2013 1978 km 21.0 °N 203.1 °E 106.0 deg 1479 0.033 mm/s 
T099 06 Mar. 2014 1500 km 31.1 °S 181.0 °E 111.0 deg 1860 0.022 mm/s 

T110 16 Mar. 2015 2274 km 74.8 °N 263.1 °E 108.6 deg 1836 0.064 mm/s 
T122 10 Aug. 2016 1698 km 12.4 °N 234.4 °E 112.7 deg 1858 0.061 mm/s 

Table 1: Summary of Titan flybys during which Cassini collected gravity data. For each pass, the date of 

Cassini’s closest approach (C/A), the minimum altitude reached, the latitude and longitude of the C/A, the 

Sun-Earth-Probe (SEP) angle, the number of Doppler points (both two- and three-way), and the root mean 

square (RMS) of Doppler residuals at 60 s are reported. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 3 

 

Figure 1: (a) Cassini’s ground tracks on Titan, for three hours around the closest approach time. The location 

of the C/A is indicated with circles. The equatorial region is very well mapped, whereas the polar regions 

have more limited coverage. The flybys at the highest latitude are T110 for the northern hemisphere, and 

T068 and T099 for the southern hemisphere. The underlying image is a mosaic of Titan’s surface from 

Cassini’s ISS team (NASA/JPL-Caltech/SSI). (b) Titan’s mean anomaly at the time of Cassini’s closest approach. 

A good sampling is crucial for the determination of Titan’s tidal response. 

2. DATA ANALYSIS 

Titan’s updated gravity field exploits the full data set, which includes mostly two-way Doppler data. After 

Cassini’s Ka-band translator failed in 2003, two- or three-way Doppler data are available only with X-band 

uplink (7.2 GHz) and X or Ka-band downlink (respectively 8.4 and 32.0 GHz). The X-band uplink makes the 

radio link especially sensitive to charged particle effects, which increase dramatically when the SEP angle is 

small (i.e., near solar conjunctions; see Asmar, et al., 2005; Iess, et al., 2014). In the case where multiple data 

types are available in the same time interval, the data selection privileges two-way Doppler data over three-

way data, and Ka-band over X-band in downlink. The three-way data are about 12% of the total Doppler 

points. We discarded data acquired when the elevation angle of the spacecraft, as viewed from the ground 

station, is below 20 degrees to prevent bias in the solution that may come from uncalibrated troposphere. 

We weighted the data from each tracking pass according to the observed noise RMS. Each observation arc 

spans about 2 to 5 days about the time of Cassini’s closest approach (C/A) to Titan, and avoids orbit 

correction maneuvers and thruster firing (used to desaturate Cassini’s reaction wheels). Range data have not 

been included because they do not contribute substantially to the determination of Titan’s gravity field; also, 

since range data are more affected by systematic errors, we prefer a solution with Doppler data only. 

However, range data have been used afterward to test the robustness of the solution based on Doppler data 

only. While, as expected, range data do not change the estimated gravity coefficients, they are used to 

update the ephemerides of Saturn in the solar system. 

The Doppler data have been compressed at 60 s and analyzed with MONTE, the JPL orbit determination 

code (Evans, et al., 2016). Cassini’s dynamical model includes the gravitational effect in a relativistic context 

due to the Solar System planets including Saturn and its satellites. For Saturn, the zonal gravity field up to 

degree 10 has been included, in agreement with the dynamical model used for Titan’s ephemerides (see 

Jacobson, et al., 2006 and subsequent JPL releases). Titan’s gravity field coefficients are included up to 

degree and order 5. The rotational elements have been adopted from Meriggiola, et al. (2016), obtained 

from the analysis and georeferencing of Cassini RADAR images. We included non-gravitational accelerations 

from the solar radiation pressure and the anisotropic thermal emission produced by the three onboard 
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Radioisotope Thermoelectric Generators (RTGs). In addition, low-altitude flybys (in particular T022 and T068) 

require the inclusion of an exponential model for the density of Titan’s upper atmosphere since the drag 

acceleration produced at those altitudes is large enough to perturb Cassini’s trajectory in a non-negligible 

way (the peak acceleration in T022 is of the order of 3x10-6 m/s2). 

The Doppler data from the different passes are collected in a multi-arc, least-squares estimation filter, which 

provides the corrections to the dynamical model’s parameters and, after a few iterations, allows us to fit the 

Doppler data to the noise level. In each arc, we solve for both Cassini’s and Titan’s state vectors at the 

beginning of each observation arc. The initial values for Cassini’s state vectors are taken from the latest 

release of the navigation team for each pass, with a priori uncertainties on position and velocity of, 

respectively, 2 km and 2 cm/s in all the direction, large enough not to constrain the solution. Particular 

attention should be paid to Titan’s state vectors and the details are discussed below. We combine the 

information from all the arcs to solve for Titan’s gravity field coefficients up to degree and order 5, its 

gravitational parameter, the tidal Love number k2, the density of Titan’s atmosphere at a reference altitude 

and its scale height, and the spacecraft body-fixed acceleration from the onboard RTGs. All these quantities 

have a priori uncertainties which do not constrain the estimate. The solar radiation pressure acceleration is 

not estimated but considered1 with an uncertainty of 5%. The uncertainty on Titan’s rotation model from 

SAR imaging (Meriggiola, et al., 2016) is much lower than that achievable with gravity measurements and 

thus the rotational parameters have not been estimated. 

The analysis of T110 involves one additional challenge, related to the use of Cassini’s LGA. Since the main 

purpose of this Titan flyby was to take a high-resolution regional map of Titan’s north polar lakes with 

Cassini’s VIMS, the HGA was not pointed towards the Earth, and the phase-coherent radio link was 

established through the LGA. As the spacecraft attitude changes over time, the phase center of the LGA 

moves with respect to the spacecraft’s center of mass, therefore generating a large Doppler signal which 

must be removed (Barbaglio, et al., 2012). As a result, the location of the phase center of this antenna with 

respect to Cassini’s center of mass must be included in the estimation process.  

An important issue in the analysis of Cassini’s gravity data is the need to update Titan’s ephemeris. During a 

typical Titan flyby, Cassini’s positioning with respect to Titan has a formal uncertainty of at most a few 

meters in the radial direction during Titan’s closest approach (according to orbital geometry and available 

data). The analysis of the first four passes (Iess, et al., 2010) was carried out by adopting the latest ephemeris 

available from the navigation team whereas the first six gravity passes (Iess, et al., 2012) were analyzed by 

updating Saturnian ephemerides (in particular Titan) in order to match the observed Doppler data with 

Titan’s updated ephemeris and gravity field. The updated ephemerides had to be dynamically consistent 

between all the passes. The inclusion of the latest data does not allow us to obtain a satisfactory fit of the 

Doppler data together with an update of Titan’s ephemeris. This may be related to the need for a more 

complete dynamical model for the Saturnian satellites due to the long timespan covered by Cassini’s 

observations (10 years). The inclusion of effects such as Saturn’s tidal dissipation (Fuller, et al., 2016) or 

frequency dependent tides, Saturn’s normal modes, or an accurate modelling of Saturn’s pole motion may 

be crucial to obtain a dynamically consistent motion of Saturn’s satellites to the level of accuracy required by 

the data. Thus, the approach taken hereafter is to update Titan’s ephemeris for each of Cassini’s passes, 

without requiring the updated ephemeris to be dynamically coherent between the passes. This approach 

allows us to overcome the difficulties inherent to requiring a global ephemeris, allowing for deviations in 

                                                                 
1  Consider parameters are those which are not estimated but whose a priori uncertainty contributes to the 
covariance matrix. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 5 

Titan’s orbit. Of course, the larger number of estimated parameters implies a penalty on the uncertainties of 

the gravity coefficients. We use the latest available Saturn’s satellite ephemerides, SAT389 (see NASA’s 

Navigation and Ancillary Information Facility website), as a reference ephemeris. Titan’s position has an a 

priori uncertainty of 5 meters in the radial direction, and 50 and 500 meters in the along-track and out-of-

plane directions (Boone, et al., 2017). The limited dataset cannot provide a more accurate estimate of Titan’s 

orbit. The required corrections are of the same order of magnitude as the assumed a priori uncertainties. 

Our reconstruction of Titan’s orbit is valid only in the timeframe of each arc with the intent of obtaining an 

unbiased estimate of the gravity field. 

3. GRAVITY FIELD RESULTS 

Titan’s gravitational potential, evaluated at radius 𝑟, colatitude 𝜃, and longitude 𝜙, can be expressed as a 

linear combination of spherical harmonic functions as 

 
𝑈(𝑟,𝜃, 𝜙) = −

𝐺𝑀

𝑟
∑ ∑ (

𝑅ref

𝑟
)

𝑙

(𝐶𝑙𝑚 cos 𝑚𝜙 + 𝑆𝑙𝑚 sin 𝑚𝜙)𝑃𝑙𝑚(cos𝜃)

𝑙

𝑚=0

∞

𝑙=0

 

 

(1) 

where 𝐶𝑙𝑚 and 𝑆𝑙𝑚 represent the unnormalized degree-l and order-m dimensionless gravitational potential 

coefficients at some reference radius (which we take to be 𝑅ref = 2575 km), and where 𝑃𝑙𝑚(cos𝜃) are the 

unnormalized associated Legendre functions. G is the universal gravitational constant and M is Titan’s mass. 

Note that all 𝑆𝑙0 = 0 and that 𝐶00 ≡ 1. Because the gravitational potential is resolved about the center of 

mass, the degree-1 terms are all zero. 

The gravity field coefficients estimated for Titan are reported in Table 2 along with Titan’s tidal Love number 

k2 whereas Figure 2 reports the root mean square of the fully normalized gravity field coefficients Cl, 

showing that the power spectrum of the gravity coefficients is larger than the uncertainty up to degree 5.  

Indeed, truncating the gravity field expansion to a smaller degree cannot provide a good fit of all Doppler 

data. On the other hand, higher degrees cannot be determined with sufficient accuracy and have been 

neglected. However, only a few coefficients are determined with good accuracy, such as the degree 2 

hydrostatic terms and the sectorial harmonics of degree 3 and 4. Still, an expansion up to degree and order 5 

of the gravity field is an improvement with respect to the previous solution (Iess, et al., 2012), which resolved 

Titan’s gravity field only up to degree 3 (SOL1a and SOL2) or degree 4 (SOL1b). The uncertainties on the 

gravity field coefficients reported in Table 2 are generally up to a factor of 2 larger than those reported by 

Iess, et al. (2012), even if a broader dataset has been used. This apparent discrepancy lies in the complexity 

of the adopted dynamical model: firstly, the maximum rank of our gravity solution is larger,  meaning that 

more coefficients are included in the estimation process; secondly, the approach selected for Titan’s 

ephemeris is different, with our approach leading to about a 20% increase of the uncertainties, especially in 

the low-degree field. The tidal Love number k2, however, is determined with a better accuracy due to the 

broader sampling in longitude of Titan’s mean anomaly. 

Figure 2 plots the power law Cl=K/l2, known as the Kaula rule (Kaula, 1963), with K=10-5, showing good 

agreement with the estimated power of Titan’s gravity field  for degrees larger than 2 (J2 and C22 are 

dominated by the hydrostatic component). The Kaula rule is an empirical law able to represent the power 

spectrum of the gravitational field of rocky planets, but it has never been observed for an icy satellite like 

Titan. Note that a Kaula constraint has not been imposed into the estimation process. This empirical rule 

conveys very little information about the physical nature of the density anomalies responsible for the field, 
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since a power law like this can arise in a number of physically plausible ways and is seen for all terrestrial  

bodies (including Earth) despite the substantial differences among these bodies that are known to exist by 

other methods, most obviously the fact that Earth has plate tectonics.  A fit of the gravity coefficients 

(excluding degree 2) yields 𝐶𝑙 = 0.97 × 10−5 / 𝑙2. The coefficient (K  10-5) might convey more physical 

information than the spectral slope since it is affected by the degree of compensation, the volume of the 

region responsible for the density anomalies, and the typical stress levels that exist within the body. For 

example, if we suppose that there is a peak deviatoric stress that scales as Δρ  g  R (where Δρ is a typical 

density anomaly, g is gravitational acceleration, and R is radius or some comparable large length scale) then 

we might expect 𝐶𝑙  ∝ (𝑅  𝑔)−1 ∝ 𝑔−2 since g scales as R. Note however that this scaling should not be 

used when going from rocky bodies to icy bodies since the expected peak stresses are lower in ice and the 

mean density is lower, so the partial success of this scaling for terrestrial bodies does not imply it should 

work for icy bodies. Recently, Ermakov, et al. (2018) reviewed the Kaula rule of different terrestrial bodies in 

the literature to achieve a more general scaling rule among them. Their result for the gravity spectra is  

𝐶𝑙  ∝ 𝑔−1.72. However, if we were to apply this suggested rescaling rule to Titan, we obtain an overestimate 

of Titan’s gravity spectrum by a factor of 30 to 50 (Titan’s surface gravity is 0.14 times Earth’s gravity).  This is 

not surprising considering the large degree of compensation (discussed further below), the closely related 

likelihood of a rather thin outer shell of ice (which reduces the volume in which the relevant density 

anomalies arise), and the lower strength of ice (which reduces the peak deviatoric stresses that are assumed 

to be universal in the scaling argument given above). Unfortunately, Titan is the only icy satellite whose 

gravity field has been confidently resolved up to degree 5, and a comparison within this class of bodies is not 

possible at present. Note also that terrestrial planets as a group are actually much more similar to each  

other (in respect of a core and mantle structure) than the large icy satellites, and that Europa, a body of 

much current interest, is in neither class (it has far less ice than rock).  

The direction of Titan’s principal axes of inertia can be inferred from the degree 2 coefficients. For a 

synchronous rotator, the axis of least inertia is expected to be aligned approximately with the empty focal 

point of Titan’s orbit around Saturn (Murray and Dermott, 1999). A small 3-2-1 rotation can be defined to 

relate the body-fixed reference frame (a frame whose z-axis aligns with the spin pole and x-axis aligns with 

the prime meridian; we adopted the frame defined in Meriggiola, et al., 2016) to the principal axes reference 

frame. The three rotations are related to the fully normalized gravity coefficients (e.g., Liu and Chao, 1991) 

by: 

 
𝜖𝑥 = −

𝑆2̅1

√3 𝐶2̅0 + 𝐶2̅2

=  2.85° ± 1.67° 

𝜖𝑦 =
𝐶2̅1

√3 𝐶2̅0 − 𝐶2̅2

=  −0.55° ± 0.23° 

𝜖𝑧 =
𝑆̅

22

2 𝐶2̅2

=  −0.18° ± 0.18° 

 

(2) 

all compatible with zero at most at 3-. The direction of the axis of least inertia is compatible at 1- with the 

expectation for a synchronous rotator. 

Due to the non-negligible eccentricity of Titan’s orbit (e=0.028), tides raised by Saturn change with time, 

producing a variable quadrupole component. Titan’s tidal response to Saturn can be described by its k2 tidal 

Love number, which is crucial to understanding the interior structure of Titan. Cassini’s flybys dedicated to 

gravity science occurred at different Titan mean anomalies (see Figure 1b), probing the variable quadrupole 

field at different locations, and providing a very accurate measurement of its degree-2 tidal Love number. 
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The best estimate of Titan’s tidal response is k2 = 0.616 ± 0.067, which is within 1- of the all the three 

solutions given by Iess, et al. (2012), but has a smaller uncertainty due to the larger data set used for its 

estimation. However, the accuracy on k2 is somehow degraded due to the local ephemeris approach used 

for Titan’s orbit (a covariance analysis shows a degradation of about 20% in the uncertainty with respect to a 

global Titan ephemeris). However, the consistency with the previous solution confirms Titan’s large 

deformability over timescales of its orbital period, consistent with a global ocean beneath an outer ice shell 

that is sufficiently thin that it does not greatly impede the deformation that would be expected for a 

hydrostatic fluid overlying the core. The implications of this value are discussed further in Section 4. 

The reference solution does not account for the tidal dissipation, and only the real component of the Love 

number k2 is estimated. By including the time lag into the tidal model, the gravity coefficients remain 

compatible at 1- with our reference solution. The estimate for the time lag is t = 14000 ± 20000 s, which 

corresponds to an angular lag angle of  = 3.7° ± 5.4° or to an imaginary part of the complex Love number of 

k2
im = 0.082 ± 0.118. The estimated quality factor can be inferred from the real and imaginary part of the 

tidal Love number k2 from Q = k2
re/k2

im. The inverse of the quality factor is 1/Q = 0.133 ± 0.192, implying 

Q ≈ 7.6. The time lag is compatible with zero at 1-, thus we can draw no strong conclusions about the 

internal dissipation from Cassini gravity data.  

The robustness of our reference solution has been tested, with the aim of assessing whether the formal 

uncertainties we quoted in Table 2 are statistically meaningful and to confirm that biases in the estimated 

values are absent. Since the selection of the reference ephemeris and the a priori covariance given to Titan 

are crucial in our approach, a robustness test has been performed by starting from older versions of the 

ephemerides (e.g., SAT337 and SAT375) or by enlarging the a priori covariance by a factor of 3 (see Figure 3). 

All the solutions are statistically consistent at 1-, confirming the robustness of Titan’s gravity field solution 

with respect to a change in Titan’s ephemeris. Concerning Titan’s atmosphere, we verified that the 

estimation of drag coefficients in low-altitude flybys instead of Titan’s base density and scale height yields a 

statistically compatible solution (within 1-, see Figure 3). We tested also the impact of the assumed 

rotational model by adopting rotation models advised by the International Astronomical Union. The models 

given in Seidelmann, et al. (2002) and that proposed by Stiles, et al. (2008) and later adopted by IAU 

(Archinal, et al., 2011; Archinal, et al., 2018) give gravity fields statistically consistent at 1- with our 

reference solution (see Figure 3). 

 

GM (km3/s2) 8978.1383 ± 0.0003   
 

J2     (x 106) 33.089 ± 0.609   
C21 (x 106) 0.513 ± 0.215 S21 (x 106) 0.612 ± 0.359 

C22 (x 106) 10.385 ± 0.084 S22 (x 106) -0.064 ± 0.066 
 

J3     (x 106) -0.179 ± 0.720   

C31 (x 106) 1.481 ± 0.254 S31 (x 106) 0.811 ± 0.402 
C32 (x 106) 0.183 ± 0.153 S32 (x 106) -0.027 ± 0.099 

C33 (x 106) -0.222 ± 0.017 S33 (x 106) -0.226 ± 0.019 
 

J4     (x 106) -1.077 ± 1.844   

C41 (x 106)  -0.842 ± 0.299 S41 (x 106) 0.191 ± 0.717 
C42 (x 106) 0.183 ± 0.107 S42 (x 106) 0.198 ± 0.106 

C43 (x 106) -0.012 ± 0.039 S43 (x 106) -0.062 ± 0.033 

C44 (x 106) -0.014 ± 0.003 S44 (x 106) -0.012 ± 0.004 
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J5     (x 106) 1.118 ± 2.022   
C51 (x 106) 0.361 ± 0.406 S51 (x 106) 0.267 ± 0.604 

C52 (x 106) -0.097 ± 0.118 S52 (x 106) 0.044 ± 0.094 
C53 (x 106) -0.016 ± 0.019 S53 (x 106) -0.004 ± 0.012 

C54 (x 106) 0.007 ± 0.004 S54 (x 106) -0.002 ± 0.004 
C55 (x 106) 0.000 ± 0.001 S55 (x 106) 0.000 ± 0.001 

 

k2 0.616 ± 0.067   

Table 2: Estimated values and 1- uncertainties for Titan’s gravitational parameter (GM), unnormalized 

dimensionless gravitational potential coefficients (where 𝐽𝑙 = −𝐶𝑙0) corresponding to a reference radius of 

2575 km, and the tidal Love number k2 for the reference solution. 

 

 

Figure 2: Root mean square of the fully normalized gravity coefficients, 𝐶𝑙 = √
∑ (𝐶̅

𝑙𝑚
2 +𝑆̅𝑙𝑚

2 )𝑚

2𝑙+1
 . The values and 

1-uncertainties are reported and compared to a Kaula’s rule, Cl = K/l2, with K=10-5. 

 

Figure 3: Comparison of estimated values and 1- uncertainties for J2, C22, and k2 between our reference 

solution and other solutions: SAT337 and SAT375 update a different version of Saturn’s satellite 

ephemerides, whereas SAT389 has 3-times larger a priori uncertainty for Titan’s position and velocity; DRAG 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 9 

estimate a drag coefficient for each of the low-altitude passes instead of Titan’s base density and scale 

height; IAU 2000 and IAU 2009 adopt the rotation models suggested by IAU. 

4. IMPLICATIONS FOR TITAN’S INTERIOR 

Titan’s gravitational field conforms closely to the expectation for a body that has relaxed to hydrostatic 

equilibrium, with a moment of inertia factor in the vicinity of 0.341 (Figure 4a; see below). The moment of 

inertia factor is given by I/MR2, where I is the mean moment of inertia, M is Titan’s mass, and R is Titan’s 

mean radius. For a relaxed hydrostatic body, the departure from spherical symmetry arises mainly from 

rotational and tidal deformation and the associated redistribution of mass gives rise to the large J2 and C22 

terms in the gravitational potential. For a relaxed hydrostatic body, these terms have a theoretical ratio of 

J2/C22 = 10/3, to first order (the dashed line in Figure 4a). The moment of inertia values indicated along the 

dashed line in Figure 4a can be computed via the Radau-Darwin equation (Darwin, 1899; Murray and 

Dermott, 1999), which relates the moment of inertia factor to the fluid Love number k2f, which can in turn be 

related to J2 and C22 (e.g., see eqs. 16, 21-23 in Hemingway, et al., 2018). If Titan were perfectly hydrostatic, 

one could thus obtain k2f, and therefore the moment of inertia factor, directly from either of  the 𝐽2
obs or 𝐶22

obs 

terms, where the superscript ‘obs’ refers to the observed values (Table 2). Because of the departure from 

the hydrostatic expectation, however,𝐽2
obs and 𝐶22

obs correspond to slightly inconsistent moment of inertia 

factors. In order to approximately satisfy both observations, with no preference for one over the other, we 

therefore find the moment of inertia factor that yields, via the Radau-Darwin relation (see references 

above), hydrostatic values 𝐽2
hyd

 and 𝐶22
hyd

 that minimize √(𝐽2
obs − 𝐽2

hyd
)

2

+ (𝐶22
obs − 𝐶22

hyd
)

2

. The resulting 

best fitting moment of inertia factor is approximately 0.341, corresponding to a potential fluid Love number, 

k2f, of approximately 1.01, with  𝐽2
hyd

= 33.21 × 10−6 and 𝐶22
hyd

= 9.96 × 10−6 (cf. Table 2). 

Note that, whereas for fast spinning bodies like Enceladus, the hydrostatic ratio becomes slightly smaller 

than 10/3 as higher order corrections become important (Tricarico, 2014), the first order approximation of 

10/3 is highly accurate for Titan (to within 0.02%). Another correction can account for Titan’s orbital 

eccentricity (Matsuyama, 2011), giving a correction smaller than 0.3%. Thus, we can state that for a 

hydrostatic Titan, the value of 10/3 is correct to within 0.3%, ten times below the current accuracy. Our 

estimate of the ratio is J2/C22 = 3.186 ± 0.077, compatible with the hydrostatic value at 2-. Though, as we 

discuss further below, having the 10/3 ratio is a necessary, but not sufficient condition for hydrostatic 

equilibrium.   

In the simplest terms, Titan may be regarded as a mainly rocky core surrounded by an H2O mantle consisting 

of various solid and liquid phases. Adopting a simple two-layer model (rocky core, H2O mantle), taking the 

moment of inertia factor to be 0.341, and assuming the average density across the H2O layers is 1000 kg/m3, 

the known radius (2575 km) and bulk density (1881 kg/m3) can be used to solve for the core radius and 

density (e.g., see eqs. 1 and 2 in Hemingway, et al., 2018). Under these assumptions, we obtain an H2O layer 

thickness of ~400 km, leaving a large rocky core with a density around 2500 kg/m3. For the sake of 

generality, we carry out this calculation over a wide range of different moments of inertia and H2O layer 

densities (Figure 5), allowing for the possibility of, for example, the higher ocean densities permitted by the 

large tidal k2 (Iess, et al., 2012; Stiles, et al., 2008; Meriggiola, et al., 2012; and see below).  Such higher density 

outer layers would imply a significantly smaller and denser core, even when adopting the same moment of 

inertia. Moreover, the possibility of a non-hydrostatic interior (see below) permits moments of inertia 

smaller than 0.341, corresponding to still smaller and denser cores (Figure 5).     
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The measured J2 and C22 tell us that the hydrostatic, or fluid, k2 Love number is close to unity (see above). 

This is substantially larger than the tidal k2, which tells us that some major portion of Titan does not behave 

like a fluid at tidal timescales. The value for the tidal k2 for a thin shell and rigid interior beneath the ocean 

consistent with the moment of inertia is about 0.42 (Rappaport, et al., 2008; Iess, et al., 2012). This assumes 

that the outermost shell has little effect on the response; any effect it could  have because of its elasticity 

would only decrease the predicted k2. It follows that there are only two candidates for increasing the 

theoretical value to the observed value: either increase the ocean density (which also decreases the core 

size to be compatible with the moment of inertia) or allow the core to have a significant non-elastic (i.e., 

viscous) response at tidal timescales. Some combination of these two is possible of course. The 

interpretation is non-unique but the choice of a viscous core response (which is discussed in Iess, et al., 

2012) requires a non-Maxwell like response since a Maxwell model that simultaneously increases the real 

part of k2 also increases the imaginary part to a level inconsistent with the data. The core need not exhibit a 

Maxwell rheology, so this possibility is not excluded. As discussed by Iess, et al. (2012) and considered by 

Rappaport, et al. (2008) and Baland, et al. (2014), an ocean density of 1200 -1300 kg/m3 is cosmochemically 

possible and yields a k2 of 0.55 to 0.6. We lack sufficient understanding of the rheology of deeper regions to 

assess quantitatively the possible contribution of a non-elastic response for that region. It is also possible 

that the outer shell is reducing the Love number (which makes it harder to explain the result we obtained 

with a dense ocean alone) and a dynamic response to the tidal perturbation has also been suggested (P. 

Goldreich, private communication). 

Unlike its gravitational field, Titan’s figure (Zebker, et al., 2009; Corlies, et al., 2017) departs substantially from 

the hydrostatic expectation, exhibiting considerable excess flattening. Using the latest shape model (Corlies, 

et al., 2017), the dominant degree-2 terms have the ratio −𝐻20/𝐻22 = 5.5 ± 1.2, far larger than the 

hydrostatic value of 3.333 (Figure 4b). As with the gravitational potential, we compute the hydrostatic 

equilibrium figures, shown along the dashed line in Figure 4b for various moments of inertia, again using the 

Radau-Darwin relation (e.g., see eqs. 18, 21-23 in Hemingway, et al., 2018). Whereas Figure 6b shows the 

Corlies, et al. (2017) topography with respect to a reference sphere, with radius 2575 km, Figure 6d shows 

the topography with respect to the hydrostatic equilibrium figure expected for an assumed momen t of 

inertia factor of 0.341. Because the measured gravitational potential is so close to the hydrostatic 

expectation, this hypothetical hydrostatic equilibrium figure is nearly identical to the geoid (small purple 

ellipse in Figure 4b). The geoid is a surface where the potential, including tidal and rotational effects, has a 

constant value of GM/Rref. The geoid can be approximated to first order as 

 
𝑁(𝜃, 𝜙) = 𝑅ref ∑ ∑ (𝐶𝑙𝑚 cos 𝑚𝜙 + 𝑆𝑙𝑚 sin 𝑚𝜙)𝑃𝑙𝑚(cos 𝜃)

𝑙

𝑚=0

∞

𝑙=0

−
5𝜔2𝑅𝑟𝑒𝑓

2

6𝑔
𝑃20(cos𝜃) +

𝜔2𝑅𝑟𝑒𝑓
2

4𝑔
𝑃22(cos 𝜃) cos 2𝜙 

 

(3) 

where the last two terms are required to account for the combined tidal and rotational potentials  and where 

𝜔 and 𝑔 are Titan’s rotation rate and surface gravity, respectively. We do not show the topography with 

respect to the geoid because the result is visually indistinguishable from the non-hydrostatic topography 

shown in Figure 6d. Thus, measured with respect to the geoid, or almost equivalently, to a hydrostatic 

equilibrium figure with moment of inertia factor 0.341, Titan’s topography is relatively high in low 

latitudes—a notable exception being the topographic low near the Xanadu province—and is lowest near the 

poles, especially on the trailing hemisphere (Figure 6d).  
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The non-hydrostatic topography complicates the simple picture above because it should also contribute to 

the gravitational field, and yet there appears to be no significant non-hydrostatic gravity, at least at degree 2 

(Figure 4a). This is a strong indication that the > 500 meters of non-hydrostatic topography are highly 

compensated, meaning that the gravity anomalies associated with this topography must be offset by internal 

density anomalies. This is expected in the limit of a weak lithosphere, because the topography can only be 

supported isostatically (i.e., by buoyancy). The presence of a liquid water ocean beneath the floating ice shell 

provides a natural mechanism for Airy-type isostatic compensation in the sense of lateral shell thickness 

variations (e.g., Nimmo and Bills, 2010) wherein the low density isostatic roots offset the effect of the mass 

corresponding to the surface topography. It has also been suggested that Pratt-type isostatic compensation 

could play a role in the form of hydrocarbon-cycle-related density anomalies near Titan’s polar regions 

(Choukroun and Sotin, 2012), which would likewise reduce the contribution to the measured gravity field 

made by the non-hydrostatic topography.  

Even in the limit of perfect isostatic equilibrium, however, the topography’s contribution to the gravity signal 

should generally not be zero because of the finite thickness of the ice shell, which attenuates the 

compensating effect. Indeed, the relationship between the non-hydrostatic gravity and topography, typically 

quantified by the spectral admittance and correlation (e.g., Wieczorek, 2015; our Figure 8), can often be 

used to estimate the compensation depth (i.e., the ice shell thickness). In the present case, however, Titan’s 

non-hydrostatic topography does not contribute strongly to the non-hydrostatic gravity—the admittance 

and correlation spectra are compatible with zero (purple line in Figure 8). That is, while some non-

hydrostatic gravity is evident, at least beyond degree 2 (Figure 7, left column), it is not spatially well 

correlated with the non-hydrostatic topography (Figure 7, right column), precluding direct quantification of 

the compensation depth via a spectral admittance analysis and therefore a meaningful estimate of the ice 

shell thickness, at least on the basis of gravity and topography data alone. 

This lack of spatial correlation could be an indication that the ice shell is very thin, making isostatic 

compensation very effective in reducing the non-hydrostatic gravity. Alternatively, the topography could be 

over-compensated. That is, the isostatic roots may be larger than what would be expected in the limit of 

isostatic equilibrium. This could be the case if the ice shell thickness variations arise from thinning/thickening 

taking place due to melting/freezing at the base of the ice shell and if the ice shell is thick and stiff enough 

that elastic flexural support is important—though a rigid ice shell would also reduce the tidal k2 Love number 

(see Hemingway, et al., 2013). In fact, gravity/topography correlation could even be negative if the ice shell is 

sufficiently stiff. An anti-correlation between Titan’s degree-3 gravity and topography signals was previously 

noted by Hemingway, et al. (2013) based on shape and gravity models available at the time (Iess, et al., 2012; 

Zebker, et al., 2012; blue lines in Figure 8). When adopting the updated shape and gravity models, however, 

the correlation at degree 3 becomes significantly weaker (Figures 7 and 8). Likewise, the correlations at 

degrees 4 and 5 are compatible with zero. Although strong compensation could help explain why the non-

hydrostatic topography does not contribute much to the non-hydrostatic gravity, the appearance of 

uncorrelated non-hydrostatic gravity (Figure 7, left column) suggests the presence of additional internal 

heterogeneities that have little or nothing to do with the topographic anomalies  (Figure 7, right column), 

perhaps pointing instead to anomalies within the rocky part of the interior (see also Palguta, et al., 2006). 

A possible exception to the lack of correlation occurs at degree 2, where the non-hydrostatic gravity and 

topography could be spatially correlated, depending on what is assumed for the moment of inertia factor. 

The assumption of hydrostatic equilibrium amounts to choosing the moment of inertia factor as the point on 

the hydrostatic line in Figure 4a that is nearest to the measured gravity or, equivalently, to minimizing the 

non-hydrostatic part of the degree-2 gravity (i.e., minimizing the magnitude of the signal shown in Figure 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 12 

7a). Under this assumption, the non-hydrostatic degree-2 gravity is negligible and so the degree-2 

admittance is close to zero (Figure 8a). Moments of inertia larger or smaller than 0.341 are, however, 

possible if we relax the assumption of hydrostatic equilibrium. As mentioned earlier, the measured J2/C22 

ratio being close to 10/3 is a necessary, but not sufficient condition for hydrostatic equilibrium. Indeed, at 

least one study favors a moment of inertia factor in the range 0.31–0.33 in order to satisfy Titan’s measured 

obliquity (Baland, et al., 2014). In that scenario, the departure from hydrostatic equilibrium would involve 

more significant non-hydrostatic gravity, which would be positively correlated with the non-hydrostatic 

topography (i.e., both would involve excess power in the l,m=2,0 and l,m=2,2 terms). This is illustrated by the 

dashed lines showing the positive admittance (Figure 8a) and correlation (Figure 8b) computed from the 

degree-2 non-hydrostatic gravity and topography when the moment of inertia factor is assumed to be 0.32. 

This scenario does, however, require even the non-hydrostatic parts of J2 and C22 to be in a ratio close to 

10/3. Although such a ratio for the non-hydrostatic gravity terms would be fortuitous, the possibility cannot 

be excluded. 

 

Figure 4: (a) The newly measured (red) dominant quadrupole gravitational potential coefficients, J2 and C22, 

in comparison to the results of Iess, et al. (2012) (blue), with 1- uncertainty ellipses, and (b) the 

corresponding degree-2 terms of Titan’s figure, -H20 and H22, in relation to the measured geoid (small purple 

ellipse, highlighted by purple arrow); three distinct shape models are shown for comparison (blue: the 

triaxial ellipsoidal solution of Zebker, et al., 2009; red: the l<=6 solution of Zebker, et al., 2012; and yellow: 

Corlies, et al., 2017). In both panels, the observations are shown in relation to the expectation for hydrostatic 

equilibrium (dashed line, with numbers indicating normalized mean moments of inertia, computed via the 

Radau-Darwin relation). Whereas the shape departs substantially from the expectation for hydrostatic 

equilibrium, the gravitational field departs only slightly from the hydrostatic expectation. 
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Figure 5: Range of possible core radii and densities in relation to a range of moments of inertia  (constant 

along dashed curves) assuming various mean densities for the H20 mantle (solid curves). A two-layer body is 

assumed (rocky core, H2O mantle) and is subject to the constraints of Titan’s known total radius (2575 km) 

and bulk density (1881 kg/m3). 

 

 

Figure 6: Titan’s gravity and topography. Top panels (a-b) show full gravitational acceleration and 

topography measured with respect to a sphere of radius 2575 km. Panels (c-d) show only the non-

hydrostatic gravity and topography (i.e., departures from the hydrostatic expectation, where the hydrostatic 

component is computed via the Radau-Darwin relation) where we have assumed a moment of inertia factor 

of 0.341. 
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Figure 7: Non-hydrostatic gravity (left column) and topography (right column) for degrees 2-5. Whereas the 

signals beyond degree 2 (c-h) are independent of the assumed moment of inertia, the degree-2 signal (a-b) 

required subtracting the contributions from a hydrostatic body with moment of inertia factor 0.341. 
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Figure 8: (a) Spectral admittance and (b) correlation between the non-hydrostatic parts of the gravitational 

acceleration and the topography, shown for several combinations of shape and gravity models  (see legend, 

inset; note that the Iess, et al. (2012) nominal [SOL1a] solution was limited to degree 3), along with 1- error 

bars. Admittance and correlation are computed from the normalized gravitational acceleration and 

topography coefficients following Wieczorek (2015). The hydrostatic component is computed assuming a 

moment of inertia factor of either 0.341 (solid lines) or 0.32 (dashed lines). 

CONCLUSION 

The analysis of ten Cassini flybys of Titan dedicated to gravity science proved that the acquired data have 

been adequate for a valuable determination of the gravity field of Saturn’s largest moon. The gravity 

coefficients up to degree 5 have been reported, increasing the resolution of previous Cassini results, and 

providing insight into Titan’s interior structure. The new solution confirms the previous result of Titan’s large 

response to tidal forcing from Saturn: the confidence in the tidal Love number k2 has been further increased, 

and the tidal time lag has been determined to be close to zero at 1-, indicating a phase angle lag smaller 

than 5.4°. 

The new solution likewise confirms that, despite Titan’s considerable excess flattening, its interior has 

relaxed to a state compatible with hydrostatic equilibrium with a moment of inertia factor close to 0.341, 

though the presence of such significant non-hydrostatic topography is a reminder that hydrostatic 

equilibrium is not guaranteed, precluding a definitive determination of the moment of inertia. Comparison 

of the non-hydrostatic parts of the gravitational potential with the topography show that Titan’s topography 

is highly compensated, as expected if the ice shell is thin (permitting effective compensation) or stiff 

(permitting overcompensation that remains effective even for a thicker ice shell). The weak spatial 

correlation between the non-hydrostatic gravity and topography beyond degree 2, however, may suggest 

the presence of internal mass anomalies at depth. A more strongly differentiated interior, with moment of 

inertia factor <0.341, is permitted but would imply less compensation at degree 2. 

Although new observational constraints on Titan’s gravitational field must now await the next spacecraft 

mission to the Saturn system, increasingly comprehensive models, coupled with constraints from 

complementary observations (e.g., Titan’s rotational state) and laboratory experiments, have the potential 

to yield further insights into Titan’s interior and evolutionary history and to resolve many of the remaining 

puzzles. These include Titan’s extreme excess flattening in spite of its apparently hydrostatic gravitational 

field, the nature of Titan’s topography at various length scales and how it is maintained in spite of the basal 
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ice being near its melting temperature (and therefore likely to undergo viscous relaxation), as well as the 

nature of those mass anomalies that are uncorrelated with the observed topography. 
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HIGHLIGHTS 

 Cassini’s final data set updates Titan’s gravity solution to degree and order 5 

 The power spectrum of the degree>2 gravity coefficients follows a Kaula’s power law 

 The geoid is poorly correlated with the topography, implying good compensation 

 A strongly differentiated interior implies a large non-hydrostatic degree-2 field 
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